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Abstract

We prove that every C∗-embedded subset of S2 is a hereditarily Baire
subspace of R2. We also show that for a subspace E ⊆ {(x,−x) : x ∈
R} of the Sorgenfrey plane S2 the following conditions are equivalent:
(i) E is C-embedded in S2; (ii) E is C∗-embedded in S2; (iii) E is
a countable Gδ-subspace of R2 and (iv) E is a countable functionally
closed subspace of S2.
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1. Introduction

Recall that a subset A of a topological space X is called functionally open
(functionally closed) in X if there exists a continuous function f : X → [0, 1]
such that A = f−1((0, 1]) (A = f−1(0)). Sets A and B are completely separated
in X if there exists a continuous function f : X → [0, 1] such that A ⊆ f−1(0)
and B ⊆ f−1(1).

A subspace E of a topological space X is

• C-embedded (C∗-embedded) in X if every (bounded) continuous function
f : E → R can be continuously extended on X ;

• z-embedded in X if every functionally closed set in E is the restriction
of a functionally closed set in X to E;

• well-embedded in X [7] if E is completely separated from any function-
ally closed set of X disjoint from E.
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Clearly, every C-embedded subspace of X is C∗-embedded in X . The con-
verse in not true. Indeed, if E = N and X = βN, then E is C∗-embedded in
X (see [4, 3.6.3]), but the function f : E → R, f(x) = x for every x ∈ E, does
not extend to a continuous function f : X → R.

A space X has the property (C∗ = C) [11] if every closed C∗-embedded
subset of X is C-embedded in X . The classical Tietze-Urysohn Extension
Theorem says that if X is a normal space, then every closed subset of X is C∗-
embedded and X has the property (C∗ = C). Moreover, a space X is normal
if and only if every its closed subset is z-embedded (see [9, Proposition 3.7]).

The following theorem was proved by Blair and Hager in [2, Corollary 3.6].

Theorem 1.1. A subset E of a topological space X is C-embedded in X if and
only if E is z-embedded and well-embedded in X.

A space X is said to be δ-normally separated [10] if every closed subset of
X is well-embedded in X . The class of δ-normally separated spaces includes
all normal spaces and all countably compact spaces. Theorem 1.1 implies the
following result.

Corollary 1.2. Every δ-normally separated space has the property (C∗ = C).

According to [15] every C∗-embedded subspace of a completely regular first
countable space is closed. The following problem is still open:

Problem 1.3 ([12]). Does there exist a first countable completely regular space
without property (C∗ = C)?

H. Ohta in [11] proved that the Niemytzki plane has the property (C∗ = C)
and asked does the Sorgenfrey plane S2 (i.e., the square of the Sorgenfrey line
S) have the property (C∗ = C)?

In the given paper we obtain some necessary conditions on a set E ⊆ S2 to be
C∗-embedded. We prove that every C∗-embedded subset of S2 is a hereditarily
Baire subspace of R2. We also characterize C- and C∗-embedded subspaces
of the anti-diagonal D = {(x,−x) : x ∈ R} of S2. Namely, we prove that for
a subspace E ⊆ D of S2 the following conditions are equivalent: (i) E is C-
embedded in S2; (ii) E is C∗-embedded in S2; (iii) E is a countable Gδ-subspace
of R2 and (iv) E is a countable functionally closed subspace of S2.

2. Every finite power of the Sorgenfrey line is a hereditarily

α-favorable space

Recall the definition of the Choquet game on a topological space X between
two players α and β. Player β goes first and chooses a nonempty open subset
U0 of X . Player α chooses a nonempty open subset V1 of X such that V1 ⊆ U0.
Following this player β must select another nonempty open subset U1 ⊆ V1 of
X and α must select a nonempty open subset V2 ⊆ U1. Acting in this way, the
players α and β obtain sequences of nonempty open sets (Un)

∞
n=0 and (Vn)

∞
n=1

such that Un−1 ⊆ Vn ⊆ Un for every n ∈ N. The player α wins if
∞
⋂

n=1

Vn 6= ∅.
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Otherwise, the player β wins. If there exists a rule (a strategy) such that α wins
if he plays according to this rule, then X is called α-favorable. Respectively,
X is called β-unfavorable if the player β has no winning strategy. Clearly,
every α-favorable space X is β-unfavorable. Moreover, it is known [13] that a
topological space X is Baire if and only if it is β-unfavorable in the Choquet
game.

If A is a subspace of a topological space X , then A and intA mean the
closure and the interior of A in X , respectively.

Lemma 2.1. Let X =
n
⋃

k=1

Xk, where Xk is an α-favorable subspace of X for

every k = 1, . . . , n. Then X is an α-favorable space.

Proof. We prove the lemma for n = 2. Let G = G1 ∪ G2, where Gi = intXi,
i = 1, 2. We notice that for every i = 1, 2 the space Xi is α-favorable, since
it contains dense α-favorable subspace. Then Gi is α-favorable as an open
subspace of the α-favorable space Xi. It is easy to see that the union G of
two open α-favorable subspaces is an α-favorable space. Therefore, X is α-
favorable, since G is dense in X . �

Let p = (x, y) ∈ R2 and ε > 0. We write

B[p; ε) = [x, x + ε)× [y, y + ε),

B(p; ε) = (x− ε, x+ ε)× (y − ε, y + ε).

If A ⊆ S2 then the symbol clS2A (clR2A) means the closure of A in the space
S2 (R2).

We say that a space X is hereditarily α-favorable if every its closed subspace
is α-favorable.

Theorem 2.2. For every n ∈ N the space Sn is hereditarily α-favorable.

Proof. Let n = 1 and ∅ 6= F ⊆ S. Assume that β chose a nonempty open in F
set U0 = [a0, b0)∩F , a0 ∈ F . If U0 has an isolated point x in S, then α chooses
V1 = {x} and wins. Otherwise, α put V1 = [a0, c0)∩F , where c0 ∈ (a0, b0)∩F
and c0 − a0 < 1. Now let U1 = [a1, b1) ∩ F ⊆ V1 be the second turn of β such
that a1 ∈ F and the set (a1, b1) ∩ F has no isolated points in S. Then there
exists c1 ∈ (a1, b1)∩F such that c1 − a1 < 1

2
. Let V2 = [a1, c1)∩F . Repeating

this process, we obtain sequences (Um)∞m=0, (Vm)∞m=1 of open subsets of F
and sequences of points (am)∞m=0, (bm)∞m=0 and (cm)∞m=1 such that [am, bm) ⊇
[am, cm) ⊇ [am+1, bm+1), cm − am < 1

m+1
, cm ∈ F , Um = [am, bm) ∩ F and

Vm+1 = [am, cm) ∩ F for every m = 0, 1, . . . . According to the Nested Interval

Theorem, the sequence (cm)∞m=1 is convergent in S to a point x∗ ∈
∞
⋂

m=0

Vm.

Since F is closed in S, x∗ ∈ F . Hence, F ∩
∞
⋂

m=0

Vm 6= ∅. Consequently, F is

α-favorable.
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Suppose that the theorem is true for all 1 ≤ k ≤ n and prove it for k = n+1.
Consider a set ∅ 6= F ⊆ Sn+1. Let the player β chooses a set U0 = F ∩

n+1
∏

k=1

[a0,k, b0,k) with a0 = (a0,k)
n+1
k=1 ∈ F . Denote U+

0 =
n+1
∏

k=1

(a0,k, b0,k) and

consider the case U+
0 ∩ F = ∅. For every k = 1, . . . , n + 1 we set U0,k =

{a0,k}×
∏

i6=k

[a0,i, b0,i) and F0,k = F∩U0,k. Since U0,k is homeomorphic to Sn, by

the inductive assumption the space F0,k is α-favorable for every k = 1, . . . , n+1.

Then F is α-favorable according to Lemma 2.1. Now let U+
0 ∩F 6= ∅. If there

exists an isolated in Sn+1 point x ∈ U0, then α put V1 = {x} and wins. Assume
U0 has no isolated points in Sn+1. Then there is c0 = (c0,k)

n+1
k=1 ∈ U+

0 ∩ F

such that diam(
n+1
∏

k=1

[a0,k, c0,k)) < 1. We put V1 = F ∩
n+1
∏

k=1

[a0,k, c0,k). Let

U1 = F ∩
n+1
∏

k=1

[a1,k, b1,k) be the second turn of β such that a1 = (a1,k)
n+1
k=1 ∈ F

and U1 ⊆ V1. Again, if U+
1 ∩ F = ∅, where U+

1 =
n+1
∏

k=1

(a1,k, b1,k), then, using

the inductive assumption, we obtain that for every k = 1, . . . , n+ 1 the space
F ∩

(

{a1,k}×
∏

i6=k

[a1,i, b1,i)
)

is α-favorable. Then α has a winning strategy in F

by Lemma 2.1. If U+
1 ∩F 6= ∅ and U1 has no isolated points in Sn+1, the player

α chooses a point c1 = (c1,k)
n+1
k=1 ∈ U+

1 ∩F such that diam(
n+1
∏

k=1

[a1,k, c1,k)) < 1/2

and put V2 = F ∩
n+1
∏

k=1

[a1,k, c1,k). Repeating this process, we obtain sequences

of points (am)∞m=0, (bm)∞m=0 and (cm)∞m=0, and of sets (Um)∞m=0 and (Vm)∞m=1,
which satisfy the following properties:

1) Um = F ∩
n+1
∏

k=1

[am,k, bm,k);

2) am ∈ F , cm ∈ U+
m ∩ F ;

3) Vm+1 = F ∩
n+1
∏

k=1

[am,k, cm,k);

4) Vm+1 ⊆ Um ⊆ Vm;
5) diam(Vm+1) <

1
m+1

for every m = 0, 1, . . . . We observe that the sequence (cm)∞m=0 is convergent in

Rn+1 and x∗ = lim
m→∞

cm ∈
∞
⋂

m=0

Vm =
∞
⋂

m=0

Vm. Since cm → x∗ in Sn+1, cm ∈ F

and F is closed in Sn+1, x∗ ∈ F ∩
(

∞
⋂

m=0

Vm

)

. Hence, F is α-favorable. �
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3. Every C∗-embedded subspace of S2 is a hereditarily Baire

subspace of R2.

Lemma 3.1. A set E ⊆ R2 is functionally closed in S2 if and only if

1) E is Gδ in R2; and
2) if F is R2-closed set disjoint from E, then F and E are completely

separated in S2.

Proof. Necessity. Let f : S2 → R be a continuous function such that E =
f−1(0). According to [1, Theorem 2.1], f is a Baire-one function on R2. Con-
sequently, E is a Gδ subset of R2.

Condition (2) follows from the fact that every R2-closed set is, evidently, a
functionally closed subset of S2.

Sufficiency. Since E is Gδ in R2, there exists a sequence of R2-closed sets

Fn such that X \E =
∞
⋃

n=1

Fn. Clearly, E ∩Fn = ∅. Then condition (2) implies

that for every n ∈ N there exists a continuous function fn : S2 → R such that

E ⊆ f−1
n (0) i Fn ⊆ f−1(1). Then E =

∞
⋂

n=1

f−1
n (0). Hence, E is functionally

closed in S2. �

Lemma 3.2. Let X be a metrizable space, A ⊆ X be a set without isolated
points and let B ⊆ X be a countable set such that A ∩ B = ∅. Then there
exists a set C ⊆ A without isolated points such that C ∩B = ∅.

Proof. Let d be a metric on X , which generates its topological structure. For
x0 ∈ X and r > 0 we denote B(x0, r) = {x ∈ X : d(x, x0) < r} and B[x0, r] =
{x ∈ X : d(x, x0) ≤ r}. Let B = {bn : n ∈ N}. We put A0 = ∅ and construct
sequences (An)

∞
n=1 and (Vn)

∞
n=1 of nonempty finite sets An ⊆ A and open

neighborhoods Vn of bn which for every n ∈ N satisfy the following conditions:

An−1 ⊆ An;(3.1)

∀x ∈ An ∃y ∈ An \ {x} with d(x, y) ≤
1

n
;(3.2)

d(An,
⋃

1≤i≤n

Vi) > 0.(3.3)

Let A1 = {x1, y1}, where d(x1, y1) ≤ 1 and x1 6= y1. We take ε > 0 such
that A1 ∩ B[b1, ε] = ∅ and put V1 = B(b1, ε). Assume that we have al-
ready defined finite sets A1, . . . Ak and neighborhoods V1, . . . , Vk of b1, . . . , bk,
respectively, which satisfy conditions (3.1)–(3.3) for every n = 1, . . . , k. Let
Ak = {a1, . . . , am}, m ∈ N. Taking into account that the set D = A \

⋃

1≤i≤k

V i

has no isolated points, for every i = 1, . . . ,m we take ci ∈ D with ci 6= ai
and d(ai, ci) ≤ 1

k+1
. Put Ak+1 = Ak ∪ {c1, . . . , cm}. Take δ > 0 such that

Ak+1 ∩ B[bk+1, δ] = ∅. Let Vk+1 = B(bk+1, δ). Repeating this process, we
obtain needed sequences (An)

∞
n=1 and (Vn)

∞
n=1.
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It remains to put C =
∞
⋃

n=1

An. �

The following results will be useful.

Theorem 3.3 ([5]). A subspace E of a topological space X is C∗-embedded
in X if and only if every two disjoint functionally closed subsets of E are
completely separated in X.

Theorem 3.4 ([16]). The Sorgenfrey plane S2 is strongly zero-dimensional,
i.e., for any completely separated sets A and B in S2 there exists a clopen set
U ⊆ S2 such that A ⊆ U ⊆ S2 \B.

Recall that a space X is hereditarily Baire if every its closed subspace is
Baire.

Theorem 3.5. Let E be a C∗-embedded subspace of S2. Then E is a heredi-
tarily Baire subspace of R2.

Proof. Assume that E is not R2-hereditarily Baire space and take an R2-closed
countable subspace E0 without R2-isolated point (see [3]). Notice that E is
S2-closed according to [15, Corollary 2.3]. Therefore, E0 is S2-closed set. By
Theorem 2.2 the space E0 is α-favorable, and, consequently, E0 is a Baire
subspace of S2.

Let E′
0 be a set of all S2-nonisolated points of E0. Since E′

0 is the set of the
first category in S2-Baire space E0, the set G = E0\E

′
0 is S

2-dense open discrete
subspace of E0. We notice that G is R2-dense subspace of E0. By Lemma 3.2
there exists a set C ⊆ G without R2-isolated point such that clR2C ∩ E′

0 = ∅.
We put F = clR2C ∩E0.

Let A and B be any R2-dense in F disjoint sets such that F = A ∪ B.
Evidently A and B are clopen subsets of F , since F is S2-discrete space. Notice
that F is z-embedded in E, because F is countable. Moreover, F is R2-closed
in E. Hence, F is S2-functionally closed in E. By Theorem 1.1 the set F is
C-embedded in C∗-embedded in S2 set E. Consequently, F is C∗-embedded
in S2. Therefore, Theorem 3.3 and Theorem 3.4 imply that there exist disjoint
clopen set U, V ⊆ S2 such that A = U ∩ F and B = V ∩ F . According to
Lemma 3.1 the sets U and V are Gδ in R2. Let D = clR2F . Then U ∩D and
V ∩ D are R2-dense in D disjoint Gδ-sets, which contradicts to the baireness
of D. �

4. Every discrete C∗-embedded subspace of S2 is a countable

Gδ-subspace of R2.

Lemma 4.1. Let X be a metrizable separable space and A ⊆ X be an uncount-
able set. Then there exists a set Q ⊆ A which is homeomorphic to the set Q of
all rational numbers.

Proof. Let A0 be the set of all points of A which are not condensation points A
(a point a ∈ X is called a condensation point of A in X if every neighborhood
of a contains uncountably many elements of A). Notice that A0 is countable,
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since X has a countable base. Put B = A \ A0. Then the inequality |A| > ℵ0

implies that every point of B is a condensation point of B. Take a countable
subset Q ⊆ B which is dense in B. Clearly, every point of Q is not isolated.
Hence, Q is homeomorphic to Q by the Sierpiński Theorem [14]. �

Lemma 4.2. Let E be an R2-hereditarily Baire z-embedded subspace of S2.
Then the set E0 of all isolated points of E is at most countable.

Proof. Assume E0 is uncountable. Notice that E0 is an Fσ-subset of E, since

E0 is an open subset of E and S2 is a perfect space by [6]. Then E0 =
∞
⋃

n=1

En,

where every set En is closed in E. Take N ∈ N such that EN is uncountable.
According to Lemma 4.1 there exists a set Q ⊆ EN which is homeomorphic to
Q. Since Q is clopen in EN and EN is a clopen subset of a z-embedded in S2 set
E, there exists a functionally closed subset Q1 of S2 such that Q = E ∩Q1. By
Lemma 3.1 the set Q1 is a Gδ-set in R2. Then Q is a Gδ-subset of a hereditarily
Baire space E. Hence, Q is a Baire space, a contradiction. �

Theorem 4.3. If E is a discrete C∗-embedded subspace of S2, then E is a
countable Gδ-subspace of R2.

Proof. Theorem 3.5 and Lemma 4.2 imply that E is a countable hereditarily
Baire subspace of R2. According to [8, Proposition 12] the set E is Gδ in
R2. �

The converse implication in Theorem 4.3 is not valid as Theorem 4.5 shows.

Lemma 4.4. Let A be an S2-closed set, ε > 0 and L(A; ε) = {p ∈ S2 : B[p; ε) ⊆
A}. Then L(A; ε) is R2-closed.

Proof. We take p0 = (x0, y0) ∈ clR2L(A; ε) and show that p0 ∈ L(A; ε). We
consider U = intR2B[p0; ε) and prove that U ⊆ A. Take p = (x, y) ∈ U
and put δ = min{(x − x0)/2, (y − y0)/2, (x0 + ε − x)/2, (y0 + ε − y)/2}. Let
p1 ∈ B(p0; δ) ∩ L(A; ε). It is easy to see that p ∈ B[p1; ε). Then p ∈ A, since
p1 ∈ L(A; ε). Hence, U ⊆ A. Then B[p0; ε) = clS2U ⊆ clS2A = A, which
implies that p0 ∈ L(A; ε). Therefore, L(A; ε) is closed in R2. �

Theorem 4.5. There exists an S2-closed countable discrete Gδ-subspace E
of R2 which is not C∗-embedded in S2.

Proof. Let C be the standard Cantor set on [0, 1] and let (In)
∞
n=1 be a sequence

of all complementary intervals In = (an, bn) to C such that diam (In+1) ≤
diam(In) for every n ≥ 1. We put pn = (bn; 1 − an), E = {pn : n ∈ N} and
F = {(x, 1 − x) : x ∈ R} ∩ (C × [0, 1]). Notice that E is a closed subset of S2,
F is functionally closed in S2 and E ∩ F = ∅.

Let N ′ ⊆ N be a set such that {bn : n ∈ N ′} and {bn : n ∈ N\N ′} are dense
subsets of C. To show that E is not C∗-embedded in S2 we verify that disjoint
clopen subsets

E1 = {pn : n ∈ N ′} and E2 = {pn : n ∈ N \N ′}
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of E can not be separated by disjoint clopen subsets in S2. Assume the contrary
and take disjoint clopen subsets W1 and W2 of S2 such that Wi ∩ E = Ei for
i = 1, 2.

We prove that W1 ∩ F is R2-dense in F . To obtain a contradiction we take
an R2-open set O such that O ∩ F ∩ W1 = ∅. Since the set U = S2 \ W1 is

clopen, U =
∞
⋃

n=1

L(U ; 1
n
), where L(U ; 1

n
) = {p ∈ S2 : B[p; 1/n) ⊆ U} and the

set Fn = L(U ; 1
n
) is R2-closed by Lemma 4.4 for every n ∈ N. Since O ∩ F is

a Baire subspace of R2, there exist N ∈ N and an R2-open in F subset I ⊆ F
such that I ∩O ⊆ FN ∩ F ⊆ S2 \E1. Taking into account that diam (In) → 0,
we choose n1 > N such that bn − an < 1

2N
for all n ≥ n1. Since the set

{an : n ∈ N ′} is dense in C, there exists n2 ∈ N ′ such that n2 > n1 and
p = (an2

; 1 − an2
) ∈ I. Clearly, p ∈ F . Consequently, B[p; 1

N
) ∩ E1 = ∅. But

pn2
∈ B[p, 1

N
) ∩ E1, a contradiction.

Similarly we can show that W2 ∩ F is also R2-dense in F .
Notice that W1 and W2 are Gδ in R2 by Lemma 3.1. Hence, W1 ∩ F and

W2 ∩ F are disjoint dense Gδ-subsets of a Baire space F , which implies a
contradiction. Therefore, E is not C∗-embedded in S2. �

5. A characterization of C-embedded subsets of the

anti-diagonal of S2.

By D we denote the anti-diagonal {(x,−x) : x ∈ R} of the Sorgenfrey plane.
Notice that D is a closed discrete subspace of S2.

Theorem 5.1. For a set E ⊆ D the following conditions are equivalent:

1) E is C-embedded in S2;
2) E is C∗-embedded in S2;
3) E is a countable Gδ-subspace of R2;
4) E is a countable functionally closed subspace of S2.

Proof. The implication (1) ⇒ (2) is obvious. The implication (2) ⇒ (3) follows
from Theorem 4.3.

We prove (3) ⇒ (4). To do this we verify condition (2) from Lemma 3.1. Let
F be an R2-closed set disjoint from E. Denote D = F ∩D and U =

⋃

p∈D

B[p; 1).

We show that U is clopen in S2. Clearly, U is open in S2. Take a point
p0 ∈ clS2U and show that p0 ∈ U . Choose a sequence pn ∈ U such that
pn → p0 in S2. For every n there exists qn ∈ D such that pn ∈ B[qn, 1).
Notice that the sequence (qn)

∞
n=1 is bounded in R2 and take a convergent in

R2 subsequence (qnk
)∞k=1 of (qn)

∞
n=1. Since D is R2-closed, q0 = lim

k→∞
qnk

∈ D.

Then p0 ∈ clR2B[q0, 1). If p0 ∈ B[q0, 1), then p0 ∈ U . Assume p0 6∈ B[q0, 1)
and let q0 = (x0, y0). Without loss of generality we may suppose that p0 ∈
[x0, x0 +1]×{y0 +1}. Since pnk

→ p0 in S2, qnk
∈ (−∞, x0]× [y0,+∞) for all

k ≥ k0 and p0 ∈ [x0, x0+1)×{y0+1}. Then p0 ∈
⋃∞

k=1 B[qnk
, 1) ⊆ U . Hence,

U is clopen and D = U ∩D. Since D and F \U are disjoint functionally closed
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subsets of S2, there exists a clopen set V such that D∩ V = ∅ and F \U ⊆ V .
Then F ⊆ U ∪ V ⊆ S2 \ E. Consequently, F and E are completely separated
in S2. Therefore, E is functionally closed in S2 by Lemma 3.1.

(4) ⇒ (1). Notice that E satisfy the conditions of Theorem 1.1. Indeed, E
is z-embedded in S2, since |E| ≤ ℵ0. Moreover, E is well-embedded in S2, since
E is functionally closed. �

Remark 5.2. Notice that a subset E of R2 is countable Gδ if and only if it is
scattered in R2. Indeed, assume that E is countable Gδ-set which contains a set
Q without isolated points. Then Q is a Gδ-subset of R

2 which is homeomorphic
to Q, a contradiction. On the other hand, if E is scattered, then Lemma 4.1
implies that E is countable. Since E is hereditarily Baire and countable, E is
Gδ in R2.

Finally, we show that the Sorgenfrey plane is not a δ-normally separated
space. Let E = {(x,−x) : x ∈ Q} and F = D \ E. Then E is closed and F is
functionally closed in S2, since F is the difference of the functionally closed set
D and the functionally open set

⋃

p∈E

B[p, 1). But E and F can not be separated

by disjoint clopen sets in S2, because E is not Gδ-subset of D in R2.
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