On C-embedded subspaces of the Sorgenfrey plane ### OLENA KARLOVA Chernivtsi National University, Department of Mathematical Analysis, Kotsjubyns'koho 2, Chernivtsi 58012, Ukraine (maslenizza.ua@gmail.com) #### Abstract We prove that every C^* -embedded subset of \mathbb{S}^2 is a hereditarily Baire subspace of \mathbb{R}^2 . We also show that for a subspace $E \subseteq \{(x, -x) : x \in \mathbb{R}\}$ of the Sorgenfrey plane \mathbb{S}^2 the following conditions are equivalent: (i) E is C-embedded in \mathbb{S}^2 ; (ii) E is a countable G_δ -subspace of \mathbb{R}^2 and (iv) E is a countable functionally closed subspace of \mathbb{S}^2 . 2010 MSC: 54C45; 54C20. KEYWORDS: C^* -embedded; C-embedded; the Sorgenfrey plane. ### 1. Introduction Recall that a subset A of a topological space X is called functionally open (functionally closed) in X if there exists a continuous function $f: X \to [0,1]$ such that $A = f^{-1}((0,1])$ ($A = f^{-1}(0)$). Sets A and B are completely separated in X if there exists a continuous function $f: X \to [0,1]$ such that $A \subseteq f^{-1}(0)$ and $B \subseteq f^{-1}(1)$. A subspace E of a topological space X is - C-embedded (C^* -embedded) in X if every (bounded) continuous function $f: E \to \mathbb{R}$ can be continuously extended on X; - z-embedded in X if every functionally closed set in E is the restriction of a functionally closed set in X to E; - well-embedded in X [7] if E is completely separated from any functionally closed set of X disjoint from E. Clearly, every C-embedded subspace of X is C^* -embedded in X. The converse in not true. Indeed, if $E=\mathbb{N}$ and $X=\beta\mathbb{N}$, then E is C^* -embedded in X (see [4, 3.6.3]), but the function $f:E\to\mathbb{R}$, f(x)=x for every $x\in E$, does not extend to a continuous function $f:X\to\mathbb{R}$. A space X has the property $(C^* = C)$ [11] if every closed C^* -embedded subset of X is C-embedded in X. The classical Tietze-Urysohn Extension Theorem says that if X is a normal space, then every closed subset of X is C^* -embedded and X has the property $(C^* = C)$. Moreover, a space X is normal if and only if every its closed subset is z-embedded (see [9, Proposition 3.7]). The following theorem was proved by Blair and Hager in [2, Corollary 3.6]. **Theorem 1.1.** A subset E of a topological space X is C-embedded in X if and only if E is z-embedded and well-embedded in X. A space X is said to be δ -normally separated [10] if every closed subset of X is well-embedded in X. The class of δ -normally separated spaces includes all normal spaces and all countably compact spaces. Theorem 1.1 implies the following result. Corollary 1.2. Every δ -normally separated space has the property $(C^* = C)$. According to [15] every C^* -embedded subspace of a completely regular first countable space is closed. The following problem is still open: **Problem 1.3** ([12]). Does there exist a first countable completely regular space without property $(C^* = C)$? H. Ohta in [11] proved that the Niemytzki plane has the property $(C^* = C)$ and asked does the Sorgenfrey plane \mathbb{S}^2 (i.e., the square of the Sorgenfrey line \mathbb{S}) have the property $(C^* = C)$? In the given paper we obtain some necessary conditions on a set $E \subseteq \mathbb{S}^2$ to be C^* -embedded. We prove that every C^* -embedded subset of \mathbb{S}^2 is a hereditarily Baire subspace of \mathbb{R}^2 . We also characterize C- and C^* -embedded subspaces of the anti-diagonal $\mathbb{D} = \{(x, -x) : x \in \mathbb{R}\}$ of \mathbb{S}^2 . Namely, we prove that for a subspace $E \subseteq \mathbb{D}$ of \mathbb{S}^2 the following conditions are equivalent: (i) E is C-embedded in \mathbb{S}^2 ; (ii) E is E-embedded in \mathbb{S}^2 ; (iii) E is a countable E-subspace of \mathbb{R}^2 and (iv) E is a countable functionally closed subspace of \mathbb{S}^2 . # 2. Every finite power of the Sorgenfrey line is a hereditarily $\alpha\text{-Favorable space}$ Recall the definition of the Choquet game on a topological space X between two players α and β . Player β goes first and chooses a nonempty open subset U_0 of X. Player α chooses a nonempty open subset V_1 of X such that $V_1 \subseteq U_0$. Following this player β must select another nonempty open subset $U_1 \subseteq V_1$ of X and α must select a nonempty open subset $V_2 \subseteq U_1$. Acting in this way, the players α and β obtain sequences of nonempty open sets $(U_n)_{n=0}^{\infty}$ and $(V_n)_{n=1}^{\infty}$ such that $U_{n-1} \subseteq V_n \subseteq U_n$ for every $n \in \mathbb{N}$. The player α wins if $\bigcap_{n=1}^{\infty} V_n \neq \emptyset$. Otherwise, the player β wins. If there exists a rule (a strategy) such that α wins if he plays according to this rule, then X is called α -favorable. Respectively, X is called β -unfavorable if the player β has no winning strategy. Clearly, every α -favorable space X is β -unfavorable. Moreover, it is known [13] that a topological space X is Baire if and only if it is β -unfavorable in the Choquet game. If A is a subspace of a topological space X, then \overline{A} and intA mean the closure and the interior of A in X, respectively. **Lemma 2.1.** Let $X = \bigcup_{k=1}^{n} X_k$, where X_k is an α -favorable subspace of X for every $k = 1, \ldots, n$. Then X is an α -favorable space. *Proof.* We prove the lemma for n=2. Let $G=G_1\cup G_2$, where $G_i=\mathrm{int}\overline{X_i}$, i=1,2. We notice that for every i=1,2 the space $\overline{X_i}$ is α -favorable, since it contains dense α -favorable subspace. Then G_i is α -favorable as an open subspace of the α -favorable space X_i . It is easy to see that the union G of two open α -favorable subspaces is an α -favorable space. Therefore, X is α favorable, since G is dense in X. Let $p = (x, y) \in \mathbb{R}^2$ and $\varepsilon > 0$. We write $$B[p;\varepsilon) = [x, x + \varepsilon) \times [y, y + \varepsilon),$$ $$B(p;\varepsilon) = (x - \varepsilon, x + \varepsilon) \times (y - \varepsilon, y + \varepsilon).$$ If $A \subseteq \mathbb{S}^2$ then the symbol $\operatorname{cl}_{\mathbb{S}^2} A$ ($\operatorname{cl}_{\mathbb{R}^2} A$) means the closure of A in the space \mathbb{S}^2 (\mathbb{R}^2). We say that a space X is hereditarily α -favorable if every its closed subspace is α -favorable. **Theorem 2.2.** For every $n \in \mathbb{N}$ the space \mathbb{S}^n is hereditarily α -favorable. *Proof.* Let n=1 and $\varnothing \neq F \subseteq \mathbb{S}$. Assume that β chose a nonempty open in Fset $U_0 = [a_0, b_0) \cap F$, $a_0 \in F$. If U_0 has an isolated point x in S, then α chooses $V_1 = \{x\}$ and wins. Otherwise, α put $V_1 = [a_0, c_0) \cap F$, where $c_0 \in (a_0, b_0) \cap F$ and $c_0 - a_0 < 1$. Now let $U_1 = [a_1, b_1) \cap F \subseteq V_1$ be the second turn of β such that $a_1 \in F$ and the set $(a_1, b_1) \cap F$ has no isolated points in \mathbb{S} . Then there exists $c_1 \in (a_1, b_1) \cap F$ such that $c_1 - a_1 < \frac{1}{2}$. Let $V_2 = [a_1, c_1) \cap F$. Repeating this process, we obtain sequences $(U_m)_{m=0}^{\infty}$, $(V_m)_{m=1}^{\infty}$ of open subsets of Fand sequences of points $(a_m)_{m=0}^{\infty}$, $(b_m)_{m=0}^{\infty}$ and $(c_m)_{m=1}^{\infty}$ such that $[a_m, b_m) \supseteq [a_m, c_m) \supseteq [a_{m+1}, b_{m+1})$, $c_m - a_m < \frac{1}{m+1}$, $c_m \in F$, $U_m = [a_m, b_m) \cap F$ and $V_{m+1} = [a_m, c_m) \cap F$ for every $m = 0, 1, \ldots$ According to the Nested Interval Theorem, the sequence $(c_m)_{m=1}^{\infty}$ is convergent in \mathbb{S} to a point $x^* \in \bigcap_{m=0}^{\infty} V_m$. Since F is closed in \mathbb{S} , $x^* \in F$. Hence, $F \cap \bigcap_{m=0}^{\infty} V_m \neq \emptyset$. Consequently, F is α -favorable. Suppose that the theorem is true for all $1 \le k \le n$ and prove it for k = n + 1. Suppose that the theorem is true for all $1 \le k \le n$ and prove it for k = n+1. Consider a set $\emptyset \ne F \subseteq \mathbb{S}^{n+1}$. Let the player β chooses a set $U_0 = F \cap \prod_{k=1}^{n+1} [a_{0,k},b_{0,k})$ with $a_0 = (a_{0,k})_{k=1}^{n+1} \in F$. Denote $U_0^+ = \prod_{k=1}^{n+1} (a_{0,k},b_{0,k})$ and consider the case $U_0^+ \cap F = \emptyset$. For every $k = 1,\ldots,n+1$ we set $U_{0,k} = \{a_{0,k}\} \times \prod_{i \ne k} [a_{0,i},b_{0,i})$ and $F_{0,k} = F \cap U_{0,k}$. Since $U_{0,k}$ is homeomorphic to \mathbb{S}^n , by the inductive assumption the space $F_{0,k}$ is α -favorable for every $k = 1, \dots, n+1$. Then F is α -favorable according to Lemma 2.1. Now let $U_0^+ \cap F \neq \emptyset$. If there exists an isolated in \mathbb{S}^{n+1} point $x \in U_0$, then α put $V_1 = \{x\}$ and wins. Assume U_0 has no isolated points in \mathbb{S}^{n+1} . Then there is $c_0 = (c_{0,k})_{k=1}^{n+1} \in U_0^+ \cap F$ such that diam $(\prod_{k=1}^{n+1} [a_{0,k}, c_{0,k})) < 1$. We put $V_1 = F \cap \prod_{k=1}^{n+1} [a_{0,k}, c_{0,k})$. Let $U_1 = F \cap \prod_{k=1}^{n+1} [a_{1,k}, b_{1,k})$ be the second turn of β such that $a_1 = (a_{1,k})_{k=1}^{n+1} \in F$ and $U_1 \subseteq V_1$. Again, if $U_1^+ \cap F = \emptyset$, where $U_1^+ = \prod_{k=1}^{n+1} (a_{1,k}, b_{1,k})$, then, using the inductive assumption, we obtain that for every $k = 1, \ldots, n+1$ the space $F \cap (\{a_{1,k}\} \times \prod [a_{1,i}, b_{1,i}))$ is α -favorable. Then α has a winning strategy in Fby Lemma 2.1. If $U_1^+ \cap F \neq \emptyset$ and U_1 has no isolated points in \mathbb{S}^{n+1} , the player α chooses a point $c_1 = (c_{1,k})_{k=1}^{n+1} \in U_1^+ \cap F$ such that diam $(\prod_{k=1}^{n+1} [a_{1,k}, c_{1,k})) < 1/2$ and put $V_2 = F \cap \prod_{k=1}^{n+1} [a_{1,k}, c_{1,k})$. Repeating this process, we obtain sequences of points $(a_m)_{m=0}^{\infty}$, $(b_m)_{m=0}^{\infty}$ and $(c_m)_{m=0}^{\infty}$, and of sets $(U_m)_{m=0}^{\infty}$ and $(V_m)_{m=1}^{\infty}$. which satisfy the following properties: 1) $$U_m = F \cap \prod_{k=1}^{n+1} [a_{m,k}, b_{m,k});$$ 2) $a_m \in F, c_m \in U_m^+ \cap F;$ - 3) $V_{m+1} = F \cap \prod_{k=1}^{n+1} [a_{m,k}, c_{m,k});$ - 4) $V_{m+1} \subseteq U_m \subseteq V_m$; 5) $\operatorname{diam}(V_{m+1}) < \frac{1}{m+1}$ for every $m=0,1,\ldots$ We observe that the sequence $(c_m)_{m=0}^{\infty}$ is convergent in \mathbb{R}^{n+1} and $x^* = \lim_{m \to \infty} c_m \in \bigcap_{m=0}^{\infty} \overline{V_m} = \bigcap_{m=0}^{\infty} V_m$. Since $c_m \to x^*$ in \mathbb{S}^{n+1} , $c_m \in F$ and F is closed in \mathbb{S}^{n+1} , $x^* \in F \cap (\bigcap_{m=0}^{\infty} V_m)$. Hence, F is α -favorable. 3. Every C^* -embedded subspace of \mathbb{S}^2 is a hereditarily Baire Subspace of \mathbb{R}^2 . **Lemma 3.1.** A set $E \subseteq \mathbb{R}^2$ is functionally closed in \mathbb{S}^2 if and only if - 1) E is G_{δ} in \mathbb{R}^2 ; and - 2) if F is \mathbb{R}^2 -closed set disjoint from E, then F and E are completely separated in \mathbb{S}^2 . *Proof. Necessity.* Let $f: \mathbb{S}^2 \to \mathbb{R}$ be a continuous function such that E = $f^{-1}(0)$. According to [1, Theorem 2.1], f is a Baire-one function on \mathbb{R}^2 . Consequently, E is a G_{δ} subset of \mathbb{R}^2 . Condition (2) follows from the fact that every \mathbb{R}^2 -closed set is, evidently, a functionally closed subset of \mathbb{S}^2 . Sufficiency. Since E is G_{δ} in \mathbb{R}^2 , there exists a sequence of \mathbb{R}^2 -closed sets F_n such that $X \setminus E = \bigcup_{n=1}^{\infty} F_n$. Clearly, $E \cap F_n = \emptyset$. Then condition (2) implies that for every $n \in \mathbb{N}$ there exists a continuous function $f_n : \mathbb{S}^2 \to \mathbb{R}$ such that $E\subseteq f_n^{-1}(0)$ i $F_n\subseteq f^{-1}(1)$. Then $E=\bigcap_{n=1}^\infty f_n^{-1}(0)$. Hence, E is functionally closed in \mathbb{S}^2 . **Lemma 3.2.** Let X be a metrizable space, $A \subseteq X$ be a set without isolated points and let $B \subseteq X$ be a countable set such that $A \cap B = \emptyset$. Then there exists a set $C \subseteq A$ without isolated points such that $\overline{C} \cap B = \emptyset$. *Proof.* Let d be a metric on X, which generates its topological structure. For $x_0 \in X$ and r > 0 we denote $B(x_0, r) = \{x \in X : d(x, x_0) < r\}$ and $B[x_0, r] =$ $\{x \in X : d(x,x_0) \leq r\}$. Let $B = \{b_n : n \in \mathbb{N}\}$. We put $A_0 = \emptyset$ and construct sequences $(A_n)_{n=1}^{\infty}$ and $(V_n)_{n=1}^{\infty}$ of nonempty finite sets $A_n \subseteq A$ and open neighborhoods V_n of b_n which for every $n \in \mathbb{N}$ satisfy the following conditions: $$(3.1) A_{n-1} \subseteq A_n;$$ (3.2) $$\forall x \in A_n \ \exists y \in A_n \setminus \{x\} \text{ with } d(x,y) \le \frac{1}{n};$$ (3.3) $$d(A_n, \bigcup_{1 \le i \le n} V_i) > 0.$$ $$(3.3) d(A_n, \bigcup_{1 \le i \le n} V_i) > 0.$$ Let $A_1 = \{x_1, y_1\}$, where $d(x_1, y_1) \leq 1$ and $x_1 \neq y_1$. We take $\varepsilon > 0$ such that $A_1 \cap B[b_1, \varepsilon] = \emptyset$ and put $V_1 = B(b_1, \varepsilon)$. Assume that we have already defined finite sets $A_1, \ldots A_k$ and neighborhoods V_1, \ldots, V_k of b_1, \ldots, b_k , respectively, which satisfy conditions (3.1)-(3.3) for every $n = 1, \ldots, k$. Let $A_k = \{a_1, \ldots, a_m\}, m \in \mathbb{N}.$ Taking into account that the set $D = A \setminus \bigcup_{1 \le i \le k} \overline{V}_i$ has no isolated points, for every i = 1, ..., m we take $c_i \in D$ with $c_i \neq a_i$ and $d(a_i, c_i) \leq \frac{1}{k+1}$. Put $A_{k+1} = A_k \cup \{c_1, \dots, c_m\}$. Take $\delta > 0$ such that $A_{k+1} \cap B[b_{k+1}, \delta] = \emptyset$. Let $V_{k+1} = B(b_{k+1}, \delta)$. Repeating this process, we obtain needed sequences $(A_n)_{n=1}^{\infty}$ and $(V_n)_{n=1}^{\infty}$. It remains to put $$C = \bigcup_{n=1}^{\infty} A_n$$. The following results will be useful. **Theorem 3.3** ([5]). A subspace E of a topological space X is C^* -embedded in X if and only if every two disjoint functionally closed subsets of E are completely separated in X. **Theorem 3.4** ([16]). The Sorgenfrey plane \mathbb{S}^2 is strongly zero-dimensional, i.e., for any completely separated sets A and B in \mathbb{S}^2 there exists a clopen set $U \subseteq \mathbb{S}^2$ such that $A \subseteq U \subseteq \mathbb{S}^2 \setminus B$. Recall that a space X is hereditarily Baire if every its closed subspace is Baire. **Theorem 3.5.** Let E be a C^* -embedded subspace of \mathbb{S}^2 . Then E is a hereditarily Baire subspace of \mathbb{R}^2 . *Proof.* Assume that E is not \mathbb{R}^2 -hereditarily Baire space and take an \mathbb{R}^2 -closed countable subspace E_0 without \mathbb{R}^2 -isolated point (see [3]). Notice that E is \mathbb{S}^2 -closed according to [15, Corollary 2.3]. Therefore, E_0 is \mathbb{S}^2 -closed set. By Theorem 2.2 the space E_0 is α -favorable, and, consequently, E_0 is a Baire subspace of \mathbb{S}^2 . Let E'_0 be a set of all \mathbb{S}^2 -nonisolated points of E_0 . Since E'_0 is the set of the first category in \mathbb{S}^2 -Baire space E_0 , the set $G = E_0 \setminus E_0'$ is \mathbb{S}^2 -dense open discrete subspace of E_0 . We notice that G is \mathbb{R}^2 -dense subspace of E_0 . By Lemma 3.2 there exists a set $C \subseteq G$ without \mathbb{R}^2 -isolated point such that $\operatorname{cl}_{\mathbb{R}^2} C \cap E_0' = \emptyset$. We put $F = \operatorname{cl}_{\mathbb{R}^2} C \cap E_0$. Let A and B be any \mathbb{R}^2 -dense in F disjoint sets such that $F = A \cup B$. Evidently A and B are clopen subsets of F, since F is \mathbb{S}^2 -discrete space. Notice that F is z-embedded in E, because F is countable. Moreover, F is \mathbb{R}^2 -closed in E. Hence, F is \mathbb{S}^2 -functionally closed in E. By Theorem 1.1 the set F is C-embedded in \mathbb{C}^* -embedded in \mathbb{S}^2 set E. Consequently, F is \mathbb{C}^* -embedded in \mathbb{S}^2 . Therefore, Theorem 3.3 and Theorem 3.4 imply that there exist disjoint clopen set $U, V \subseteq \mathbb{S}^2$ such that $A = U \cap F$ and $B = V \cap F$. According to Lemma 3.1 the sets U and V are G_{δ} in \mathbb{R}^2 . Let $D = \operatorname{cl}_{\mathbb{R}^2} F$. Then $U \cap D$ and $V \cap D$ are \mathbb{R}^2 -dense in D disjoint G_{δ} -sets, which contradicts to the baireness of D. 4. Every discrete C^* -embedded subspace of \mathbb{S}^2 is a countable G_{δ} -Subspace of \mathbb{R}^2 . **Lemma 4.1.** Let X be a metrizable separable space and $A \subseteq X$ be an uncountable set. Then there exists a set $Q \subseteq A$ which is homeomorphic to the set \mathbb{Q} of all rational numbers. *Proof.* Let A_0 be the set of all points of A which are not condensation points A (a point $a \in X$ is called a condensation point of A in X if every neighborhood of a contains uncountably many elements of A). Notice that A_0 is countable, since X has a countable base. Put $B = A \setminus A_0$. Then the inequality $|A| > \aleph_0$ implies that every point of B is a condensation point of B. Take a countable subset $Q \subseteq B$ which is dense in B. Clearly, every point of Q is not isolated. Hence, Q is homeomorphic to \mathbb{Q} by the Sierpiński Theorem [14]. **Lemma 4.2.** Let E be an \mathbb{R}^2 -hereditarily Baire z-embedded subspace of \mathbb{S}^2 . Then the set E^0 of all isolated points of E is at most countable. *Proof.* Assume E^0 is uncountable. Notice that E^0 is an F_{σ} -subset of E, since E^0 is an open subset of E and \mathbb{S}^2 is a perfect space by [6]. Then $E^0 = \bigcup_{i=1}^{\infty} E_i$ where every set E_n is closed in E. Take $N \in \mathbb{N}$ such that E_N is uncountable. According to Lemma 4.1 there exists a set $Q \subseteq E_N$ which is homeomorphic to \mathbb{Q} . Since Q is clopen in E_N and E_N is a clopen subset of a z-embedded in \mathbb{S}^2 set E, there exists a functionally closed subset Q_1 of \mathbb{S}^2 such that $Q = E \cap Q_1$. By Lemma 3.1 the set Q_1 is a G_{δ} -set in \mathbb{R}^2 . Then Q is a G_{δ} -subset of a hereditarily Baire space E. Hence, Q is a Baire space, a contradiction. **Theorem 4.3.** If E is a discrete C^* -embedded subspace of \mathbb{S}^2 , then E is a countable G_{δ} -subspace of \mathbb{R}^2 . *Proof.* Theorem 3.5 and Lemma 4.2 imply that E is a countable hereditarily Baire subspace of \mathbb{R}^2 . According to [8, Proposition 12] the set E is G_{δ} in \mathbb{R}^2 . The converse implication in Theorem 4.3 is not valid as Theorem 4.5 shows. **Lemma 4.4.** Let A be an \mathbb{S}^2 -closed set, $\varepsilon > 0$ and $L(A; \varepsilon) = \{p \in \mathbb{S}^2 : B[p; \varepsilon) \subseteq \mathbb{S}^2 : B[p; \varepsilon) \subseteq \mathbb{S}^2 : B[p; \varepsilon] B[p;$ A}. Then $L(A; \varepsilon)$ is \mathbb{R}^2 -closed. *Proof.* We take $p_0 = (x_0, y_0) \in \operatorname{cl}_{\mathbb{R}^2} L(A; \varepsilon)$ and show that $p_0 \in L(A; \varepsilon)$. We consider $U = \operatorname{int}_{\mathbb{R}^2} B[p_0; \varepsilon)$ and prove that $U \subseteq A$. Take $p = (x, y) \in U$ and put $\delta = \min\{(x - x_0)/2, (y - y_0)/2, (x_0 + \varepsilon - x)/2, (y_0 + \varepsilon - y)/2\}$. Let $p_1 \in B(p_0; \delta) \cap L(A; \varepsilon)$. It is easy to see that $p \in B[p_1; \varepsilon)$. Then $p \in A$, since $p_1 \in L(A;\varepsilon)$. Hence, $U \subseteq A$. Then $B[p_0;\varepsilon) = \operatorname{cl}_{\mathbb{S}^2} U \subseteq \operatorname{cl}_{\mathbb{S}^2} A = A$, which implies that $p_0 \in L(A; \varepsilon)$. Therefore, $L(A; \varepsilon)$ is closed in \mathbb{R}^2 . **Theorem 4.5.** There exists an \mathbb{S}^2 -closed countable discrete G_{δ} -subspace Eof \mathbb{R}^2 which is not C^* -embedded in \mathbb{S}^2 . *Proof.* Let C be the standard Cantor set on [0,1] and let $(I_n)_{n=1}^{\infty}$ be a sequence of all complementary intervals $I_n = (a_n, b_n)$ to C such that diam $(I_{n+1}) \leq$ diam (I_n) for every $n \geq 1$. We put $p_n = (b_n; 1 - a_n), E = \{p_n : n \in \mathbb{N}\}$ and $F = \{(x, 1-x) : x \in \mathbb{R}\} \cap (C \times [0,1])$. Notice that E is a closed subset of \mathbb{S}^2 , F is functionally closed in \mathbb{S}^2 and $E \cap F = \emptyset$. Let $N' \subseteq \mathbb{N}$ be a set such that $\{b_n : n \in \mathbb{N}'\}$ and $\{b_n : n \in \mathbb{N} \setminus \mathbb{N}'\}$ are dense subsets of C. To show that E is not C^* -embedded in \mathbb{S}^2 we verify that disjoint clopen subsets $$E_1 = \{p_n : n \in N'\}$$ and $E_2 = \{p_n : n \in \mathbb{N} \setminus N'\}$ of E can not be separated by disjoint clopen subsets in \mathbb{S}^2 . Assume the contrary and take disjoint clopen subsets W_1 and W_2 of \mathbb{S}^2 such that $W_i \cap E = E_i$ for We prove that $W_1 \cap F$ is \mathbb{R}^2 -dense in F. To obtain a contradiction we take an \mathbb{R}^2 -open set O such that $O \cap F \cap W_1 = \emptyset$. Since the set $U = \mathbb{S}^2 \setminus W_1$ is clopen, $U=\bigcup_{n=1}^{\infty}L(U;\frac{1}{n})$, where $L(U;\frac{1}{n})=\{p\in\mathbb{S}^2:B[p;1/n)\subseteq U\}$ and the set $F_n=L(U;\frac{1}{n})$ is \mathbb{R}^2 -closed by Lemma 4.4 for every $n\in\mathbb{N}$. Since $O\cap F$ is a Baire subspace of \mathbb{R}^2 , there exist $N\in\mathbb{N}$ and an \mathbb{R}^2 -open in F subset $I\subseteq F$ such that $I \cap O \subseteq F_N \cap F \subseteq \mathbb{S}^2 \setminus E_1$. Taking into account that diam $(I_n) \to 0$, we choose $n_1 > N$ such that $b_n - a_n < \frac{1}{2N}$ for all $n \ge n_1$. Since the set $\{a_n : n \in N'\}$ is dense in C, there exists $n_2 \in N'$ such that $n_2 > n_1$ and $p = (a_{n_2}; 1 - a_{n_2}) \in I$. Clearly, $p \in F$. Consequently, $B[p; \frac{1}{N}) \cap E_1 = \emptyset$. But $p_{n_2} \in B[p, \frac{1}{N}) \cap E_1$, a contradiction. Similarly we can show that $W_2 \cap F$ is also \mathbb{R}^2 -dense in F. Notice that W_1 and W_2 are G_δ in \mathbb{R}^2 by Lemma 3.1. Hence, $W_1 \cap F$ and $W_2 \cap F$ are disjoint dense G_{δ} -subsets of a Baire space F, which implies a contradiction. Therefore, E is not C^* -embedded in \mathbb{S}^2 . # 5. A CHARACTERIZATION OF C-EMBEDDED SUBSETS OF THE ANTI-DIAGONAL OF \mathbb{S}^2 . By \mathbb{D} we denote the *anti-diagonal* $\{(x, -x) : x \in \mathbb{R}\}$ of the Sorgenfrey plane. Notice that \mathbb{D} is a closed discrete subspace of \mathbb{S}^2 . **Theorem 5.1.** For a set $E \subseteq \mathbb{D}$ the following conditions are equivalent: - 1) E is C-embedded in \mathbb{S}^2 ; - 2) E is C^* -embedded in \mathbb{S}^2 ; - 3) E is a countable G_{δ} -subspace of \mathbb{R}^2 ; - 4) E is a countable functionally closed subspace of \mathbb{S}^2 . *Proof.* The implication $(1) \Rightarrow (2)$ is obvious. The implication $(2) \Rightarrow (3)$ follows from Theorem 4.3. We prove $(3) \Rightarrow (4)$. To do this we verify condition (2) from Lemma 3.1. Let F be an \mathbb{R}^2 -closed set disjoint from E. Denote $D = F \cap \mathbb{D}$ and $U = \bigcup B[p; 1)$. We show that U is clopen in \mathbb{S}^2 . Clearly, U is open in \mathbb{S}^2 . Take a point $p_0 \in \operatorname{cl}_{\mathbb{S}^2} U$ and show that $p_0 \in U$. Choose a sequence $p_n \in U$ such that $p_n \to p_0$ in \mathbb{S}^2 . For every n there exists $q_n \in D$ such that $p_n \in B[q_n, 1)$. Notice that the sequence $(q_n)_{n=1}^{\infty}$ is bounded in \mathbb{R}^2 and take a convergent in \mathbb{R}^2 subsequence $(q_n)_{k=1}^{\infty}$ of $(q_n)_{n=1}^{\infty}$. Since D is \mathbb{R}^2 -closed, $q_0 = \lim_{k \to \infty} q_{n_k} \in D$. Then $p_0 \in \operatorname{cl}_{\mathbb{R}^2} B[q_0, 1)$. If $p_0 \in B[q_0, 1)$, then $p_0 \in U$. Assume $p_0 \notin B[q_0, 1)$ and let $q_0 = (x_0, y_0)$. Without loss of generality we may suppose that $p_0 \in$ $[x_0, x_0 + 1] \times \{y_0 + 1\}$. Since $p_{n_k} \to p_0$ in \mathbb{S}^2 , $q_{n_k} \in (-\infty, x_0] \times [y_0, +\infty)$ for all $k \ge k_0$ and $p_0 \in [x_0, x_0 + 1) \times \{y_0 + 1\}$. Then $p_0 \in \bigcup_{k=1}^{\infty} B[q_{n_k}, 1) \subseteq U$. Hence, U is clopen and $D = U \cap \mathbb{D}$. Since \mathbb{D} and $F \setminus U$ are disjoint functionally closed subsets of \mathbb{S}^2 , there exists a clopen set V such that $\mathbb{D} \cap V = \emptyset$ and $F \setminus U \subseteq V$. Then $F \subseteq U \cup V \subseteq \mathbb{S}^2 \setminus E$. Consequently, F and E are completely separated in \mathbb{S}^2 . Therefore, E is functionally closed in \mathbb{S}^2 by Lemma 3.1. $(4) \Rightarrow (1)$. Notice that E satisfy the conditions of Theorem 1.1. Indeed, E is z-embedded in \mathbb{S}^2 , since $|E| \leq \aleph_0$. Moreover, E is well-embedded in \mathbb{S}^2 , since E is functionally closed. Remark 5.2. Notice that a subset E of \mathbb{R}^2 is countable G_{δ} if and only if it is scattered in \mathbb{R}^2 . Indeed, assume that E is countable G_{δ} -set which contains a set Q without isolated points. Then Q is a G_{δ} -subset of \mathbb{R}^2 which is homeomorphic to \mathbb{Q} , a contradiction. On the other hand, if E is scattered, then Lemma 4.1 implies that E is countable. Since E is hereditarily Baire and countable, E is G_{δ} in \mathbb{R}^2 . Finally, we show that the Sorgenfrey plane is not a δ -normally separated space. Let $E = \{(x, -x) : x \in \mathbb{Q}\}$ and $F = \mathbb{D} \setminus E$. Then E is closed and F is functionally closed in \mathbb{S}^2 , since F is the difference of the functionally closed set \mathbb{D} and the functionally open set $\bigcup B[p,1)$. But E and F can not be separated by disjoint clopen sets in \mathbb{S}^2 , because E is not G_{δ} -subset of \mathbb{D} in \mathbb{R}^2 . ### References - [1] W. Bade, Two properties of the Sorgenfrey plane, Pacif. J. Math. 51, no. 2 (1974), 349 - 354. - [2] R. Blair and A. Hager, Extensions of zero-sets and of real-valued functions, Math. Zeit. **136** (1974), 41–52 - [3] G. Debs, Espaces héréditairement de Baire, Fund. Math. 129, no. 3 (1988), 199-206. - [4] R. Engelking, General Topology. Revised and completed edition. Heldermann Verlag, Berlin (1989) - [5] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton (1960). - [6] R. Heath and E. Michael, A property of the Sorgenfrey line, Comp. Math. 23, no. 2 (1971), 185–188. - [7] T. Hoshina and K. Yamazaki, Weak C-embedding and P-embedding, and product spaces, Topology Appl. 125 (2002), 233-247. - [8] O. Kalenda and J. Spurný, Extending Baire-one functions on topological spaces, Topology Appl. 149 (2005), 195–216. - [9] O. Karlova, On α -embedded sets and extension of mappings, Comment. Math. Univ. Carolin. 54, no. 3 (2013), 377-396. - [10] J. Mack, Countable paracompactness and weak normality properties, Trans. Amer. Math. Soc. 148 (1970), 265-272. - [11] H. Ohta, Extension properties and the Niemytzki plane, Appl. Gen. Topol. 1, no. 1 - [12] H. Ohta, K. Yamazaki, Extension problems of real-valued continuous functions, in: "Open problems in topology II", E. Pearl (ed.), Elsevier, 2007, 35-45. - [13] J. Saint-Raymond, Jeux topologiques et espaces de Namioka, Proc. Amer. Math. Soc. 87, no. 3 (1983), 409-504. # O. Karlova - $[14] \ \ W. \ Sierpiński, \ Sur\ une\ propriete\ topologique\ des\ ensembles\ denombrables\ denses\ en\ soi,$ Fund. Math. 1 (1920), 11–16. - [15] Y. Tanaka, On closedness of C- and C*-embeddings, Pacif. J. Math. 68, no. 1 (1977), 283-292. - [16] J. Terasawa, On the zero-dimensionality of some non-normal product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A ${\bf 11}$ (1972), 167–174.