

A decomposition of normality via a generalization of κ -normality

Ananga Kumar Das and Pratibha Bhat

Department of Mathematics, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir-182320, INDIA (ak.das@smvdu.ac.in, akdasdu@yahoo.co.in and pratibha87bhat@gmail.com)

Communicated by T. Nogura

Abstract

A simultaneous generalization of κ -normality and weak θ -normality is introduced. Interrelation of this generalization of normality with existing variants of normality is studied. In the process of investigation a new decomposition of normality is obtained.

 $2010~\mathrm{MSC}\text{:}~Primary~54D10;~54D15;~Secondary~54D20.$

KEYWORDS: regularly open set; regularly closed set; θ -open set; θ -closed set; κ -normal (mildly) normal space; almost normal space; (weakly) (functionally) θ -normal space; weakly κ -normal space; Δ -normal space; strongly seminormal space.

1. Introduction and Preliminaries

Several generalized notions of normality such as almost normal, κ -normal, Δ -normal, θ -normal, semi-normal, Quasi-normal, π -normal, densely normal etc. exist in the literature. Recently, Interrelation among some of these variants of normality was studied in [4] and factorizations of normality are obtained in [4, 5, 12, 14]. In this paper, we tried to exhibit the interrelations that exist among these generalized notions of normality and introduced a simultaneous generalization of κ -normality and weak θ -normality called weak κ -normality. Intrestingly, the class of weakly κ -normal spaces contains the class of almost compact spaces whereas the class of κ -normal spaces does not contain the class of almost compact spaces. This newly introduced notion of weak normality

is utilized to obtain a factorization of normality. Moreover, it is verified that some covering properties which need not imply κ -normality implies weak κ normality.

Let X be a topological space and let $A \subset X$. Throughout the present paper, the closure and interior of a set A will be denoted by A (or clA) and intA (or A^{o}) respectively. A set $U \subset X$ is said to be regularly open [15] if $U = int\overline{U}$. The complement of a regularly open set is called regularly closed. It is observed that an intersection of two regularly closed sets need not be regularly closed. A finite union of regular open sets is called π -open set and a finite intersection of regular closed sets is called π -closed set. It is obvious that the complement of a π -open set is π -closed and the complement of a π -closed set is π -open, the finite union (intersection) of π -closed sets is π closed, but the infinite union (intersection) of π -closed sets need not be π -closed (See [11]). A point $x \in X$ is called a θ -limit point (respectively δ -limit point) [21] of A if every closed (respectively regularly open) neighbourhood of x intersects A. Let $cl_{\theta}A$ (respectively $cl_{\delta}A$) denotes the set of all θ -limit point (respectively δ -limit point) of A. The set A is called θ -closed (respectively δ -closed) if $A = cl_{\theta}A$ (respectively $A = cl_{\delta}A$). The complement of a θ -closed (respectively δ -closed) set will be referred to as a θ -open (respectively δ -open) set. The family of θ -open sets as well as the family of δ open sets form topologies on X. The topology formed by the set of δ -open sets is the semiregularization topology whose basis is the family of regularly open sets.

Let Y be a subspace of X. A subset A of X is concentrated on Y [2] if A is contained in the closure of $A \cap Y$ in X. A subset A of Y is said to be strongly concentrated on Y [6] if $A \subset \overline{(A \cap Y)^o}$. It is obvious that every strongly concentrated set is concentrated. We say that X is normal on Y if every two disjoint closed subsets of X concentrated on Y can be separated by disjoint open neighbourhoods in X [2]. Similarly, X is said to be weakly normal on Y [6] if for every disjoint closed subsets A and B of X strongly concentrated on Y, there exist disjoint open sets in X separating A and B respectively.

A space X is called *densely normal* if there exists a dense subspace Y of X such that X is normal on Y [2]. A topological space X is said to be weakly densely normal [6] if there exist a proper dense subspace Y of X such that X is weakly normal on Y. It is easy to see that every densely normal space is weakly densely normal and every weakly densely normal space is κ -normal. On the other hand, the converses are not true, as were shown in [10] and [6].

Lemma 1.1. A subset A of a topological space X is θ -open if and only if for each $x \in A$, there is an open set U such that $x \in U \subset \overline{U} \subset A$.

Definition 1.2. A topological space X is said to be

(i) quasi-normal [23] if any two disjoint π -closed subsets A and B of X there exist two open disjoint subsets U and V of X such that $A \subset U$ and $B\subset V$.

- (ii) π -normal [11] if for any two disjoint closed subsets A and B of X one of which is π -closed, there exist two open disjoint subsets U and V of X such that $A \subset U$ and $B \subset V$.
- (iii) Δ -normal [9] if every pair of disjoint closed sets one of which is δ -closed are contained in disjoint open sets.
- (iv) weakly Δ -normal [9] if every pair of disjoint δ -closed sets are contained in disjoint open sets.
- (v) weakly functionally Δ -normal (wf Δ -normal) [9] if for every pair of disjoint δ -closed sets A and B there exists a continuous function f: $X \to [0,1]$ such that f(A) = 0 and f(B) = 1.
- (vi) θ -normal [12] if every pair of disjoint closed sets one of which is θ -closed are contained in disjoint open sets;
- (vii) weakly θ -normal [12] if every pair of disjoint θ -closed sets are contained in disjoint open sets;
- (viii) functionally θ -normal [12] if for every pair of disjoint closed sets A and B one of which is θ -closed there exists a continuous function f: $X \rightarrow [0,1]$ such that f(A) = 0 and f(B)=1;
 - (ix) weakly functionally θ -normal (wf θ -normal) [12] if for every pair of disjoint θ -closed sets A and B there exists a continuous function f: $X \to [0,1]$ such that f(A) = 0 and f(B) = 1.
 - (x) β -normal [1] if for any two disjoint closed subsets A and B of X, there exist open sets U and V of X such that $A \cap U$ is dense in A, $B \cap V$ is dense in B and $\overline{U} \cap \overline{V} = \phi$.
 - (xi) almost β -normal [3] if for every pair of disjoint closed sets A and B, one of which is regularly closed, there exist open sets U and V such that $\overline{A \cap U} = A$, $\overline{B \cap V} = B$ and $\overline{U} \cap \overline{V} = \phi$.
- (xii) θ -regular [12] if for each closed set F and each open set U containing F, there exists a θ -open set V such that $F \subset V \subset U$.
- (xiii) semi-normal [22] if for every closed set F and each open set U containing F, there exists a regular open set V such that $F \subset V \subset U$.
- (xiv) almost normal [18] if every pair of disjoint closed sets one of which is regularly closed are contained in disjoint open sets.
- (xv) mildly normal [19] (or κ -normal [20]) if every pair of disjoint regularly closed sets are contained in disjoint open sets.
- (xvi) Δ -regular [9] if for every closed set F and each open set U containing F, there exists a δ -open set V such that $F \subset V \subset U$.

2. Weakly κ -normal spaces

Definition 2.1. A θ -closed set A is said to be a regularly θ -closed set if \overline{intA} = A. The complement of a regularly θ -closed set will be regularly θ open.

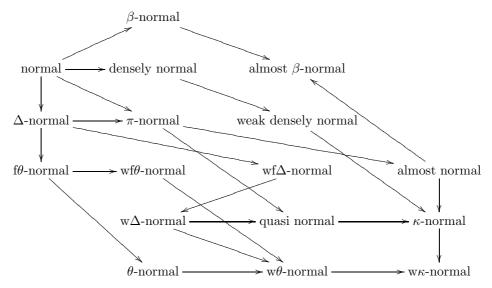
Clearly every regularly θ -closed set is regularly closed as well as θ -closed but the converse need not be true.

Example 2.2. Let X be the set of positive integers. Define a topology on X by taking every odd integer to be open and a set $U \subset X$ is open if for every even integer $p \in U$, the predecessor and the successor of p are also in U. Here the set $\{2k, 2k+1, 2k+2 : k \in \mathbb{Z}^+\}$ is a regularly closed set which is not θ -closed.

Example 2.3. Let X denote the interior of the unit square S in the plane together with the points (0,0) and (1,0), i.e. $X=S^o\cup\{(0,0),(1,0)\}$. Every point in S^o has the usual Euclidean neighburhoods. The points (0,0) and (1,0) have neighbourhoods of the form U_n and V_n respectively, where, $U_n =$ $\{(0,0)\} \cup \{(x,y) : 0 < x < 1/2, 0 < y < 1/n\} \text{ and } V_n = \{(1,0)\} \cup \{(x,y) : (x,y) : (x,y) = 1/n\}$ 1/2 < x < 1, 0 < y < 1/n. Clearly, the sets $\{(0,0)\}$ and $\{(1,0)\}$ are θ -closed but not regularly θ -closed.

Definition 2.4. A topological space X is said to be weakly κ -normal if for every pair of disjoint regularly θ -closed sets A and B there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$.

From the definitions it is obvious that every κ -normal space is weakly κ normal and every weakly θ -normal space is weakly κ -normal. The following diagram illustrates the interrelations that exist between weakly κ -normal spaces and variants of normality that exist in literature. But none of the implications below is reversible (See [7], [9], [11], [12], [14], [18] and examples below).



Example 2.5. The space defined in Example 2.2 is weakly κ -normal but not κ -normal.

Example 2.6. The example of a Tychonoff κ -normal space which is not densely normal was given by Just and Tartir [10]. Since every regular space is θ -regular [12], this space is θ -regular but not normal. Thus the space is not weakly θ normal as every θ -regular, weakly θ -normal space is normal [12].

Theorem 2.7. A topological space X is weakly κ -normal if and only if for every regularly θ -closed set A and a regularly θ -open set U containing A there is an open set V such that $A \subset V \subset \overline{V} \subset U$.

Proof. Let X be a weakly κ -normal space and U be a regularly θ -open set containing a regularly θ -closed set A. Then A and X-U are disjoint regularly θ -closed sets in X. Since X is weakly κ -normal, there are disjoint open sets V and W containing A and X-U, respectively. Then $A \subset V \subset X-W \subset U$. Since X-W is closed, $A \subset V \subset \overline{V} \subset U$. Conversely, let A and B be two disjoint regularly θ -closed sets in X. Then U = X - B is a regularly θ -open set containing the regularly θ -closed set A. Thus by the hypothesis there exists an open set V such that $A \subset V \subset \overline{V} \subset U$. Then V and $X - \overline{V}$ are disjoint open sets containing A and B, respectively. Hence X is weakly κ -normal.

Theorem 2.8. Let X be a finite topological space. For a subset A of X, the following statements are equivalent.

- (a) A is clopen.
- (b) A is θ -closed.
- (c) A is θ -open.

Proof. The implication $(a) \implies (b)$ is obvious. To prove $(b) \implies (a)$, let A be a closed subset of X. Then (X - A) is θ -open in X. By Lemma 1.3.4, for each $x \in X - A$ there exists an open set U_x containing x such that $x \in U_x \subset \overline{U_x} \subset X - A$. Since X is finite, $\bigcup_{x \in X - A} \overline{U_x} = X - A$, is the union of finitely many closed sets and hence closed. Thus A is open. By hypothesis A is θ -closed and hence closed. Consequently, A is clopen. The proofs of $(a) \implies (c)$ and $(c) \implies (a)$ are similar and hence omitted.

From the above result the following observation is obvious.

Remark 2.9. Every finite topological space is weakly κ -normal whereas finite topological spaces need not be κ -normal.

Theorem 2.10 ([13]). A space X is almost regular if and only if for every open set U in X, $int\overline{U}$ is θ -open.

Theorem 2.11. In an almost regular space, the following statements are equivalent

- (a) X is κ -normal.
- (b) X is weakly κ -normal.

Proof. The proof of $(a) \implies (b)$ directly follows from definitions. To prove (b) \implies (a), let X be an almost regular, weakly κ -normal space. Let A and B be two disjoint regularly closed sets in X. By Theorem 2.10, A and B are disjoint regularly θ -closed sets in X. Thus by weak κ -normality of X, there exist disjoint open sets separating A and B. Hence X is κ -normal.

Theorem 2.12. In an almost regular space, every π -closed set is θ -closed.

Proof. Let X be an almost regular space and let $A \subset X$ be π -closed in X. Thus A is finite intersection of π -closed sets in X. Since in an almost regular space every regularly closed set is θ -closed [16] and finite intersection of θ -closed sets is θ -closed [21], A is θ -closed.

Theorem 2.13. Every almost regular, weakly θ -normal space is quasi normal.

Proof. Let X be an almost regular, weakly θ -normal space. Let A and B be two disjoint π -closed sets in X. By Theorem 2.12, A and B are disjoint θ -closed sets which can be separated by disjoint open set as X is weakly θ -normal. \square

Theorem 2.14. Every almost regular, θ -normal space is π -normal.

It is well known that every compact Hausdorff space is normal. However, in the absence of Hausdorffness or regularity a compact space may fail to be normal. Thus it is useful to know which topological property weaker than Hausdorffness with compactness implies normality. The property of being a T_1 space fails to do the job since the cofinite topology on an infinite set is a compact T_1 space which is not normal. However, it is well known that Every compact R_1 -space is normal (See [17]). In [12], it is shown that every compact space in particular every paracompact space in absence of any separation axioms is θ -normal. It is also known that every Lindelöf spaces need not be κ -normal. However, by the following theorem of [12] it follows that every Lindelöf space is weakly κ -normal. Similarly, almost compactness need not implies κ -normality, but by Theorem of [12], every almost compact space is weakly κ -normal.

Theorem 2.15 ([12]). Every Lindelöf space is weakly θ -normal.

Corollary 2.16. Every Lindelöf space is weakly κ -normal.

Corollary 2.17. Every almost regular, Lindelöf space is κ -normal.

Proof. The prove immediately follows from Theorem 2.11, since in an almost regular space every weakly κ -normal space is κ -normal.

Theorem 2.18 ([12]). Every almost compact space is weakly θ -normal.

Corollary 2.19. Every almost compact space is weakly κ -normal.

Corollary 2.20. Every almost regular, almost compact space is κ -normal.

Proof. The prove immidiately follows from Theorem 2.11, since in an almost regular space every weakly κ -normal space is κ -normal.

Remark 2.21. Corollary 2.17 and Corollary 2.20 were independently prooved in [18]. In contrary to the above results the following example establishes that Lindelöf spaces need not be κ -normal and almost compactness need not imply κ -normality.

Example 2.22. Let X be the set of positive integers with the topology as defined in Example 2.2 and $Y = \{1, 2, 3, ..., 11\}$. Then the subspace topology on Y is compact but not κ -normal as disjoint regularly closed sets $\{2,3,4\}$ and $\{6,7,8\}$ can not be separated by disjoint open sets.

Definition 2.23 ([13]). A space X is said to be θ -compact if every open covering of X by θ -open sets has a finite subcollection that covers X.

The following result is useful to show that every almost regular, θ -compact space is κ -normal as well as weakly θ -normal.

Theorem 2.24 ([16]). Let $A \subset X$ be θ -closed and let $x \notin A$. Then there exist regular open sets which separate x and A.

Theorem 2.25. In an almost regular space, every θ -compact space is weakly θ -normal.

Proof. Let X be an almost regular θ -compact space. Let A and B be any two disjoint θ -closed subsets of X. By Theorem 2.24, for every $a \in A$, there exist disjoint regularly open sets U_a and V_a containing a and B respectively. Since X is almost regular, U_a and V_a are disjoint θ -open sets containing a and B. Now the collection $\{U_a : a \in A\}$ is a θ -open cover of A. Then $A \subset \bigcup U_a = O$.

Since arbitrary union of θ -open sets is θ -open, X - O = D is θ -closed. Since A is a θ -closed set disjoint from D, by Theorem 2.24, for every $d \in D$, there exist disjoint regularly open sets S_d and T_d containing A and d respectively. Again by almost regularity of X, T_d is a θ -open set which is disjoint from A. Now the collection $\mathcal{U} = \{U_a : a \in A\} \cup \{T_d : d \in D\}$ is a θ -open covering of X. By θ -compactness of X, mathcal U has a finite subcollection \mathcal{V} which covers X. Let the members of \mathcal{V} which intersects A be \mathcal{W} . Each member of \mathcal{W} is of the form U_a for some $a \in A$ as for each $d \in D$, $T_d \cap A = \phi$. Suppose $\mathcal{W} = \{U_{a_i} : i = 1, 2, 3, ..., n\}$. Then $\bigcup_{i=1}^n U_{a_i} = U$ and $\bigcap_{i=1}^n V_{a_i} = V$ are disjoint open sets containing A and B respectively. Hence X is weakly θ -normal. \square

Corollary 2.26. In an almost regular space, every θ -compact space is weakly κ -normal.

Proof. The proof immidiately follows from the fact that every θ normal space is weakly κ -normal.

Corollary 2.27. In an almost regular space, every θ -compact space is κ normal.

Proof. The proof immidiately follows from Theorem 2.11.

Corollary 2.28. In an almost regular space, every almost compact space is weakly κ -normal.

Proof. The proof is immediate as every almost compact space is θ -compact |13|.

3. Decompositions of normality

Theorem 3.1. An T_1 -space is almost normal if and only if it is almost β normal and weakly κ -normal.

Proof. Necessary part is obvious. Conversely, let X be a T_1 -amlost β normal, weakly κ -normal space. Since X is T_1 -almost β -normal, by Theorem 2.9 of [3], X is almost regular. So by Theorem 2.11, X is κ - normal. Hence X is almost normal as every almost β -normal, κ -normal space is almost normal [3].

Corollary 3.2. An T_1 space is normal if and only if it is almost β -normal, weakly κ -normal and semi-normal.

Proof. The prove follows from the result that every almost normal, semi normal space is normal [18].

Definition 3.3. A space X is said to be strongly seminormal if for every closed set A contained in an open set U there exists a regularly θ -open set V such that $A \subset V \subset U$.

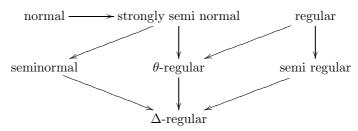
Theorem 3.4. Every normal space is strongly seminormal.

Proof. Let A be a closed set and U be an open set containing A. Let B = X - U. Then A and B are disjoint closed sets in X. By Urysohn's lemma there exists a continuous function $f: X \to [0,1]$ such that f(A) = 0 and f(B) = 1. Let $V = f^{-1}[0, 1/2)$ and $W = f^{-1}(1/2, 1]$. Then $A \subset V \subset X - W \subset U$. Thus $A \subset V \subset \overline{V}^o \subset X - W \subset U$. We claim that \overline{V}^o is a regularly θ -open set. \overline{V}^o is regularly open, only we have to show that \overline{V}^o is θ -open. let $x \in \overline{V}^o$. Then $f(x) \in [0,1/2)$. So there is a closed neighbourhood N of f(x) contained in [0,1/2). Let $U_x=(f^{-1}(N))^o$. Then $x\in U_x\subset f^{-1}(N)\subset \overline V^o$. By Lemma 1.1, \overline{V}° is θ -open. Hence X is strongly seminormal.

Theorem 3.5. Every strongly seminormal space is seminormal.

Theorem 3.6. Every strongly seminormal space is θ -regular.

The following implications are obvious but none of these is reversible.



Example 3.7. Let X be the set of positive integers with the topology as defined in Example 2.2, then X is seminormal but not strongly seminormal.

Example 3.8. The space given in [10] by Just and Tartir is an example of a Tychonoff κ -normal space which is not densely normal. Since every seminormal κ -normal space is normal [18], thus becoming densely normal, this space is not seminormal but is θ -regular as every regular space is θ -regular.

Theorem 3.9. A space X is normal if and only if it is strongly seminormal and weakly κ -normal.

Proof. The necessary part i.e., a normal space is strongly seminormal as well as weakly κ -normal directly follows from the definition. Conversely, let X be a strongly seminormal and weakly κ -normal space. let A and B be two disjoint closed sets in X. Thus A is a closed set contained in an open set U = X - B. Since X is strongly seminormal, there exists an regularly θ -open set V such that $A \subset V \subset U$. Now X - V is a regularly θ -closed set contained in an open set X-A. Again by strong seminormality of X, there exists a regularly θ -open set W such that $X - V \subset W \subset X - A$. Thus X - V and X - W are two disjoint regularly θ -closed sets in X containing B and A respectively. By weak κ -normality of X, there exist two disjoint open sets O and P separating X-Wand X - V. Hence X is normal.

Corollary 3.10. In the class of strongly seminormal spaces, the following statements are equivalent.

- (a) X is normal.
- (b) X is Δ -normal.
- (c) X is $wf\Delta$ -normal.
- (d) X is weakly Δ -normal.
- (e) X is functionally θ -normal.
- (f) X is θ -normal.
- (g) X is weakly functionally θ -normal.
- (h) X is weakly θ -normal.
- (i) X is π -normal.
- (j) X is quasi normal.
- (k) X is almost normal.
- (l) X is κ -normal.
- (m) X is weakly κ -normal.

Remark 3.11. In [9], it is shown that in the class of Δ -regular spaces statements (a)-(d) of Corollary 3.10 are equivalent and in the class of θ -regular spaces statements (a)-(h) are equivalent.

References

- [1] A. V. Arhangel'skii and L. Ludwig, On α -normal and β -normal spaces, Comment. Math. Univ. Carolin. 42, no. 3 (2001), 507-519.
- [2] A.V. Arhangel'skii, Relative topological properties and relative topological spaces, Topology Appl. 70 (1996), 87-99.
- [3] A. K. Das, P. Bhat and J. K. Tartir, On a simultaneous generalization of β -normality and almost β -normality, Filomat 31, no. 2 (2017), 425–430.
- [4] A. K. Das and P. Bhat, Decompositions of normality and interrelation among its variants, Math. Vesnik 68, 2 (2016), 77-86.
- [5] A. K. Das, P. Bhat and R. Gupta, Factorizations of normality via generalizations of normality, Mathematica Bohemica 141, no. 4 (2016), 463-473.

A. K. Das and P. Bhat

- [6] A. K. Das and P. Bhat, A class of spaces containing all densely normal spaces, Indian J. Math. 57, no. 2 (2015), 217-224.
- [7] A. K. Das, A note on spaces between normal and κ -normal spaces, Filomat 27, no. 1 (2013), 85-88.
- [8] A. K. Das, Simultaneous generalizations of regularity and normality, Eur. J. Pure Appl. Math. 4 (2011), 34–41.
- [9] A. K. Das, Δ-normal spaces and decompositions of normality, Applied General Topology 10, no. 2 (2009), 197–206.
- [10] W. Just and J. Tartir, A π -normal, not densely normal Tychonof spaces, Proc. Amer. Math. Soc. 127, no. 3 (1999), 901-905.
- [11] L. N. Kalantan, π-Normal topological spaces, Filomat 22, no. 1 (2008), 173–181.
- [12] J. K. Kohli and A. K. Das, New normality axioms and decompositions of normality, Glasnik Mat. 37(57) (2002), 163-173.
- [13] J. K. Kohli and A. K. Das, A class of spaces containing all generalized absolutely closed (almost compact) spaces, Applied General Topology 7, no. 2 (2006), 233-244.
- [14] J. K. Kohli and D. Singh, Weak normality properties and factorizations of normality, Acta Math. Hungar. 110 (2006), 67-80.
- [15] C. Kuratowski, Topologie I, Hafner, New York, 1958.
- [16] P. E. Long and L. L. Herrington, The T_{θ} topology and faintly continuous functions, Kyungpook Math. J. 22, no. 1 (1982), 7-14.
- [17] M. G. Murdeshwar, General Topology, Wiley Eastern Ltd., 1986.
- [18] M. K. Singal and S. P. Arya, On almost normal and almost completely regular spaces, Glasnik Mat. 5(25) (1970), 141-152.
- [19] M. K.Singal and A. R. Singal, Mildly normal spaces, Kyungpook Math J. 13 (1973), 27 - 31.
- [20] E. V. Stchepin, Real valued functions and spaces close to normal, Sib. J. Math. 13, no. 5 (1972), 1182-1196.
- [21] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc, Transl. 78, no. 2, (1968), 103 - 118.
- [22] G. Vigilino, Seminormal and C-compact spaces, Duke J. Math. 38 (1971), 57–61.
- [23] V. Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR 178 (1968), 778-779.