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Abstract

It is shown that the notion of an Rcl-space (Demonstratio Math. 46(1)
(2013), 229-244) fits well as a separation axiom between zero dimen-
sionality and R0-spaces. Basic properties of Rcl-spaces are studied
and their place in the hierarchy of separation axioms that already
exist in the literature is elaborated. The category of Rcl-spaces and
continuous maps constitutes a full isomorphism closed, monoreflective
(epireflective) subcategory of TOP. The function space Rcl(X, Y) of
all Rcl-supercontinuous functions from a space X into a uniform space
Y is shown to be closed in the topology of uniform convergence. This
strengthens and extends certain results in the literature (Demonstratio
Math. 45(4) (2012), 947-952).
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1. introduction

The notion of anRcl-space evolved naturally in the study ofRcl-supercontinuous
functions [37]. Here we study their basic properties and show that it fits well
as a separation axiom between zero dimensionality and R0-spaces. We reflect
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upon interrelations and interconnections that exist among Rcl-spaces and sep-
aration axioms which already exist in the lore of mathematical literature and
lie between zero dimensionality and R0-spaces. The class of Rcl-spaces prop-
erly contains each of the classes of zero dimensional spaces and ultra Hausdorff
spaces [35] and is strictly contained in the class of R0-spaces ([20, 33]) which
in its turn properly contains each of the classes of functionally regular spaces
([3, 39]) and functionally Hausdorff spaces.
The organization of the paper is as follows: Section 2 is devoted to preliminaries
and basic definitions. In Section 3 we elaborate upon the place of Rcl-spaces
in the hierarchy of separation axioms which lie between zero dimensionality
and R0-spaces and already exist in the mathematical literature. Section 4 is
devoted to study basic properties of Rcl-spaces wherein it is shown that (i) the
property of being an Rcl-spaces is invariant under disjoint topological sums and
initial sources so it is hereditary, productive, supinvariant, preimage invariant
and projective; (ii) the category of Rcl-spaces and continuous maps is a full,
isomorphism closed monoreflective (epireflective) subcategory of TOP; (iii) it
is shown that a T0-space is ultra Hausdorff if and only if it is an Rcl-space. In
Section 5 we discuss the relation between Rcl-supercontinuous functions and
Rcl-spaces. Section 6 is devoted to the study of function spaces wherein it is
shown that the function space of all Rcl(X,Y ) of all Rcl-supercontinuous func-
tions from a topological space X into a uniform space Y is closed in Y X in
the topology of uniform convergence and the condition for its completeness is
outlined.

2. Preliminaries and basic definitions

Let X be a topological space. A subset A of a space X is called regular

Gδ-set [23] if A is an intersection of a sequence of closed sets whose interiors

contain A, i.e., if A =
∞⋂

n=1
Fn =

∞⋂

n=1
F 0
n ,where each Fn is a closed subset of X

(here F 0
n denotes the interior of Fn). The complement of a regular Gδ-set is

called a regular Fσ-set . Any union of regular Fσ-sets is called dδ-open [17].
The complement of a dδ-open set is referred to as a dδ-closed set .
A subset A of a space X is said to be regular open if it is the interior of its

closure, i.e., A = A
0
. The complement of a regular open set is referred to as

a regular closed set . Any union of regular open sets is called δ-open set

[40]. The complement of a δ-open set is referred to as a δ-closed set . Any
intersection of closed Gδ-sets is called d-closed set [16]. Any intersection of
zero sets is called z-closed set ([15, 30]).
A collection β of subsets of a space X is called an open complementary

system [9] if β consists of open sets such that for every B ∈ β, there exist
B1, B2, . . . ∈ β with B = ∪{X \Bi : i ∈ N}. A subset A of a space X is called
a strongly open Fσ-set [9] if there exists a countable open complementary
system β(A) with A ∈ β(A). The complement of a strongly open Fσ-set is

c© AGT, UPV, 2014 Appl. Gen. Topol. 15, no. 2 156



Rcl-spaces and closedness/completeness of certain function spaces

called strongly closed Gδ-set . Any intersection of strongly closed Gδ-sets is
called d∗-closed set [31].

Definition 2.1. A topological space X is said to be

(i) functionally regular ([3, 39]) if for each closed set F in X and each
x /∈ F there exists a continuous real-valued function f defined on X
such that f(x) /∈ f(F ).

(ii) ultra Hausdorff [35] if every pair of distinct points in X are contained
in disjoint clopen sets.

(iii) Rz-space ([20, 33]) if for each open set U in X and each x ∈ U there
exists a z-closed set H containing x such that H ⊂ U ; equivalently U
is expressible as a union of z-closed sets.

(iv) Rδ-space [19] if for each open set U in X and each x ∈ U there exists
a δ-closed set H containing x such that H ⊂ U ; equivalently U is
expressible as a union of δ-closed sets.

(v) R0-space ([5],[38]1 [28]) if for each open set U in X and each x ∈ U

implies that {x} ⊂ U .

(vi) R1-space ([42]2 [5]) if x /∈ {y} implies that x and y are contained in
disjoint open sets.

(vii) π2-space [38]3 (≡ PΣ-space [41]≡ strongly s-regular space [7]) if every
open set in X is expressible as a union of regular closed sets.

(viii) π0-space ([38, p 98]) if every nonempty open set in X contains a
nonempty closed set.

Definition 2.2 ([19]). A space X is said to be an

(i) RDδ
-space if for each open set U in X and each x ∈ U there exists

a regular Gδ-set H containing x such that H ⊂ U ; equivalently U is
expressible as a union of regular Gδ-sets.

(ii) Rdδ
-space if for each open set U in X and each x ∈ U there exists

a dδ-closed set H containing x such that H ⊂ U ; equivalently U is
expressible as a union of dδ-closed sets.

(iii) RD-space if for each open set U in X and each x ∈ U there exists
a closed Gδ-set H containing x such that H ⊂ U ; equivalently U is
expressible as a union of closed Gδ-sets.

(iv) Rd-space if for each open set U in X and each x ∈ U there exists
a d-closed set H containing x such that H ⊂ U ; equivalently U is
expressible as a union of d-closed sets.

1Vaidyanathswamy calls R0-axiom as π1-axiom in his text book (see [38, p 98]). Császár
calls an R0-space as S1-space in [4].

2Yang [42] in his studies of paracompactness refers an R1-space as a T2-space. Császár
calls an R1-space as S2-space in [4].

3
π2-spaces were defined by Vaidyanathswamy [38] (1960) and rediscovered by Wong [41]

(1981) and Ganster [7] (1990) with different terminologies.
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Definition 2.3 ([20]). A space X is said to be an

(i) RD∗-space if for each open set U in X and each x ∈ U there exists a
strongly closed Gδ-set H containing x such that H ⊂ U ; equivalently
U is expressible as a union of strongly closed Gδ-sets.

(ii) Rd∗-space if for each open set U in X and each x ∈ U there exists
a d∗-closed set H containing x such that H ⊂ U ; equivalently U is
expressible as a union of d∗-closed sets.

Definition 2.4. A space X is said to be

(i) D-completely regular [9] if it has a base of strongly open Fσ-sets.
(ii) D-regular [9] if it has a base of open Fσ-sets.
(iii) weakly regular [9] if it has a base of Fσ-neighbourhoods.
(iv) Dδ-completely regular [18] if it has a base of regular Fσ-sets.

3. Rcl-spaces and hierarchy of seperation axioms

Definition 3.1. Let X be a topological space. Any intersection of clopen sets
in X is called cl-closed [32]. An open subset U of X is said to be rcl-open [37]
if for each x ∈ U there exists a cl-closed set H containing x such that H ⊂ U ;
equivalently U is expressible as a union of cl-closed sets.

Definition 3.2 ([37]). A topological space X is said to be an Rcl-space if
every open set in X is rcl-open.

It is clear from the definitions that every zero dimensional space as well as
every ultra Hausdorff space is an Rcl-space. The space of strong ultrafilter
topology [36, Example 113, p.133] is a Hausdorff extremally disconnected Rcl-
space which is not zero dimensional.
The comprehensive diagram (Figure 1) well reflects the place of Rcl-spaces in
the hierarchy of separation axioms related to the theme of the present paper
and certain other topological invariants and extends several existing diagrams
in the literature (see [9, 18, 19]).

However, most of the implications of Figure 1 are irreversible (see [9, 18,
19, 20]). We reproduce the diagram (Figure 2) from [20] concerning separation
axioms between functionally regular space and R0-space, which is complemen-
tary to Figure 1.
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4. Basic properties of Rcl-spaces

Definition 4.1. Let X be a topological space. A point x ∈ X is said to
be an rcl-adherent point of a set A ⊂ X if every rcl-open set containing x
intersects A. Let Arcl denote the set of all rcl-adherent points of the set A.
Then A ⊂ A ⊂ Arcl. The set A is rcl-closed if and only if A = Arcl.

Lemma 4.2. The correspondence A → Arcl is a Kuratowski closure operator.
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Theorem 4.3. Let X be a topological space. Consider the following statements:

(i) X is an Rcl-space
(ii) For each x ∈ X and for each open set U containing x, {x}rcl ⊂ U
(iii) There exists a subbase S for X such that x ∈ S ∈ S ⇒ {x}rcl ⊂ S
(iv) x ∈ {y}rcl ⇒ y ∈ {x}rcl
(v) x ∈ {y}rcl ⇒ {x}rcl = {y}rcl

Then (i) ⇔ (ii) ⇔ (iii) ⇒ (iv) ⇔ (v).

Proof. (i) ⇒ (ii). Let x ∈ X and let U be an open set containing x. Since
X is an Rcl-space, there exists an rcl-closed set A such that x ∈ A ⊂ U .
Consequently {x}rcl ⊂ U .
The assertions (ii) ⇒ (i) and (ii) ⇔ (iii) are trivial.
iii) ⇒ (iv). Since every subbasic open set containing y contains {y}rcl, every
basic open set containing y contains {y}rcl and hence it contains x. So y ∈
{x}rcl.
(iv) ⇒ (v). Since x ∈ {y}rcl, y ∈ {x}rcl. So x ∈ {y}rcl and y ∈ {x}rcl implies
{x}rcl ⊂ {y}rcl and {y}rcl ⊂ {x}rcl, and hence {x}rcl = {y}rcl.
The implication (v) ⇒ (iv) is obvious. �

Theorem 4.4. For a topological space X the following statements are equiva-
lent:

(i) {x}rcl 6= {y}rcl implies that x and y are contained in disjoint open sets
(ii) x /∈ {y}rcl implies that x and y are contained in disjoint open sets
(iii) A is compact set and {x}rcl ∩A = ∅ implies x and A are contained in

disjoint open sets
(iv) If A and B are compact sets, and {a}rcl∩B = ∅ for every a ∈ A, then

A and B are contained in disjoint open sets.

Proof. (i) ⇒ (ii). Suppose that x /∈ {y}rcl. Then {x}rcl 6= {y}rcl and so by (i)
x and y are contained in disjoint open sets.
(ii) ⇒ (iii). Let A be a compact set and suppose that {x}rcl ∩ A = ∅. So
for each a ∈ A, a /∈ {x}rcl by (ii) there exist disjoint open sets Ua and Va

containing a and x, respectively. Thus the collection ν = {Ua : a ∈ A} is
an open cover of the compact set A and so there exists a finite subcollection
{Ua1

, ..., Uan
} of ν which covers A. Let U = ∪n

i=1Uai
and V = ∩n

i=1Vai
. Then

U and V are disjoint open sets containing A and x, respectively.
(iii) ⇒ (iv). Suppose that A and B are compact and {a}rcl ∩ B = ∅ for
every a ∈ A. Then by (iii) for each a ∈ A there exist disjoint open sets Ua

and Va containing a and B, respectively. The collection ν = {Ua : a ∈ A} is
an open cover of the compact set A and so there exists a finite subcollection
{Ua1

, ..., Uan
} of ν which covers A. Let U = ∪n

i=1Uai
and V = ∩n

i=1Vai
. Then

U and V are disjoint open sets containing A and B, respectively.
(iv) ⇒ (i). Suppose {x}rcl 6= {y}rcl. Then either x /∈ {y}rcl or y /∈ {x}rcl. For
definiteness assume that y /∈ {x}rcl. Then {x}rcl ∩ {y}rcl = ∅ and so by (iv)
there exist disjoint open sets U and V containing x and y, respectively.

�
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Theorem 4.5. The disjoint topological sum of any family of Rcl-spaces is an
Rcl-space.

Theorem 4.6. The property of being an Rcl-space is closed under initial
sources, i.e., the property of being an Rcl-space is an initial property.

Proof. Let {fα : X → Yα : α ∈ Λ} be a family of functions, where each Yα

is an Rcl-space and let X be equipped with initial topology. Let U be any
open set in X and let x ∈ U . Then there exist α1, ..., αn ∈ Λ and open sets
Vi ∈ Yαi

(i = 1, ..., n) such that x ∈ f−1
α1

(V1) ∩ ... ∩ f−1
αn

(Vn) ⊂ U . Since each
Yα is an Rcl-space, there exists a cl-closed set Aαi

in Yαi
(i = 1, ..., n) such that

fαi
(x) ∈ Aαi

⊂ Vi. Since each fα is continuous, it follows that each f−1
αi

(Aαi
)

is a cl-closed set in X . Let A = ∩n
i=1f

−1
αi

(Aαi
). Since any intersection of cl-

closed sets is a cl-closed, A is a cl-closed set in X and x ∈ A ⊂ U so X is an
Rcl-space. �

As an immediate consequence of Theorem 4.6 we have the following.

Theorem 4.7. The property of being an Rcl-space is hereditary, productive,
sup-invariant, preimage invariant and projective4.

Theorem 4.8. The category of Rcl-spaces and continuous maps is a full iso-
morphism closed monoreflective as well as epireflective subcategory of TOP5.

The following result gives a factorization of ultra Hausdorff property with
Rcl-space as an essential ingredient.

Theorem 4.9. Every ultra Hausdorff space is an Rcl-space. Conversely, every
T0, Rcl-space is an ultra Hausdorff space.

Proof. The first assertion is immediate, because in this case every singleton
is cl-closed and so every open set is the union of cl-closed sets. Conversely,
suppose that X is a T0, Rcl-space and let x, y ∈ X , x 6= y. By T0-property
of X there exists an open set U containing one of the points x and y but not
both. To be precise, assume that x ∈ U . Since X is an Rcl-space, there exists
a cl-closed set A such that x ∈ A ⊂ U . Let A = ∩{Cα : α ∈ Λ}, where each
Cα is a clopen set. Then there exists an α0 ∈ Λ such that y /∈ Cα0

. Hence Cα0

and X \Cα0
are disjoint clopen sets containing x and y, respectively and so X

is an ultra Hausdorff space. �

5. Rcl-supercontinuous functions and Rcl-spaces

Definition 5.1 ([37]). A function f : X → Y from a topological space X into
a topological space Y is said to be Rcl-supercontinuous if for each x ∈ X and
for each open set V containing f(x), there exists an rcl open set U containing x
such that f(U) ⊂ V .

4A topological property P is said to be projective if whenever a product space has property
P every co-ordinate space possesses property P.

5For the definition of categorical terms we refer the reader to Herrlich and Strecker [11].
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It is immediate from the definition that every continuous function defined
on an Rcl-space is Rcl-supercontinuous.
Next we quote the following result from [37].

Theorem 5.2 ([37, Theorem 4.11]). Let f : X →
∏

α∈ΛXα be defined by
f(x) = (fα(x))α∈Λ, where fα : X → Xα is a function for each α ∈ Λ. Let∏

α∈ΛXα be endowed with the product topology. Then f is Rcl-supercontinuous
if and only if each fα is Rcl-supercontinuous.

Now we give an alternative short proof of the following result from [37].

Theorem 5.3 ([37, Theorem 4.13]). Let f : X → Y be a function and g :
X → X × Y be the graph function defined by g(x) = (x, f(x)) for each x ∈ X.
Then g is Rcl-supercontinuous if and only if f is Rcl-supercontinuous and X is
an Rcl-space.

Proof. Observe that g = 1X×f , where 1X denotes the identity function defined
on X . Now by Theorem 5.2, g is Rcl-supercontinuous if and only if 1X and f
both are Rcl-supercontinuous. Again 1X is Rcl-supercontinuous implies that
each open set in X is rcl-open and so X is an Rcl-space. �

Theorem 5.4. Let f : X → Y be an Rcl-supercontinuous open bijection. If
either of the space X and Y is a T0-space, then X and Y are homeomorphic
ultra Hausdorff spaces.

Proof. By [37, Theorem 5.1] X and Y are homeomorphic Rcl-spaces. The last
part of the theorem is immediate in view of the fact that a T0, Rcl-space is
ultra Hausdorff (Theorem 4.9). �

6. Function spaces

It is a well known fact that the function space C(X,Y ) of all continuous
functions from a topological space X into a uniform space Y is not necessarily
closed in Y X in the topology of pointwise convergence. However, it is closed
in Y X in the topology of uniform convergence. It is of fundamental impor-
tance in topology, analysis and several other branches of mathematics and its
applications to know whether a given function space is closed / compact /
complete in Y X or C(X,Y ) in the topology of pointwise convergence / uni-
form convergence. Results of this nature and Ascoli type theorems abound in
the literature (see [1, 12]). Sierpinski [29] showed that the set of all connected
(Darboux) functions from a topological space X into a uniform space Y is not
necessarily closed in Y X in the topology of uniform convergence. In contrast,
Naimpally [25] showed that the set of all connectivity functions from a space X
into a uniform space Y is closed in Y X in the topology of uniform convergence.
Moreover, in [26] Naimpally introduced the notion of graph topology Γ for a
function space and proved that the set of all almost continuous functions in
the sense of Stalling [34] is not only closed in Y X in the graph topology but
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it represents the closure of C(X,Y ) in the graph topology. In the same vein,
Hoyle [10] showed that the set SW(X, Y) of all somewhat continuous func-
tions from a space X into a uniform space Y is closed in Y X in the topology
of uniform convergence. Furthermore, Kohli and Aggarwal in [14] proved that
the function space SC(X,Y ) of quasicontinuous ( ≡ semicontinuous) functions,
Cα(X,Y ) of α-continuous functions, and L(X, Y) of cl-supercontinuous func-
tions are closed in Y X in the topology of uniform convergence. In this section
we strengthen the results of [14] and show that the set Rcl(X,Y ) ⊃ L(X,Y )
of all Rcl-supercontinuous functions is closed in Y X in the topology of uniform
convergence.

Definition 6.1. A subset A of a topological space X is said to be

(i) semi open [22] (≡ quasi open [13]) if there exists an open set U in
X such that U ⊂ A ⊂ U

(ii) α-open [27] if A ⊂ (A0)
0

(iii) cl-open [32] if for each x ∈ A there exists a clopen set H such that
x ∈ H ⊂ A.

Definition 6.2. A function f : X → Y from a topological space X into a
topological space Y is said to be a

(i) connected (Darboux) function if f(A) is connected for every con-
nected set A ⊂ X

(ii) connectivity function if the graph of every connected subset of X is
a connected subset of X × Y

(iii) semicontinuous [22] (quasicontinuous [13]) if f−1(V ) is semi open
in X for every open set V in Y

(iv) α-continuous [24] if f−1(V ) is α-open in X for every open set V in Y

(v) somewhat continuous [8] if for each open set V in Y such that
f−1(V ) 6= ∅, then there exists a nonempty open set U in X such that
U ⊂ f−1(V ), i.e. (f−1(V ))0 6= ∅.

Remark 6.3. Somewhat continuous functions have also been referred to as fee-
bly continuous (see [2, 6]) in the literature. However, Frolik [6] requires func-
tions to be onto.
We now recall the notion of the topology of uniform convergence. Let Y X =
{f : X → Y is a function} be the set of all functions from a topological space
X into a uniform space (Y, ν), where ν is a uniformity on Y . Let F ⊂ Y X .
A basis for the uniformity of uniform convergence u for F is the collection
{W (V ) : V ∈ ν}, where W (V ) = {(f, g) ∈ F × F : (f(x), g(x)) ∈ V for all
x∈ X}. The uniform topology associated with u is called the topology of uni-
form convergence. For details we refer the reader to [12].

Definition 6.4 ([12]). A uniform space (Y, ν) is said to be complete if and
only if every Cauchy net in Y converges to a point in Y .
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Theorem 6.5 ([12, p. 194]). A product of uniform spaces is complete if and
only if each co-ordinate space is complete.

Theorem 6.6. Let X be a topological space and let (Y, ν) be a uniform space.
Then the set Rcl(X,Y ) of all Rcl-supercontinuous functions from X into Y
is closed in Y X in the topology of uniform convergence. Further, if Y is a
complete uniform space, then so is the function space Rcl(X,Y ) in the topology
of uniform convergence.

Proof. Let f ∈ Y X be the limit point ofRcl(X,Y ) which is notRcl-supercontinuous
at x ∈ X . Then there exists V ∈ ν such that f−1(V [f(x)]) does not con-
tain any rcl-open set containing x. Choose a symmetric member W of ν
such that WoWoW ⊂ V . Since f is a limit point of Rcl(X,Y ), there exists
g ∈ Rcl(X,Y ) such that g(y) ∈ W [f(y)] for all y ∈ X . Then g ⊂ Wof
and g−1 ⊂ f−1oW−1 = f−1oW and hence g−1oWog ⊂ f−1oWoWoWof ⊂
f−1oV of . Therefore g−1[W (g(x))] ⊂ f−1(V [f(x)]). Since f−1(V [f(x)]) does
not contain any rcl-open set containing x, neither does g−1[W (g(x))] which
contradicts Rcl-supercontinuity of g. Therefore f ∈ Rcl(X,Y ). The last asser-
tion is immediate in view of Theorem 6.5 and the fact that a closed subspace
of complete uniform space is complete. �

Remark 6.7. In view of the above discussion we extend the following inclusions
diagram from [14].
L(X,Y ) ⊂ Rcl(X,Y ) ⊂ C(X,Y ) ⊂ Cα(X,Y ) ⊂ SC(X,Y ) ⊂ SW (X,Y ) ⊂
Y X .
Since in the topology of uniform convergence each of the above function space
is a closed subspace of its succeeding one, the completeness of any one of them
implies that of its predecessor. In particular, if Y is complete, then each of the
above function space is complete.
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Student 41 (1973), 311–321.
[3] C. E. Aull, Functionally regular spaces, Indag. Math. 38 (1976), 281–288.

[4] Á. Császár, General Topology, Adam Higler Ltd., Bristol, 1978.
[5] A. S. Davis, Indexed system of neighbourhoods for general topological spaces, Amer.

Math. Monthly 68 (1961), 886–893.
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