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ABSTRACT

We prove that every C*-embedded subset of S? is a hereditarily Baire
subspace of R®. We also show that for a subspace E C {(z,—x): x €
R} of the Sorgenfrey plane S® the following conditions are equivalent:
(i) E is C-embedded in S?; (i) E is C*-embedded in S*; (iii) E is
a countable Gs-subspace of R? and (iv) E is a countable functionally
closed subspace of S2.
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1. INTRODUCTION

Recall that a subset A of a topological space X is called functionally open
(functionally closed) in X if there exists a continuous function f : X — [0,1]
such that A = f~1((0,1]) (A= f71(0)). Sets A and B are completely separated
in X if there exists a continuous function f: X — [0, 1] such that A C f~1(0)
and B C f~1(1).

A subspace E of a topological space X is

o C-embedded (C*-embedded) in X if every (bounded) continuous function
f: E — R can be continuously extended on X;

o z-embedded in X if every functionally closed set in E is the restriction
of a functionally closed set in X to E;

o well-embedded in X [7] if E is completely separated from any function-
ally closed set of X disjoint from F.
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Clearly, every C-embedded subspace of X is C*-embedded in X. The con-
verse in not true. Indeed, if ¥ = N and X = N, then FE is C"-embedded in
X (see [4, 3.6.3]), but the function f: E — R, f(z) =« for every z € E, does
not extend to a continuous function f: X — R.

A space X has the property (C* = C) [11] if every closed C*-embedded
subset of X is C-embedded in X. The classical Tietze-Urysohn Extension
Theorem says that if X is a normal space, then every closed subset of X is C*-
embedded and X has the property (C* = C). Moreover, a space X is normal
if and only if every its closed subset is z-embedded (see [9, Proposition 3.7]).

The following theorem was proved by Blair and Hager in [2, Corollary 3.6].

Theorem 1.1. A subset E of a topological space X is C-embedded in X if and
only if E is z-embedded and well-embedded in X .

A space X is said to be d-normally separated [10] if every closed subset of
X is well-embedded in X. The class of J-normally separated spaces includes
all normal spaces and all countably compact spaces. Theorem 1.1 implies the
following result.

Corollary 1.2. Every d-normally separated space has the property (C* = C).

According to [15] every C*-embedded subspace of a completely regular first
countable space is closed. The following problem is still open:

Problem 1.3 ([12]). Does there exist a first countable completely regular space
without property (C* = C)?

H. Ohta in [11] proved that the Niemytzki plane has the property (C* = C)
and asked does the Sorgenfrey plane S? (i.e., the square of the Sorgenfrey line
S) have the property (C* = C)?

In the given paper we obtain some necessary conditions on a set E C S? to be
C*-embedded. We prove that every C*-embedded subset of S? is a hereditarily
Baire subspace of R2. We also characterize C- and C*-embedded subspaces
of the anti-diagonal D = {(z, —x) : z € R} of S?>. Namely, we prove that for
a subspace E C D of S? the following conditions are equivalent: (i) E is C-
embedded in S%; (ii) E is C*-embedded in S§?; (iii) F is a countable Gs-subspace
of R? and (iv) E is a countable functionally closed subspace of S2.

2. EVERY FINITE POWER OF THE SORGENFREY LINE IS A HEREDITARILY
a-FAVORABLE SPACE

Recall the definition of the Choquet game on a topological space X between
two players « and . Player 3 goes first and chooses a nonempty open subset
Up of X. Player a chooses a nonempty open subset V; of X such that V; C U.
Following this player 8 must select another nonempty open subset U; C V; of
X and o must select a nonempty open subset Vo C U;. Acting in this way, the

players a and 3 obtain sequences of nonempty open sets (U,)5% and (V)52

such that U,_1 CV,, C U, for every n € N. The player o wins if (| V,, # @.

n=1
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Otherwise, the player 8 wins. If there exists a rule (a strategy) such that « wins
if he plays according to this rule, then X is called a-favorable. Respectively,
X is called B-unfavorable if the player S has no winning strategy. Clearly,
every a-favorable space X is S-unfavorable. Moreover, it is known [13] that a
topological space X is Baire if and only if it is S-unfavorable in the Choquet
game.

If A is a subspace of a topological space X, then A and intA mean the
closure and the interior of A in X, respectively.

Lemma 2.1. Let X = |J Xk, where Xy is an a-favorable subspace of X for
k=1
everyk=1,...,n. Then X is an a-favorable space.

Proof. We prove the lemma for n = 2. Let G = G1 U Gy, where G; = intXj,
i = 1,2. We notice that for every i = 1,2 the space X; is a-favorable, since
it contains dense a-favorable subspace. Then G; is a-favorable as an open
subspace of the a-favorable space X;. It is easy to see that the union G of
two open a-favorable subspaces is an a-favorable space. Therefore, X is a-
favorable, since G is dense in X. O

Let p = (z,y) € R? and € > 0. We write

Blpje) =[x,z +¢) X [y,y +¢),
B(pie)=(x—c,z4+¢)x (y—e,y+e).

If A C S? then the symbol clg2 A (clg2 A) means the closure of A in the space
S? (R?).

We say that a space X is hereditarily a-favorable if every its closed subspace
is a-favorable.

Theorem 2.2. For every n € N the space S" is hereditarily a-favorable.

Proof. Let n =1and @ # F CS. Assume that § chose a nonempty open in F
set Uy = [ao, bo) N F, ag € F. If Uy has an isolated point z in S, then « chooses
V1 = {z} and wins. Otherwise, a put V1 = [ag, ¢co) N F, where ¢o € (ag,bo) N F
and ¢g — ap < 1. Now let Uy = [a1,b1) N F C V4 be the second turn of S such
that a; € F and the set (a1,b1) N F has no isolated points in S. Then there
exists ¢; € (a1,b1) N F such that ¢; —a; < % Let Vo = [a1,c¢1) N F. Repeating
this process, we obtain sequences (Un,)5%0_o, (Vin)So_; of open subsets of F
and sequences of points (am)5o_g, (bm)o_y and (¢ )5°_; such that [am,, by) 2
[@msCm) 2 [amt1,0m+1), Cm — Gm < #H’ ¢m € F, Uy = [am,bm) N F and
Vint1 = [@m, cm) N F for every m =0,1,.... According to the Nested Interval

o

oo
©_, is convergent in S to a point z* € () V.

m=0

[ee]
Since F' is closed in S, * € F. Hence, F N () Vi, # @. Consequently, F' is

m=0

Theorem, the sequence (¢;,)

a-favorable.
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Suppose that the theorem is true for all 1 < k < n and prove it for k = n+1.
Consider a set @ # F C S™!. Let the player 8 chooses a set Uy = F N

n+1 n+1

H [ao,k, bO,k) with a9 = (aO,k)Zill € F. Denote Ugr = H (ao,k, bO,k) and

k=1 k=1

consider the case UO+ NF =@. Forevery k =1,...,n+1 we set Uy =

{ao,k} % []]a0,,bo,:) and Fy j, = FNUp k. Since Uy 1, is homeomorphic to S™, by
i#k

the inductive assumption the space Fy j, is a-favorable for every k =1,...,n+1.

Then F is a-favorable according to Lemma 2.1. Now let UO+ NF # @. If there
exists an isolated in S"*! point x € Uy, then o put Vi = {z} and wins. Assume
Up has no isolated points in S**!. Then there is ¢y = (coyk)};:ll cUfNF

n+1 n+1
such that diam( ] [ao,x,cok)) < 1. We put Vi = F'N [] [aok,cok). Let
k=1 k=1
n+1
Ui = FN I] [a1,k,b1,5) be the second turn of 8 such that a; = (alyk)};:ll el
k=1
n+1

and Uy C V4. Again, if U7 N F = @, where U}" = [] (a1.k,b1.1), then, using

the inductive assumption, we obtain that for every k = 1,...,n + 1 the space
FN ({a1x} x [1[a1,, b1,i)) is a-favorable. Then o has a winning strategy in F
i£k

by Lemma 2.1. If Ufr NF # @ and U; has no isolated points in S"**, the player
n+1

o chooses a point ¢ = (¢1,)7 4] € U NF such that diam(kH [a1 K, c18)) < 1/2
=1

n+1
and put V2 = FN [] a1k, c1,5). Repeating this process, we obtain sequences
k=1

of points (am)2_g, (bm)2_y and (¢m)50_, and of sets (Up,)50_o and (Vi,)59_4,
which satisfy the following properties:

n+1
Un =F 0[] [am.k, bm.k);
k=1

)
)
n+1
3) Verl =Fn H [am,kacm,k);
k=1
) Vm+1 g Um g Vm§
)

for every m =0, 1,.... We observe that the sequence (¢, )2_ is convergent in

oo oo
R™*t! and z* = mh_r}réo Cm € ﬂOV = ﬂOVm. Since ¢, — 2* in ", ¢, € F
m= m=
[ee]

and F is closed in S"*!, 2* € F N ( N Vm). Hence, F' is a-favorable. O
m=0
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3. EVERY C*-EMBEDDED SUBSPACE OF S2? IS A HEREDITARILY BAIRE
SUBSPACE OF RZ2.

Lemma 3.1. A set E C R? is functionally closed in S? if and only if
1) E is Gs in R?; and
2) if F is R?-closed set disjoint from E, then F and E are completely
separated in S?.

Proof. Necessity. Let f : S2 — R be a continuous function such that E =
F71(0). According to [1, Theorem 2.1], f is a Baire-one function on R?. Con-
sequently, E is a G5 subset of R2.

Condition (2) follows from the fact that every R2-closed set is, evidently, a
functionally closed subset of S2.

Sufficiency. Since E is G5 in R2, there exists a sequence of R?-closed sets

F,, such that X\ F = fj F,. Clearly, ENF,, = @. Then condition (2) implies
that for every n € N t?l;e exists a continuous function f, : S — R such that
EC f710)i F, C f~1(1). Then E = ﬁ f71(0). Hence, E is functionally
closed in S%. " d

Lemma 3.2. Let X be a metrizable space, A C X be a set without isolated
points and let B C X be a countable set such that_A N B = &. Then there
exists a set C' C A without isolated points such that CN B = &.

Proof. Let d be a metric on X, which generates its topological structure. For
xo € X and r > 0 we denote B(xo,r) = {x € X : d(z,20) < r} and Blzg,r] =
{z € X :d(z,z0) <r}. Let B = {b, : n € N}. We put Ay = @ and construct
sequences (A4,)22; and (V;,)22; of nonempty finite sets A, C A and open
neighborhoods V,, of b,, which for every n € N satisfy the following conditions:

1
(3:2) Vo € Ay Iy € Ay \ {x} with d(z,y) < —
(3.3) d(A,, | vi)>o.
1<i<n

Let A1 = {x1,y1}, where d(z1,y1) < 1 and z1 # y1. We take ¢ > 0 such
that A; N Blbi,e] = & and put Vi = B(b1,e). Assume that we have al-
ready defined finite sets Aj, ... Ay and neighborhoods Vi,...,V; of by, ..., b,
respectively, which satisfy conditions (3.1)—(3.3) for every n = 1,...,k. Let
Ay ={ai,...,an}, m € N. Taking into account that the set D = A\ |J V;
1<i<k
has no isolated points, for every i = 1,...,m we take ¢; € D with ¢; # q;
and d(a;,c;) < ﬁ Put Ag41 = A U{c1,...,cm}. Take & > 0 such that
Agy1 N Blbg41,0] = @. Let Viy1 = B(bky1,9). Repeating this process, we
obtain needed sequences (A,)52; and (V;,)22 .
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o)
It remains to put C = |J Anp. O

n=1

The following results will be useful.

Theorem 3.3 ([5]). A subspace E of a topological space X is C*-embedded
in X if and only if every two disjoint functionally closed subsets of E are
completely separated in X.

Theorem 3.4 ([16]). The Sorgenfrey plane S? is strongly zero-dimensional,
i.e., for any completely separated sets A and B in S? there exists a clopen set
U CS? such that ACU C S*\ B.

Recall that a space X is hereditarily Baire if every its closed subspace is
Baire.

Theorem 3.5. Let E be a C*-embedded subspace of S®. Then E is a heredi-
tarily Baire subspace of R2.

Proof. Assume that E is not R2-hereditarily Baire space and take an R2-closed
countable subspace Fy without R?-isolated point (see [3]). Notice that E is
S2-closed according to [15, Corollary 2.3]. Therefore, Ey is S?-closed set. By
Theorem 2.2 the space Ey is a-favorable, and, consequently, Fy is a Baire
subspace of S2.

Let E} be a set of all S?-nonisolated points of Ep. Since Ej is the set of the
first category in S2-Baire space Ey, the set G = Eg\ B}, is S>-dense open discrete
subspace of Ey. We notice that G is R?-dense subspace of Ey. By Lemma 3.2
there exists a set C C G without R%-isolated point such that clg:C' N B = @.
We put F' = clpzC N Ej.

Let A and B be any R?-dense in F disjoint sets such that F = AU B.
Evidently A and B are clopen subsets of F, since F is S?>-discrete space. Notice
that F is z-embedded in E, because F is countable. Moreover, F is R2-closed
in E. Hence, F is S?-functionally closed in E. By Theorem 1.1 the set F is
C-embedded in C*-embedded in S? set E. Consequently, F' is C*-embedded
in S%. Therefore, Theorem 3.3 and Theorem 3.4 imply that there exist disjoint
clopen set U,V C S? such that A = UNF and B = VN F. According to
Lemma 3.1 the sets U and V are G5 in R%2. Let D = clg2 F. Then U N D and
V N D are R%-dense in D disjoint Gs-sets, which contradicts to the baireness
of D. O

4. EVERY DISCRETE C*-EMBEDDED SUBSPACE OF S2 IS A COUNTABLE
G5-SUBSPACE OF R2.

Lemma 4.1. Let X be a metrizable separable space and A C X be an uncount-
able set. Then there exists a set Q C A which is homeomorphic to the set Q of
all rational numbers.

Proof. Let Ag be the set of all points of A which are not condensation points A
(a point a € X is called a condensation point of A in X if every neighborhood
of a contains uncountably many elements of A). Notice that Ay is countable,
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since X has a countable base. Put B = A\ Aj. Then the inequality |A4| > N
implies that every point of B is a condensation point of B. Take a countable
subset Q C B which is dense in B. Clearly, every point of @ is not isolated.
Hence, @ is homeomorphic to Q by the Sierpiniski Theorem [14]. O

Lemma 4.2. Let E be an R2-hereditarily Baire z-embedded subspace of S?.
Then the set E° of all isolated points of E is at most countable.

Proof. Assume E° is uncountable. Notice that E° is an F,-subset of E, since
oo

EY is an open subset of E and S? is a perfect space by [6]. Then E® = |J E,,
n=1

where every set F, is closed in E. Take N € N such that Ey is uncountable.
According to Lemma 4.1 there exists a set Q C En which is homeomorphic to
Q. Since Q is clopen in Ex and Ey is a clopen subset of a z-embedded in S? set
E, there exists a functionally closed subset Q1 of S? such that Q = ENQ;. By
Lemma, 3.1 the set Q1 is a Gs-set in R2. Then Q is a Gs-subset of a hereditarily
Baire space E. Hence, @ is a Baire space, a contradiction. Il

Theorem 4.3. If E is a discrete C*-embedded subspace of S?, then E is a
countable Gs-subspace of R?.

Proof. Theorem 3.5 and Lemma 4.2 imply that E is a countable hereditarily
Baire subspace of R2. According to [8, Proposition 12] the set E is Gs in
R2. O

The converse implication in Theorem 4.3 is not valid as Theorem 4.5 shows.

Lemma 4.4. Let A be an S*-closed set, ¢ > 0 and L(A;e) = {p € S* : Blp;¢) C
A}. Then L(A;e) is R%-closed.

Proof. We take pg = (zg,y0) € clgzL(A4;¢) and show that py € L(A;e). We
consider U = intgz2B[po;e) and prove that U C A. Take p = (x,y) € U
and put § = min{(x — z0)/2, (y — v0)/2, (xo + € — 2)/2, (yo + € — y)/2}. Let
p1 € B(po;0) N L(A;¢€). Tt is easy to see that p € B[pi;e). Then p € A, since
p1 € L(A;e). Hence, U C A. Then Blpp;e) = clg2U C clgzA = A, which
implies that pg € L(A;¢). Therefore, L(A;¢) is closed in R2. O

Theorem 4.5. There exists an S%-closed countable discrete Ggs-subspace E
of R? which is not C*-embedded in S?.

Proof. Let C be the standard Cantor set on [0, 1] and let (I,,)$ ; be a sequence
of all complementary intervals I, = (an,b,) to C such that diam (I,41) <
diam (I,,) for every n > 1. We put p, = (bn;1 —ap), E = {pn : n € N} and
F={(z,1—2):2€R}N(C x[0,1]). Notice that F is a closed subset of S?,
F is functionally closed in S? and ENF = @.

Let N’ C N be a set such that {b, : n € N’} and {b,, : n € N\ N’} are dense
subsets of C. To show that E is not C*-embedded in S? we verify that disjoint
clopen subsets

Ei={p,:neN'} and E;={p,:neN\N'}
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of E can not be separated by disjoint clopen subsets in S?. Assume the contrary
and take disjoint clopen subsets W, and Wy of S? such that W; N E = E; for
i=1,2.

We prove that W; N F is R2-dense in F. To obtain a contradiction we take
an R2-open set O such that ON FNW; = @. Since the set U = S? \ W7 is

clopen, U = |J L(U; ), where L(U; L) = {p € S* : B[p;1/n) C U} and the
n=1

‘n n

set F,, = L(U; %) is R%-closed by Lemma 4.4 for every n € N. Since O N F is
a Baire subspace of R?, there exist N € N and an R2-open in F subset I C F
such that INO C Fx NF C S%\ E;. Taking into account that diam (I,,) — 0,
we choose n; > N such that b, — a, < ﬁ for all n > ny. Since the set
{an, : n € N'} is dense in C, there exists no € N’ such that ns > n; and
p = (an,;1 — an,) € I. Clearly, p € F. Consequently, Blp; &) N E; = @. But
Pns € Blp, %) N E1, a contradiction.

Similarly we can show that W, N F is also R2-dense in F.

Notice that W7 and Wy are G5 in R? by Lemma 3.1. Hence, W; N F and
Wy N F are disjoint dense Gs-subsets of a Baire space F', which implies a
contradiction. Therefore, E is not C*-embedded in S2. O

5. A CHARACTERIZATION OF C-EMBEDDED SUBSETS OF THE
ANTI-DIAGONAL OF S2.

By D we denote the anti-diagonal {(z, —z) : © € R} of the Sorgenfrey plane.
Notice that D is a closed discrete subspace of S2.

Theorem 5.1. For a set E C DD the following conditions are equivalent:

1) E is C-embedded in S?;

2) E is C*-embedded in S*;

3) E is a countable Gs-subspace of R?;

4) E is a countable functionally closed subspace of S?.

Proof. The implication (1) = (2) is obvious. The implication (2) = (3) follows
from Theorem 4.3.

We prove (3) = (4). To do this we verify condition (2) from Lemma 3.1. Let
F be an R?-closed set disjoint from E. Denote D = FND and U = |J Blp;1).

pED

We show that U is clopen in S%. Clearly, U is open in S?. Take a point
po € cls2U and show that pg € U. Choose a sequence p, € U such that
pn — po in S%. For every n there exists g, € D such that p, € Blgn,1).
Notice that the sequence (g,,)°%; is bounded in R? and take a convergent in
R? subsequence (gn, )72, of (¢n)%;. Since D is R2-closed, qo = kli_}nolo gn, € D.
Then py € clgzBlgo,1). If pg € Blqo, 1), then py € U. Assume py & Blqo,1)
and let go = (x0,y0). Without loss of generality we may suppose that py €
[20, 20 + 1] X {yo + 1}. Since p,, — po in S?, g, € (—00, o] X [yo, +00) for all
k > ko and py € [zo, 10+ 1) x {yo+ 1}. Then py € Up—; Blgn..1) C U. Hence,
U is clopen and D = U ND. Since D and F'\ U are disjoint functionally closed
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subsets of S2, there exists a clopen set V such that DNV = @ and F\U C V.
Then F CU UV C $?\ E. Consequently, F' and E are completely separated
in S2. Therefore, E is functionally closed in S? by Lemma 3.1.

(4) = (1). Notice that E satisfy the conditions of Theorem 1.1. Indeed, E
is z-embedded in S?, since |E| < Ry. Moreover, E is well-embedded in S?, since
E is functionally closed. 0

Remark 5.2. Notice that a subset E of R? is countable G if and only if it is
scattered in R?. Indeed, assume that E is countable Gs-set which contains a set
Q without isolated points. Then @ is a Gs-subset of R? which is homeomorphic
to Q, a contradiction. On the other hand, if E is scattered, then Lemma 4.1
implies that E is countable. Since E is hereditarily Baire and countable, E is
G5 in R?.

Finally, we show that the Sorgenfrey plane is not a J-normally separated
space. Let E = {(x,—x): 2 € Q} and F =D\ E. Then F is closed and F is
functionally closed in S?, since F is the difference of the functionally closed set
D and the functionally open set |J Blp,1). But E and F can not be separated

peEE
by disjoint clopen sets in S%, because E is not Gs-subset of D in R2.
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