

R_{cl} -spaces and closedness/completeness of certain function spaces in the topology of uniform convergence

J. K. Kohli a and D. Singh b

Abstract

It is shown that the notion of an R_{cl} -space (Demonstratio Math. 46(1) (2013), 229-244) fits well as a separation axiom between zero dimensionality and R_0 -spaces. Basic properties of R_{cl} -spaces are studied and their place in the hierarchy of separation axioms that already exist in the literature is elaborated. The category of R_{cl} -spaces and continuous maps constitutes a full isomorphism closed, monoreflective (epireflective) subcategory of TOP. The function space $R_{cl}(X, Y)$ of all R_{cl} -supercontinuous functions from a space X into a uniform space Y is shown to be closed in the topology of uniform convergence. This strengthens and extends certain results in the literature (Demonstratio Math. 45(4) (2012), 947-952).

2010 MSC: 54C08; 54C10; 54C35; 54D05; 54D10.

Keywords: R_{cl} -space; ultra Hausdorff space; initial property; monoreflective (epireflective) subcategory; R_{cl} -supercontinuous function; topology of uniform convergence.

1. Introduction

The notion of an R_{cl} -space evolved naturally in the study of R_{cl} -supercontinuous functions [37]. Here we study their basic properties and show that it fits well as a separation axiom between zero dimensionality and R_0 -spaces. We reflect

 $[^]a$ Department of Mathematics, Hindu College, University of Delhi, Delhi, India (jk_kohli@yahoo.com)

 $[^]b$ Department of Mathematics, Sri Aurobindo College, University of Delhi, Delhi, India. (dstopology@rediffmail.com)

upon interrelations and interconnections that exist among R_{cl} -spaces and separation axioms which already exist in the lore of mathematical literature and lie between zero dimensionality and R_0 -spaces. The class of R_{cl} -spaces properly contains each of the classes of zero dimensional spaces and ultra Hausdorff spaces [35] and is strictly contained in the class of R_0 -spaces ([20, 33]) which in its turn properly contains each of the classes of functionally regular spaces ([3, 39]) and functionally Hausdorff spaces.

The organization of the paper is as follows: Section 2 is devoted to preliminaries and basic definitions. In Section 3 we elaborate upon the place of R_{cl} -spaces in the hierarchy of separation axioms which lie between zero dimensionality and R_0 -spaces and already exist in the mathematical literature. Section 4 is devoted to study basic properties of R_{cl} -spaces wherein it is shown that (i) the property of being an R_{cl} -spaces is invariant under disjoint topological sums and initial sources so it is hereditary, productive, supinvariant, preimage invariant and projective; (ii) the category of R_{cl} -spaces and continuous maps is a full, isomorphism closed monoreflective (epireflective) subcategory of TOP; (iii) it is shown that a T_0 -space is ultra Hausdorff if and only if it is an R_{cl} -space. In Section 5 we discuss the relation between R_{cl} -supercontinuous functions and R_{cl} -spaces. Section 6 is devoted to the study of function spaces wherein it is shown that the function space of all $R_{cl}(X,Y)$ of all R_{cl} -supercontinuous functions from a topological space X into a uniform space Y is closed in Y^X in the topology of uniform convergence and the condition for its completeness is outlined.

2. Preliminaries and basic definitions

Let X be a topological space. A subset A of a space X is called **regular** G_{δ} -set [23] if A is an intersection of a sequence of closed sets whose interiors contain A, i.e., if $A = \bigcap_{n=1}^{\infty} F_n = \bigcap_{n=1}^{\infty} F_n^0$, where each F_n is a closed subset of X(here F_n^0 denotes the interior of F_n). The complement of a regular G_δ -set is called a regular F_{σ} -set. Any union of regular F_{σ} -sets is called d_{δ} -open [17]. The complement of a d_{δ} -open set is referred to as a d_{δ} -closed set.

A subset A of a space X is said to be **regular open** if it is the interior of its closure, i.e., $A = \overline{A}^0$. The complement of a regular open set is referred to as a regular closed set. Any union of regular open sets is called δ -open set [40]. The complement of a δ -open set is referred to as a δ -closed set. Any intersection of closed G_{δ} -sets is called **d-closed set** [16]. Any intersection of zero sets is called z-closed set ([15, 30]).

A collection β of subsets of a space X is called an **open complementary system** [9] if β consists of open sets such that for every $B \in \beta$, there exist $B_1, B_2, \ldots \in \beta$ with $B = \bigcup \{X \setminus B_i : i \in N\}$. A subset A of a space X is called a strongly open F_{σ} -set [9] if there exists a countable open complementary system $\beta(A)$ with $A \in \beta(A)$. The complement of a strongly open F_{σ} -set is

called strongly closed G_{δ} -set. Any intersection of strongly closed G_{δ} -sets is called d^* -closed set [31].

Definition 2.1. A topological space X is said to be

- (i) functionally regular ([3, 39]) if for each closed set F in X and each $x \notin F$ there exists a continuous real-valued function f defined on X such that $f(x) \notin f(F)$.
- (ii) ultra Hausdorff [35] if every pair of distinct points in X are contained in disjoint clopen sets.
- (iii) R_z -space ([20, 33]) if for each open set U in X and each $x \in U$ there exists a z-closed set H containing x such that $H \subset U$; equivalently U is expressible as a union of z-closed sets.
- (iv) R_{δ} -space [19] if for each open set U in X and each $x \in U$ there exists a δ -closed set H containing x such that $H \subset U$; equivalently U is expressible as a union of δ -closed sets.
- (v) R_0 -space ([5],[38]¹ [28]) if for each open set U in X and each $x \in U$ implies that $\overline{\{x\}} \subset U$.
- (vi) R_1 -space ([42]² [5]) if $x \notin \overline{\{y\}}$ implies that x and y are contained in disjoint open sets.
- (vii) π_2 -space [38]³ ($\equiv P_{\Sigma}$ -space [41] \equiv strongly s-regular space [7]) if every open set in X is expressible as a union of regular closed sets.
- (viii) π_0 -space ([38, p 98]) if every nonempty open set in X contains a nonempty closed set.

Definition 2.2 ([19]). A space X is said to be an

- (i) $R_{D_{\delta}}$ -space if for each open set U in X and each $x \in U$ there exists a regular G_{δ} -set H containing x such that $H \subset U$; equivalently U is expressible as a union of regular G_{δ} -sets.
- (ii) R_{ds} -space if for each open set U in X and each $x \in U$ there exists a d_{δ} -closed set H containing x such that $H \subset U$; equivalently U is expressible as a union of d_{δ} -closed sets.
- (iii) R_D -space if for each open set U in X and each $x \in U$ there exists a closed G_{δ} -set H containing x such that $H \subset U$; equivalently U is expressible as a union of closed G_{δ} -sets.
- (iv) R_d -space if for each open set U in X and each $x \in U$ there exists a d-closed set H containing x such that $H \subset U$; equivalently U is expressible as a union of d-closed sets.

 $^{^{1}}$ Vaidyanathswamy calls R_{0} -axiom as π_{1} -axiom in his text book (see [38, p 98]). Császár calls an R_0 -space as S_1 -space in [4].

 $^{^2}$ Yang [42] in his studies of paracompactness refers an R_1 -space as a T_2 -space. Császár calls an R_1 -space as S_2 -space in [4].

 $^{^{3}\}pi_{2}$ -spaces were defined by Vaidyanathswamy [38] (1960) and rediscovered by Wong [41] (1981) and Ganster [7] (1990) with different terminologies.

Definition 2.3 ([20]). A space X is said to be an

- (i) R_{D^*} -space if for each open set U in X and each $x \in U$ there exists a strongly closed G_{δ} -set H containing x such that $H \subset U$; equivalently U is expressible as a union of strongly closed G_{δ} -sets.
- (ii) R_{d^*} -space if for each open set U in X and each $x \in U$ there exists a d^* -closed set H containing x such that $H \subset U$; equivalently U is expressible as a union of d^* -closed sets.

Definition 2.4. A space X is said to be

- (i) **D-completely regular** [9] if it has a base of strongly open F_{σ} -sets.
- (ii) **D-regular** [9] if it has a base of open F_{σ} -sets.
- (iii) weakly regular [9] if it has a base of F_{σ} -neighbourhoods.
- (iv) D_{δ} -completely regular [18] if it has a base of regular F_{σ} -sets.

3. R_{cl} -spaces and hierarchy of seperation axioms

Definition 3.1. Let X be a topological space. Any intersection of clopen sets in X is called **cl-closed** [32]. An open subset U of X is said to be r_{cl} -open [37] if for each $x \in U$ there exists a cl-closed set H containing x such that $H \subset U$; equivalently U is expressible as a union of cl-closed sets.

Definition 3.2 ([37]). A topological space X is said to be an R_{cl} -space if every open set in X is rel-open.

It is clear from the definitions that every zero dimensional space as well as every ultra Hausdorff space is an R_{cl} -space. The space of strong ultrafilter topology [36, Example 113, p.133] is a Hausdorff extremally disconnected R_{cl} space which is not zero dimensional.

The comprehensive diagram (Figure 1) well reflects the place of R_{cl} -spaces in the hierarchy of separation axioms related to the theme of the present paper and certain other topological invariants and extends several existing diagrams in the literature (see [9, 18, 19]).

However, most of the implications of Figure 1 are irreversible (see [9, 18, 19, 20). We reproduce the diagram (Figure 2) from [20] concerning separation axioms between functionally regular space and R_0 -space, which is complementary to Figure 1.

FIGURE 1.

Figure 2.

4. Basic properties of R_{cl} -spaces

Definition 4.1. Let X be a topological space. A point $x \in X$ is said to be an r_{cl} -adherent point of a set $A \subset X$ if every r_{cl} -open set containing x intersects A. Let A_{rcl} denote the set of all r_{cl} -adherent points of the set A. Then $A \subset \overline{A} \subset A_{rcl}$. The set A is r_{cl} -closed if and only if $A = A_{rcl}$.

Lemma 4.2. The correspondence $A \to A_{rcl}$ is a Kuratowski closure operator.

Theorem 4.3. Let X be a topological space. Consider the following statements:

- (i) X is an R_{cl} -space
- (ii) For each $x \in X$ and for each open set U containing x, $\{x\}_{rcl} \subset U$
- (iii) There exists a subbase **S** for X such that $x \in S \in \mathbf{S} \Rightarrow \{x\}_{rel} \subset S$
- (iv) $x \in \{y\}_{rcl} \Rightarrow y \in \{x\}_{rcl}$
- (v) $x \in \{y\}_{rcl} \Rightarrow \{x\}_{rcl} = \{y\}_{rcl}$
- Then $(i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Rightarrow (iv) \Leftrightarrow (v)$.

Proof. $(i) \Rightarrow (ii)$. Let $x \in X$ and let U be an open set containing x. Since X is an R_{cl} -space, there exists an r_{cl} -closed set A such that $x \in A \subset U$. Consequently $\{x\}_{rcl} \subset U$.

The assertions $(ii) \Rightarrow (i)$ and $(ii) \Leftrightarrow (iii)$ are trivial.

- $iii) \Rightarrow (iv)$. Since every subbasic open set containing y contains $\{y\}_{rcl}$, every basic open set containing y contains $\{y\}_{rcl}$ and hence it contains x. So $y \in \{x\}_{rcl}$.
- $(iv) \Rightarrow (v)$. Since $x \in \{y\}_{rcl}$, $y \in \{x\}_{rcl}$. So $x \in \{y\}_{rcl}$ and $y \in \{x\}_{rcl}$ implies $\{x\}_{rcl} \subset \{y\}_{rcl}$ and $\{y\}_{rcl} \subset \{x\}_{rcl}$, and hence $\{x\}_{rcl} = \{y\}_{rcl}$. The implication $(v) \Rightarrow (iv)$ is obvious.

Theorem 4.4. For a topological space X the following statements are equivalent:

- (i) $\{x\}_{rcl} \neq \{y\}_{rcl}$ implies that x and y are contained in disjoint open sets
- (ii) $x \notin \{y\}_{rcl}$ implies that x and y are contained in disjoint open sets
- (iii) A is compact set and $\{x\}_{rcl} \cap A = \emptyset$ implies x and A are contained in disjoint open sets
- (iv) If A and B are compact sets, and $\{a\}_{rcl} \cap B = \emptyset$ for every $a \in A$, then A and B are contained in disjoint open sets.

Proof. (i) \Rightarrow (ii). Suppose that $x \notin \{y\}_{rcl}$. Then $\{x\}_{rcl} \neq \{y\}_{rcl}$ and so by (i) x and y are contained in disjoint open sets.

- $(ii) \Rightarrow (iii)$. Let A be a compact set and suppose that $\{x\}_{rcl} \cap A = \emptyset$. So for each $a \in A$, $a \notin \{x\}_{rcl}$ by (ii) there exist disjoint open sets U_a and V_a containing a and x, respectively. Thus the collection $\nu = \{U_a : a \in A\}$ is an open cover of the compact set A and so there exists a finite subcollection $\{U_{a_1},...,U_{a_n}\}$ of ν which covers A. Let $U = \bigcup_{i=1}^n U_{a_i}$ and $V = \bigcap_{i=1}^n V_{a_i}$. Then U and V are disjoint open sets containing A and x, respectively.
- $(iii) \Rightarrow (iv)$. Suppose that A and B are compact and $\{a\}_{rcl} \cap B = \emptyset$ for every $a \in A$. Then by (iii) for each $a \in A$ there exist disjoint open sets U_a and V_a containing a and B, respectively. The collection $\nu = \{U_a : a \in A\}$ is an open cover of the compact set A and so there exists a finite subcollection $\{U_{a_1},...,U_{a_n}\}$ of ν which covers A. Let $U = \bigcup_{i=1}^n U_{a_i}$ and $V = \bigcap_{i=1}^n V_{a_i}$. Then U and V are disjoint open sets containing A and B, respectively.
- $(iv) \Rightarrow (i)$. Suppose $\{x\}_{rcl} \neq \{y\}_{rcl}$. Then either $x \notin \{y\}_{rcl}$ or $y \notin \{x\}_{rcl}$. For definiteness assume that $y \notin \{x\}_{rcl}$. Then $\{x\}_{rcl} \cap \{y\}_{rcl} = \emptyset$ and so by (iv) there exist disjoint open sets U and V containing x and y, respectively.

Theorem 4.5. The disjoint topological sum of any family of R_{cl} -spaces is an R_{cl} -space.

Theorem 4.6. The property of being an R_{cl} -space is closed under initial sources, i.e., the property of being an R_{cl} -space is an initial property.

Proof. Let $\{f_{\alpha}: X \to Y_{\alpha}: \alpha \in \Lambda\}$ be a family of functions, where each Y_{α} is an R_{cl} -space and let X be equipped with initial topology. Let U be any open set in X and let $x \in U$. Then there exist $\alpha_1, ..., \alpha_n \in \Lambda$ and open sets $V_i \in Y_{\alpha_i} (i=1,...,n)$ such that $x \in f_{\alpha_1}^{-1}(V_1) \cap ... \cap f_{\alpha_n}^{-1}(V_n) \subset U$. Since each Y_{α} is an R_{cl} -space, there exists a cl-closed set A_{α_i} in $Y_{\alpha_i}^{n}$ (i=1,...,n) such that $f_{\alpha_i}(x) \in A_{\alpha_i} \subset V_i$. Since each f_{α} is continuous, it follows that each $f_{\alpha_i}^{-1}(A_{\alpha_i})$ is a cl-closed set in X. Let $A = \bigcap_{i=1}^n f_{\alpha_i}^{-1}(A_{\alpha_i})$. Since any intersection of clclosed sets is a cl-closed, A is a cl-closed set in X and $x \in A \subset U$ so X is an R_{cl} -space.

As an immediate consequence of Theorem 4.6 we have the following.

Theorem 4.7. The property of being an R_{cl}-space is hereditary, productive, sup-invariant, preimage invariant and projective⁴.

Theorem 4.8. The category of R_{cl} -spaces and continuous maps is a full isomorphism closed monoreflective as well as epireflective subcategory of TOP⁵.

The following result gives a factorization of ultra Hausdorff property with R_{cl} -space as an essential ingredient.

Theorem 4.9. Every ultra Hausdorff space is an R_{cl} -space. Conversely, every T_0 , R_{cl} -space is an ultra Hausdorff space.

Proof. The first assertion is immediate, because in this case every singleton is cl-closed and so every open set is the union of cl-closed sets. Conversely, suppose that X is a T_0 , R_{cl} -space and let $x, y \in X$, $x \neq y$. By T_0 -property of X there exists an open set U containing one of the points x and y but not both. To be precise, assume that $x \in U$. Since X is an R_{cl} -space, there exists a cl-closed set A such that $x \in A \subset U$. Let $A = \cap \{C_\alpha : \alpha \in \Lambda\}$, where each C_{α} is a clopen set. Then there exists an $\alpha_0 \in \Lambda$ such that $y \notin C_{\alpha_0}$. Hence C_{α_0} and $X \setminus C_{\alpha_0}$ are disjoint clopen sets containing x and y, respectively and so X is an ultra Hausdorff space.

5. R_{cl} -supercontinuous functions and R_{cl} -spaces

Definition 5.1 ([37]). A function $f: X \to Y$ from a topological space X into a topological space Y is said to be R_{cl} -supercontinuous if for each $x \in X$ and for each open set V containing f(x), there exists an r_{cl} open set U containing x such that $f(U) \subset V$.

 $^{^4}$ A topological property P is said to be projective if whenever a product space has property P every co-ordinate space possesses property P.

⁵For the definition of categorical terms we refer the reader to Herrlich and Strecker [11].

It is immediate from the definition that every continuous function defined on an R_{cl} -space is R_{cl} -supercontinuous.

Next we quote the following result from [37].

Theorem 5.2 ([37, Theorem 4.11]). Let $f: X \to \prod_{\alpha \in \Lambda} X_{\alpha}$ be defined by $f(x) = (f_{\alpha}(x))_{\alpha \in \Lambda}$, where $f_{\alpha} : X \to X_{\alpha}$ is a function for each $\alpha \in \Lambda$. Let $\prod_{\alpha \in \Lambda} X_{\alpha}$ be endowed with the product topology. Then f is R_{cl} -supercontinuous if and only if each f_{α} is R_{cl} -supercontinuous.

Now we give an alternative short proof of the following result from [37].

Theorem 5.3 ([37, Theorem 4.13]). Let $f: X \to Y$ be a function and g: $X \to X \times Y$ be the graph function defined by g(x) = (x, f(x)) for each $x \in X$. Then g is R_{cl} -supercontinuous if and only if f is R_{cl} -supercontinuous and X is an R_{cl} -space.

Proof. Observe that $g = 1_X \times f$, where 1_X denotes the identity function defined on X. Now by Theorem 5.2, g is R_{cl} -supercontinuous if and only if 1_X and f both are R_{cl} -supercontinuous. Again 1_X is R_{cl} -supercontinuous implies that each open set in X is r_{cl} -open and so X is an R_{cl} -space.

Theorem 5.4. Let $f: X \to Y$ be an R_{cl} -supercontinuous open bijection. If either of the space X and Y is a T_0 -space, then X and Y are homeomorphic ultra Hausdorff spaces.

Proof. By [37, Theorem 5.1] X and Y are homeomorphic R_{cl} -spaces. The last part of the theorem is immediate in view of the fact that a T_0 , R_{cl} -space is ultra Hausdorff (Theorem 4.9).

6. Function spaces

It is a well known fact that the function space C(X,Y) of all continuous functions from a topological space X into a uniform space Y is not necessarily closed in Y^X in the topology of pointwise convergence. However, it is closed in Y^X in the topology of uniform convergence. It is of fundamental importance in topology, analysis and several other branches of mathematics and its applications to know whether a given function space is closed / compact / complete in Y^X or C(X,Y) in the topology of pointwise convergence / uniform convergence. Results of this nature and Ascoli type theorems abound in the literature (see [1, 12]). Sierpinski [29] showed that the set of all connected (Darboux) functions from a topological space X into a uniform space Y is not necessarily closed in Y^X in the topology of uniform convergence. In contrast, Naimpally [25] showed that the set of all connectivity functions from a space Xinto a uniform space Y is closed in Y^X in the topology of uniform convergence. Moreover, in [26] Naimpally introduced the notion of graph topology Γ for a function space and proved that the set of all almost continuous functions in the sense of Stalling [34] is not only closed in Y^X in the graph topology but

it represents the closure of C(X,Y) in the graph topology. In the same vein, Hoyle [10] showed that the set SW(X, Y) of all somewhat continuous functions from a space X into a uniform space Y is closed in Y^X in the topology of uniform convergence. Furthermore, Kohli and Aggarwal in [14] proved that the function space SC(X,Y) of quasicontinuous (\equiv semicontinuous) functions, $C_{\alpha}(X,Y)$ of α -continuous functions, and L(X, Y) of cl-supercontinuous functions are closed in Y^X in the topology of uniform convergence. In this section we strengthen the results of [14] and show that the set $R_{cl}(X,Y) \supset L(X,Y)$ of all R_{cl} -supercontinuous functions is closed in Y^X in the topology of uniform convergence.

Definition 6.1. A subset A of a topological space X is said to be

- (i) semi open [22] (\equiv quasi open [13]) if there exists an open set U in X such that $U \subset A \subset \overline{U}$
- (ii) α -open [27] if $A \subset \overline{(A^0)}$
- (iii) **cl-open** [32] if for each $x \in A$ there exists a clopen set H such that $x \in H \subset A$.

Definition 6.2. A function $f: X \to Y$ from a topological space X into a topological space Y is said to be a

- (i) **connected** (Darboux) function if f(A) is connected for every connected set $A \subset X$
- (ii) connectivity function if the graph of every connected subset of X is a connected subset of $X \times Y$
- (iii) semicontinuous [22] (quasicontinuous [13]) if $f^{-1}(V)$ is semi open in X for every open set V in Y
- (iv) α -continuous [24] if $f^{-1}(V)$ is α -open in X for every open set V in Y
- (v) somewhat continuous [8] if for each open set V in Y such that $f^{-1}(V) \neq \emptyset$, then there exists a nonempty open set U in X such that $U \subset f^{-1}(V)$, i.e. $(f^{-1}(V))^0 \neq \emptyset$.

Remark 6.3. Somewhat continuous functions have also been referred to as feebly continuous (see [2, 6]) in the literature. However, Frolik [6] requires functions to be onto.

We now recall the notion of the topology of uniform convergence. Let $Y^X =$ $\{f: X \to Y \text{ is a function}\}\$ be the set of all functions from a topological space X into a uniform space (Y, ν) , where ν is a uniformity on Y. Let $F \subset Y^X$. A basis for the uniformity of uniform convergence u for F is the collection $\{W(V): V \in \nu\}$, where $W(V) = \{(f,g) \in F \times F: (f(x),g(x)) \in V \text{ for all } \}$ $x \in X$. The uniform topology associated with u is called the topology of uniform convergence. For details we refer the reader to [12].

Definition 6.4 ([12]). A uniform space (Y, ν) is said to be **complete** if and only if every Cauchy net in Y converges to a point in Y.

Theorem 6.5 ([12, p. 194]). A product of uniform spaces is complete if and only if each co-ordinate space is complete.

Theorem 6.6. Let X be a topological space and let (Y, ν) be a uniform space. Then the set $R_{cl}(X,Y)$ of all R_{cl} -supercontinuous functions from X into Y is closed in Y^X in the topology of uniform convergence. Further, if Y is a complete uniform space, then so is the function space $R_{cl}(X,Y)$ in the topology of uniform convergence.

Proof. Let $f \in Y^X$ be the limit point of $R_{cl}(X,Y)$ which is not R_{cl} -supercontinuous at $x \in X$. Then there exists $V \in \nu$ such that $f^{-1}(V[f(x)])$ does not contain any r_{cl} -open set containing x. Choose a symmetric member W of ν such that $WoWoW \subset V$. Since f is a limit point of $R_{cl}(X,Y)$, there exists $g\in R_{cl}(X,Y)$ such that $g(y)\in W[f(y)]$ for all $y\in X$. Then $g\subset Wof$ and $g^{-1}\subset f^{-1}oW^{-1}=f^{-1}oW$ and hence $g^{-1}oWog\subset f^{-1}oWoWoWof\subset g$ $f^{-1}oVof$. Therefore $g^{-1}[W(g(x))] \subset f^{-1}(V[f(x)])$. Since $f^{-1}(V[f(x)])$ does not contain any r_{cl} -open set containing x, neither does $g^{-1}[W(g(x))]$ which contradicts R_{cl} -supercontinuity of g. Therefore $f \in R_{cl}(X,Y)$. The last assertion is immediate in view of Theorem 6.5 and the fact that a closed subspace of complete uniform space is complete.

Remark 6.7. In view of the above discussion we extend the following inclusions diagram from [14].

$$L(X,Y) \subset R_{cl}(X,Y) \subset C(X,Y) \subset C_{\alpha}(X,Y) \subset SC(X,Y) \subset SW(X,Y) \subset Y^{X}$$

Since in the topology of uniform convergence each of the above function space is a closed subspace of its succeeding one, the completeness of any one of them implies that of its predecessor. In particular, if Y is complete, then each of the above function space is complete.

References

- [1] A. V. Arhangel'skii, General Topology III, Springer-Verlag, Berlin, 1995.
- [2] S. P. Arya and M. Deb, On mapping almost continuous in the sense of Frolik, Math. Student 41 (1973), 311-321.
- [3] C. E. Aull, Functionally regular spaces, Indag. Math. 38 (1976), 281–288.
- [4] Á. Császár, General Topology, Adam Higler Ltd., Bristol, 1978.
- [5] A. S. Davis, Indexed system of neighbourhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886–893.
- [6] Z. Frolík, Remarks concerning the invariance of Baire spaces under mapping, Czechoslovak Math. J. 11, no. 3 (1961), 381-385.
- M. Ganster, On strongly s-regular spaces, Glasnik Mat. 25, no. 45 (1990), 195–201.
- [8] K. R. Gentry, and H. B. Hoyle, III, Somewhat continuous functions, Czechoslovak Math. J. **21**, no. 1 (1971), 5–12.
- [9] N. C. Heldermann, Developability and some new regularity axioms, Can. J. Math. 33, no. 3 (1981), 641-663.

- [10] H. B. Hoyle, III, Function spaces for somewhat continuous functions, Czechoslovak Math. J. 21, no. 1 (1971), 31–34.
- [11] H. Herrlich and G. E. Strecker, Category Theory An Introduction, Allyn and Bacon Inc. Bostan, 1973.
- [12] J. L. Kelly, General Topology, Van Nostrand, New York, 1955.
- [13] S. Kempisty, Sur les functions quasicontinuous, Fund. Math. 19 (1932), 184–197.
- [14] J. K. Kohli and J. Aggarwal, Closedness of certain classes of functions in the topology of uniform convergence, Demonstratio Math. 45, no. 4 (2012), 947–952.
- [15] J. K. Kohli and R. Kumar, z-supercontinuous functions, Indian J. Pure Appl. Math. 33, no. 7 (2002), 1097-1108.
- [16] J. K. Kohli and D. Singh, D-supercontinuous functions, Indian J. Pure Appl. Math. 32, no. 2 (2001), 227-235.
- J. K. Kohli and D. Singh, D_{δ} -supercontinuous functions, Indian J. Pure Appl. Math. **34**, no. 7 (2003), 1089–1100.
- [18] J. K. Kohli and D. Singh, Between regularity and complete regularity and a factorization of complete regularity, Studii Si Cercetari Seria Matematica 17 (2007), 125–134.
- [19] J. K. Kohli and D. Singh, Separation axioms between regular spaces and R₀ spaces, preprint.
- [20] J. K. Kohli and D.Singh, Separation axioms between functionally regular spaces and R_0 spaces, preprint.
- [21] J. K. Kohli, B. K. Tyagi, D. Singh and J. Aggarwal, R_{δ} -supercontinuous functions, Demonstratio Math. 47, no. 2 (2014), 433-448.
- [22] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, **70** (1963), 34–41.
- [23] J. Mack, Countable paracompactness and weak normality properties, Trans. Amer. Math. Soc. 148 (1970), 265-272.
- [24] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, α -continuous and α -open mappings, Acta Math. Hungar. 41 1983, 213–218.
- [25] S. A. Naimpally, Function space topologies for connectivity and semiconnectivity functions, Canad. Math. Bull. 9 (1966), 349-352.
- [26] S. A. Naimpally, Graph topology for function spaces, Trans. Amer. Math. Soc. 123 (1966), 267-272.
- [27] O. Njástad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970.
- [28] N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk SSSR, 38 (1943), 110-113.
- [29] W. Sierpiński, Sur une propriété de functions réelles quelconques, Matematiche (Catania) 8 (1953), 43–48.
- [30] M. K. Singal and S. B. Niemse, z-continuous mappings, The Mathematics Student 66, no. 1-4 (1997), 193–210.
- [31] D. Singh, D*-supercontinuous functions, Bull. Cal. Math. Soc. 94, no. 2 (2002), 67–76.
- [32] D. Singh, cl-supercontinuous functions, Appl. Gen. Topol. 8, no. 2 (2007), 293–300.
- [33] D. Singh, B. K. Tyagi, J. Aggarwal and J. K. Kohli, R_z-supercontinuous functions, Math. Bohemica, to appear.
- [34] J. R. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959). 249 - 263.
- [35] R. Staum, The Algebra of bounded continuous functions into a nonarchimedean field, Pac. J. Math. 50, no. 1 (1974), 169-185.
- L. A. Steen and J. A. Seebach, Jr., Counter Examples in Topology, Springer Verlag, New York, 1978.
- [37] B. K. Tyagi, J. K. Kohli and D. Singh, R_{cl}-supercontinuous functions, Demonstratio Math. 46, no. 1 (2013), 229–244.
- [38] R. Vaidyanathswamy, Treatise on Set Topology, Chelsa Publishing Company, New York,

J. K. Kohli and D. Singh

- [39] W. T. Van East and H. Freudenthal, Trennung durch stetige Functionen in topologishen Raümen, Indag. Math. 15 (1951), 359–368.
- [40] N. K. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. 78, no. 2 (1968), 103-118.
- [41] G. J. Wong, On S-closed spaces, Acta Math. Sinica, ${\bf 24}$ (1981), 55–63.
- [42] C. T. Yang, On paracompact spaces, Proc. Amer. Math. Soc. 5, no. 2 (1954), 185–194.