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ABSTRACT

It is shown that the notion of an R;-space (Demonstratio Math. 46(1)
(2013), 229-244) fits well as a separation axiom between zero dimen-
sionality and Ro-spaces. Basic properties of R.-spaces are studied
and their place in the hierarchy of separation axioms that already
exist in the literature is elaborated. The category of R.;-spaces and
continuous maps constitutes a full isomorphism closed, monoreflective
(epireflective) subcategory of TOP. The function space R (X, Y) of
all R.;-supercontinuous functions from a space X into a uniform space
Y is shown to be closed in the topology of uniform convergence. This
strengthens and extends certain results in the literature (Demonstratio
Math. 45(4) (2012), 947-952).
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1. INTRODUCTION

The notion of an R.;-space evolved naturally in the study of R.;-supercontinuous
functions [37]. Here we study their basic properties and show that it fits well
as a separation axiom between zero dimensionality and Ry-spaces. We reflect
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upon interrelations and interconnections that exist among R.;-spaces and sep-
aration axioms which already exist in the lore of mathematical literature and
lie between zero dimensionality and Rg-spaces. The class of R.-spaces prop-
erly contains each of the classes of zero dimensional spaces and ultra Hausdorff
spaces [35] and is strictly contained in the class of Rg-spaces ([20, 33]) which
in its turn properly contains each of the classes of functionally regular spaces
([3, 39]) and functionally Hausdorff spaces.

The organization of the paper is as follows: Section 2 is devoted to preliminaries
and basic definitions. In Section 3 we elaborate upon the place of R.-spaces
in the hierarchy of separation axioms which lie between zero dimensionality
and Ry-spaces and already exist in the mathematical literature. Section 4 is
devoted to study basic properties of R.;-spaces wherein it is shown that (i) the
property of being an R.;-spaces is invariant under disjoint topological sums and
initial sources so it is hereditary, productive, supinvariant, preimage invariant
and projective; (ii) the category of R.-spaces and continuous maps is a full,
isomorphism closed monoreflective (epireflective) subcategory of TOP; (iii) it
is shown that a Ty-space is ultra Hausdorff if and only if it is an R.-space. In
Section 5 we discuss the relation between R.-supercontinuous functions and
R.-spaces. Section 6 is devoted to the study of function spaces wherein it is
shown that the function space of all R.(X,Y) of all R¢;-supercontinuous func-
tions from a topological space X into a uniform space Y is closed in Y¥ in
the topology of uniform convergence and the condition for its completeness is
outlined.

2. PRELIMINARIES AND BASIC DEFINITIONS

Let X be a topological space. A subset A of a space X is called regular

Gs-set [23] if A is an intersection of a sequence of closed sets whose interiors
o0 o0

contain A, i.e., if A= (| F, = [\ F?,where each F}, is a closed subset of X
n=1 n=1

(here FV denotes the interior of F,). The complement of a regular Gs-set is

called a regular F,-set. Any union of regular F,-sets is called ds-open [17].

The complement of a ds-open set is referred to as a ds-closed set.

A subset A of a space X is said to be regular open if it is the interior of its

closure, ie., A = A", The complement of a regular open set is referred to as

a regular closed set. Any union of regular open sets is called J-open set

[40]. The complement of a d-open set is referred to as a d-closed set. Any

intersection of closed Ggs-sets is called d-closed set [16]. Any intersection of

zero sets is called z-closed set ([15, 30]).

A collection B of subsets of a space X is called an open complementary

system [9] if B consists of open sets such that for every B € §, there exist

Bi1,Bs,...€ fwith B=U{X\ B; :i€ N}. A subset A of a space X is called

a strongly open F,-set [9] if there exists a countable open complementary

system [(A) with A € S(A). The complement of a strongly open F,-set is
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called strongly closed Gs-set. Any intersection of strongly closed Gs-sets is
called d*-closed set [31].

Definition 2.1. A topological space X is said to be

(i) functionally regular ([3, 39]) if for each closed set F in X and each
x ¢ F there exists a continuous real-valued function f defined on X
such that f(x) ¢ f(F).

(ii) ultra Hausdorff [35] if every pair of distinct points in X are contained
in disjoint clopen sets.

(iii) R.-space ([20, 33]) if for each open set U in X and each z € U there
exists a z-closed set H containing x such that H C U; equivalently U
is expressible as a union of z-closed sets.

(iv) Rs-space [19] if for each open set U in X and each x € U there exists
a d-closed set H containing x such that H C U; equivalently U is
expressible as a union of J-closed sets.

(v) Ro-space ([5],[38]" [28]) if for each open set U in X and each z € U
implies that {z} C U.

(vi) Ri-space ([42]? [5]) if 2 ¢ {y} implies that x and y are contained in
disjoint open sets.

(vii) mo-space [38]% (= Pg-space [41]= strongly s-regular space [7]) if every
open set in X is expressible as a union of regular closed sets.

(viii) mp-space ([38, p 98]) if every nonempty open set in X contains a
nonempty closed set.

Definition 2.2 ([19]). A space X is said to be an

(i) Rp,-space if for each open set U in X and each x € U there exists
a regular Gs-set H containing x such that H C U; equivalently U is
expressible as a union of regular Gs-sets.

(ii) Rg,-space if for each open set U in X and each z € U there exists
a ds-closed set H containing x such that H C U; equivalently U is
expressible as a union of ds-closed sets.

(iii) Rp-space if for each open set U in X and each x € U there exists
a closed Gjs-set H containing x such that H C U; equivalently U is
expressible as a union of closed Gs-sets.

(iv) Rg-space if for each open set U in X and each x € U there exists
a d-closed set H containing x such that H C U; equivalently U is
expressible as a union of d-closed sets.

Waidyanathswamy calls Ro-axiom as 71-axiom in his text book (see [38, p 98]). Csaszér
calls an Rp-space as Si-space in [4].

2Yang [42] in his studies of paracompactness refers an Ri-space as a Th-space. Csdszar
calls an Rp-space as Sa-space in [4].

3ma-spaces were defined by Vaidyanathswamy [38] (1960) and rediscovered by Wong [41]
(1981) and Ganster [7] (1990) with different terminologies.
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Definition 2.3 ([20]). A space X is said to be an

(i) Rp--space if for each open set U in X and each xz € U there exists a
strongly closed Gs-set H containing x such that H C U; equivalently
U is expressible as a union of strongly closed Gs-sets.

(ii) Rg«-space if for each open set U in X and each x € U there exists
a d*-closed set H containing x such that H C U; equivalently U is
expressible as a union of d*-closed sets.

Definition 2.4. A space X is said to be

(i) D-completely regular [9] if it has a base of strongly open F,-sets.
(ii) D-regular [9] if it has a base of open F,-sets.

(iii) weakly regular [9] if it has a base of F,-neighbourhoods.

(iv) Ds-completely regular [18] if it has a base of regular F,-sets.

3. R.-SPACES AND HIERARCHY OF SEPERATION AXIOMS

Definition 3.1. Let X be a topological space. Any intersection of clopen sets
in X is called cl-closed [32]. An open subset U of X is said to be r.-open [37]
if for each € U there exists a cl-closed set H containing x such that H C U,
equivalently U is expressible as a union of cl-closed sets.

Definition 3.2 ([37]). A topological space X is said to be an R.-space if
every open set in X is rcl-open.

It is clear from the definitions that every zero dimensional space as well as

every ultra Hausdorff space is an R-space. The space of strong ultrafilter
topology [36, Example 113, p.133] is a Hausdorff extremally disconnected R.;-
space which is not zero dimensional.
The comprehensive diagram (Figure 1) well reflects the place of R.-spaces in
the hierarchy of separation axioms related to the theme of the present paper
and certain other topological invariants and extends several existing diagrams
in the literature (see [9, 18, 19]).

However, most of the implications of Figure 1 are irreversible (see [9, 18,
19, 20]). We reproduce the diagram (Figure 2) from [20] concerning separation
axioms between functionally regular space and Ry-space, which is complemen-
tary to Figure 1.
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partition topology — zero di i ‘spacc\ul:ra Hausdorff
developable space «— pseudo metrizable Ry - space

perfect space «— perfectly normal

D-completely regular «—— ly regular ——p- fi ionally regular — R, - space

|

D-regular «— Ds-completely regular Rd. - space

}

regular space — 1, - space (= P -space = strongly s-regular space)

R,, - space ————— R, - space

! b

R, - space — Rq-space R, -space

! |

weakly regular space ———» Ry-space ———p Rj-space

M, - space
FIGURE 1.

functionally regular —» R, - space

Lo !

R - space R[,a - space —» Rd,., - space

Lol

R, - space R, - space
R, - space —» R . - space—> R, - space R; - space

|

R, - space — T, - space

FIGURE 2.

4. BASIC PROPERTIES OF R.-SPACES

Definition 4.1. Let X be a topological space. A point z € X is said to
be an ry-adherent point of a set A C X if every rq-open set containing x
intersects A. Let A,. denote the set of all r.-adherent points of the set A.
Then A C A C A,¢. The set A is r¢-closed if and only if A = A,..;.

Lemma 4.2. The correspondence A — A, is a Kuratowski closure operator.
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Theorem 4.3. Let X be a topological space. Consider the following statements:
(i) X is an R -space
(ii) For each x € X and for each open set U containing x, {x}rq C U
(i1i) There exists a subbase S for X such that x € S € S= {x},e C S
() z € {y}ra =y € {z}ra
() z € {ytra = {z}ra = {y}tra
Then (i) < (i1) < (i) = (iv) < (v).

Proof. (i) = (i7). Let x € X and let U be an open set containing x. Since
X is an Rg-space, there exists an r-closed set A such that x € A C U.
Consequently {z},, C U.

The assertions (i7) = (i) and (i7) < (iii) are trivial.

iii) = (iv). Since every subbasic open set containing y contains {y},e, every
basic open set containing y contains {y},. and hence it contains x. So y €
{x}rcl'

(iv) = (v). Since € {y}ret, ¥y € {x}re- So x € {y}ra and y € {x},¢ implies
{z}rer € {y}ra and {y}rea C {2}re, and hence {2}, = {y}ra-

The implication (v) = (iv) is obvious. O

Theorem 4.4. For a topological space X the following statements are equiva-
lent:

(i) {x}rei # {y}rer implies that © and y are contained in disjoint open sets
(i1) © & {y}re implies that x and y are contained in disjoint open sets
(i11) A is compact set and {x}re; N A = & implies x and A are contained in
disjoint open sets
(i) If A and B are compact sets, and {a}ra N B = @ for every a € A, then
A and B are contained in disjoint open sets.

Proof. (i) = (ii). Suppose that ¢ {y}rc. Then {x},a # {y}ra and so by (i)
x and y are contained in disjoint open sets.
(i4) = (i4i). Let A be a compact set and suppose that {z},¢ N A = &. So
for each a € A, a ¢ {x},a by (ii) there exist disjoint open sets U, and V,
containing a and z, respectively. Thus the collection v = {U, : a € A} is
an open cover of the compact set A and so there exists a finite subcollection
{Uays -y Ua, } of v which covers A. Let U = U, U,, and V =N, V,, . Then
U and V are disjoint open sets containing A and x, respectively.
(#41) = (iv). Suppose that A and B are compact and {a},.; " B = @ for
every a € A. Then by (iii) for each a € A there exist disjoint open sets U,
and V, containing a and B, respectively. The collection v = {U, : a € A} is
an open cover of the compact set A and so there exists a finite subcollection
{Uays -+, Ua, } of v which covers A. Let U = U, U,, and V =N, V,,. Then
U and V are disjoint open sets containing A and B, respectively.
(tv) = (i). Suppose {z}rer # {y}rer- Then either @ ¢ {y}re or y & {x}ra. For
definiteness assume that y ¢ {z},e. Then {x},q N {y}ra = @ and so by (iv)
there exist disjoint open sets U and V containing x and y, respectively.

O
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Theorem 4.5. The disjoint topological sum of any family of Rei-spaces is an
R.;-space.

Theorem 4.6. The property of being an R-space is closed under initial
sources, i.e., the property of being an Re-space is an initial property.

Proof. Let {fa : X = Y, : @ € A} be a family of functions, where each Y,
is an R.-space and let X be equipped with initial topology. Let U be any
open set in X and let z € U. Then there exist oy, ...,a, € A and open sets
Vi € Yo,(i = 1,...,n) such that z € fo (Vi) n..N f1(V,) € U. Since each
Y, is an R.-space, there exists a cl-closed set A,, in Yy, (i = 1,...,n) such that
fa: (@) € Aq, C V;. Since each fq is continuous, it follows that each f3!(Aq,)
is a cl-closed set in X. Let A = NI, f;!(Aq,). Since any intersection of cl-
closed sets is a cl-closed, A is a cl-closed set in X and z € A C U so X is an
R.-space. O

As an immediate consequence of Theorem 4.6 we have the following.

Theorem 4.7. The property of being an R -space is hereditary, productive,
sup-invariant, preimage invariant and projective4.

Theorem 4.8. The category of Rei-spaces and continuous maps is a full iso-
morphism closed monoreflective as well as epireflective subcategory of TOP.

The following result gives a factorization of ultra Hausdorff property with
R.-space as an essential ingredient.

Theorem 4.9. FEvery ultra Hausdorff space is an R -space. Conversely, every
Ty, Rei-space is an ultra Hausdorff space.

Proof. The first assertion is immediate, because in this case every singleton
is cl-closed and so every open set is the union of cl-closed sets. Conversely,
suppose that X is a Ty, Re-space and let x,y € X, x # y. By Ty-property
of X there exists an open set U containing one of the points x and y but not
both. To be precise, assume that € U. Since X is an R.-space, there exists
a cl-closed set A such that z € A C U. Let A =nN{C, : a € A}, where each
C,, is a clopen set. Then there exists an ag € A such that y ¢ Cy,. Hence Cy,
and X \ C,, are disjoint clopen sets containing x and y, respectively and so X
is an ultra Hausdorff space. (I

5. R.-SUPERCONTINUOUS FUNCTIONS AND R.;-SPACES

Definition 5.1 ([37]). A function f: X — Y from a topological space X into
a topological space Y is said to be R.-supercontinuous if for each x € X and
for each open set V containing f(x), there exists an r.; open set U containing x

such that f(U) C V.

A topological property P is said to be projective if whenever a product space has property
P every co-ordinate space possesses property P.
5For the definition of categorical terms we refer the reader to Herrlich and Strecker [11].
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It is immediate from the definition that every continuous function defined
on an R.-space is R.-supercontinuous.
Next we quote the following result from [37].

Theorem 5.2 ([37, Theorem 4.11]). Let f : X — [[,cn Xa be defined by
f(@) = (fa(2))aen, where fo + X — X4 is a function for each o € A. Let
[Ioca Xa be endowed with the product topology. Then f is Re-supercontinuous
if and only if each fo is Re-supercontinuous.

Now we give an alternative short proof of the following result from [37].

Theorem 5.3 ([37, Theorem 4.13)). Let f : X — Y be a function and g :
X — X XY be the graph function defined by g(z) = (z, f(x)) for each z € X.
Then g is Rei-supercontinuous if and only if f is Rei-supercontinuous and X is
an R.-space.

Proof. Observe that g = 1x X f, where 1x denotes the identity function defined
on X. Now by Theorem 5.2, g is R.-supercontinuous if and only if 1x and f
both are R-supercontinuous. Again 1x is R-supercontinuous implies that
each open set in X is r,-open and so X is an R.-space. [l

Theorem 5.4. Let f : X — Y be an R -supercontinuous open bijection. If
either of the space X and Y is a Ty-space, then X and Y are homeomorphic
ultra Hausdorff spaces.

Proof. By [37, Theorem 5.1] X and Y are homeomorphic R.;-spaces. The last
part of the theorem is immediate in view of the fact that a Ty, R-space is
ultra Hausdorff (Theorem 4.9). O

6. FUNCTION SPACES

It is a well known fact that the function space C(X,Y") of all continuous
functions from a topological space X into a uniform space Y is not necessarily
closed in Y¥ in the topology of pointwise convergence. However, it is closed
in YX in the topology of uniform convergence. It is of fundamental impor-
tance in topology, analysis and several other branches of mathematics and its
applications to know whether a given function space is closed / compact /
complete in Y¥ or C(X,Y) in the topology of pointwise convergence / uni-
form convergence. Results of this nature and Ascoli type theorems abound in
the literature (see [1, 12]). Sierpinski [29] showed that the set of all connected
(Darboux) functions from a topological space X into a uniform space Y is not
necessarily closed in YX in the topology of uniform convergence. In contrast,
Naimpally [25] showed that the set of all connectivity functions from a space X
into a uniform space Y is closed in Y¥ in the topology of uniform convergence.
Moreover, in [26] Naimpally introduced the notion of graph topology T" for a
function space and proved that the set of all almost continuous functions in
the sense of Stalling [34] is not only closed in YX in the graph topology but
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it represents the closure of C'(X,Y) in the graph topology. In the same vein,
Hoyle [10] showed that the set SW(X, Y) of all somewhat continuous func-
tions from a space X into a uniform space Y is closed in Y¥ in the topology
of uniform convergence. Furthermore, Kohli and Aggarwal in [14] proved that
the function space SC(X,Y) of quasicontinuous ( = semicontinuous) functions,
Cyo(X,Y) of a-continuous functions, and L(X, Y) of cl-supercontinuous func-
tions are closed in YX in the topology of uniform convergence. In this section
we strengthen the results of [14] and show that the set Ry (X,Y) D L(X,Y)
of all R.-supercontinuous functions is closed in Y ¥ in the topology of uniform
convergence.

Definition 6.1. A subset A of a topological space X is said to be

(i) semi open [22] (= quasi open [13]) if there exists an open set U in
X such that U ¢ AC U
(ii) a-open [27]if A C (A0)
(iii) cl-open [32] if for each x € A there exists a clopen set H such that
re HCA

Definition 6.2. A function f : X — Y from a topological space X into a
topological space Y is said to be a

(i) connected (Darboux) function if f(A) is connected for every con-
nected set A C X
(ii) connectivity function if the graph of every connected subset of X is
a connected subset of X x Y
(iii) semicontinuous [22] (quasicontinuous [13]) if f~(V) is semi open
in X for every open set V in Y
(iv) a-continuous [24] if f~1(V) is a-open in X for every open set V in Y’

(v) somewhat continuous [8] if for each open set V in Y such that
f~Y(V) # @, then there exists a nonempty open set U in X such that
UiV, e (fLV)) £ 2.

Remark 6.3. Somewhat continuous functions have also been referred to as fee-
bly continuous (see [2, 6]) in the literature. However, Frolik [6] requires func-
tions to be onto.

We now recall the notion of the topology of uniform convergence. Let YX =
{f:X — Y is a function} be the set of all functions from a topological space
X into a uniform space (Y,v), where v is a uniformity on Y. Let F C Y X,
A Dbasis for the uniformity of uniform convergence u for F is the collection
{W(V) : V € v}, where W(V) = {(f,9) € F x F : (f(z),g(z)) € Vior all
x€ X }. The uniform topology associated with u is called the topology of uni-
form convergence. For details we refer the reader to [12].

Definition 6.4 ([12]). A uniform space (Y, v) is said to be complete if and
only if every Cauchy net in Y converges to a point in Y.
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Theorem 6.5 ([12, p. 194]). A product of uniform spaces is complete if and
only if each co-ordinate space is complete.

Theorem 6.6. Let X be a topological space and let (Y,v) be a uniform space.
Then the set Ry(X,Y) of all Re-supercontinuous functions from X into Y
is closed in Y in the topology of uniform convergence. Further, if Y is a
complete uniform space, then so is the function space Rq(X,Y) in the topology
of uniform convergence.

Proof. Let f € Y be the limit point of Re;(X,Y") which is not R.;-supercontinuous
at * € X. Then there exists V € v such that f~1(V[f(z)]) does not con-
tain any r.-open set containing x. Choose a symmetric member W of v
such that WoWoW C V. Since f is a limit point of R (X,Y), there exists
g € Ra(X,Y) such that g(y) € W[f(y)] for all y € X. Then g C Wof
and g7! C f~loW~! = f~1oW and hence g~ 'oWog C f~toWoWoWof C
f~loVof. Therefore g~ {W(g(x))] C f~1(V[f(x)]). Since f~1(V[f(z)]) does
not contain any 7-open set containing x, neither does g~![W(g(z))] which
contradicts R.-supercontinuity of g. Therefore f € R (X,Y). The last asser-
tion is immediate in view of Theorem 6.5 and the fact that a closed subspace
of complete uniform space is complete. O

Remark 6.7. In view of the above discussion we extend the following inclusions
diagram from [14].

L(X,Y) C Ry(X,Y) C C(X,Y) C Cu(X,Y) C SC(X,Y) C SW(X,Y) C
yX.

Since in the topology of uniform convergence each of the above function space
is a closed subspace of its succeeding one, the completeness of any one of them
implies that of its predecessor. In particular, if Y is complete, then each of the
above function space is complete.
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