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ABSTRACT. In research works where fuzzy sets are used, mostly
certain usual functions are taken as morphisms. On the other
hand, the aim of this paper is to fuzzify the concept of a function
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2000 AMS Classification: 04A72, 18A05, 54A40

Keywords:  L-relation, L-fuzzy function, Fuzzy category, Fuzzy topology,
Fuzzy group

1. INTRODUCTION

In research works where fuzzy sets are involved, in particular, in the theory
of fuzzy topological spaces, fuzzy algebra, fuzzy measure theory, etc., mostly
certain usual functions are taken as morphisms: they can be certain mappings
between the corresponding sets, or between the fuzzy powersets of these sets,
etc. On the other hand, there are only few papers where attempts to fuzzify
the concept of a function itself are undertaken (see e.g. [11, 12], etc). The aim
of our work is also to present a possible approach to this problem. Namely,
a certain class of L-relations (i.e. mappings f : X x Y — L) is distinguished
which seem reasonable to be viewed as (L-)fuzzy functions from a set X to a set
Y. We define composition of fuzzy functions; study images and preimages of
L-sets under fuzzy functions; introduce properties of injectivity and surjectivity
for them; describe products and coproducts in the corresponding category, etc.
In the last part of the paper we define some categories related to topology and
algebra where fuzzy functions play the role of morphisms.
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In conclusion, we would like to mention the following two peculiarities of our
approach.

First, the appropriate context for our work is formed not by usual sets, or
by their L-subsets (i.e. mappings f : X — L), but rather by L-valued sets (i.e.
sets, endowed with an L-valued equality £ : X x X — L, see e.g. [6, 7]) and
their L-subsets. And second, in the result we obtain not a usual category, but
the so called a fuzzy category - a concept introduced and studied in [14, 15].

2. PREREQUISITES

Let L = (L, <,A,V,x*) be an infinitely distributive GL-monoid (cf. e.g. [6],
[7]), i.e. a commutative integral divisible cl-monoid (cf. [1]). It is well known
that every G L-monoid is residuated, i.e. there exists a further binary operation
- implication “+—" such that

axf<y<—a<fr—v Va,B,7€L.

We set a®> = « * « and further by induction: o™ = o' x . Let T and L
denote respectively the top and the bottom elements of L.

Following U.Héhle (cf e.g. [7]) by an L-valued set we call a pair (X, F') where
X is a set and E is an L-valued equality, i.e. a mapping F : X x X — L such
that

(leq) E(z,y) < E(x,x) A E(y,y) Vi,y € X;
(2eq) E(z,y) = E(y,x) V,y € X;
(3eq) E(z,y) * (E(y,y) — E(y,2)) < B(z,2) Va,y,2 € X.

An L-valued set (X, E) is called separated if

(4eq) E(z,z)V E(y,y) < E(z,y) <=z =y Vr,yeX.
An L-valued equality E is called global if
(5eq) E(x,z) =T VzeX.

Further, recall that an L-set, or more precisely, an L-subset of a set X
is just a mapping A : X — L. In case (X,F) is an L-valued set, its L-
subset A is called strict, if A(x) < Ex(z,z)Vz € X; A is called extensional if
sup, A(z) * (E(z,z) — E(z,2")) < A(a'),Vz' € X.

By L — SET(L) we denote the category whose objects are triples (X, £, A)
where (X, E) is an L-valued set and A is its strict extensional L-subset, and
morphisms from (X, Ex,A) to (Y, Ey,B) are mappings f : X — Y which
preserve equalities (i.e. Ex(z1,z2) < Ey(fz1, fx2)) and "respect L-subsets”,
i.e. A< Bof. Let L— SET'(L) stand for the full subcategory of the category
L — SET(L) determined by global separated L-valued sets.

To recall the concept of an L—fuzzy category [14, 15], consider an ordinary
(classical) category C and let w : Ob(C) — L and u : Mor(C) — L be L-fuzzy
subclasses of its objects and morphisms respectively. Now, an L-fuzzy category
can be defined as a triple (C,w, ) satisfying the following axioms ([15], cf. also
[14] in case * = A):

19 u(f) <w(X)Aw(Y) VX,Y € Ob(C) and Vf € Mor(X,Y);
20 u(go f) > p(f) * u(g) whenever the composition g o f is defined;
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3% plex) = w(X) where ex : X — X is the identity morphism.

Our aim is, starting from the category L—SET(L), to define a fuzzy category
L—FSET(L) having the same class of objects as L—SET(L) but an essentially
wider class of "potential” morphisms.

3. Fuzzy CATEGORY L — FSET(L).

3.1. Category L — FSET(L). We start with defining a usual (i.e. crisp) cat-
egory L — FSET(L). Namely, let L — FSET(L) denote the category having
the same objects as L — SET (L) and whose morphisms, called (potential) fuzzy
functions, from (X, Ex, A) to (Y, Ey, B) are L-mappings F' : X x Y — L such
that
(0ff) F(z,y) < Ex(z,z) A By (y,y) Vy€Y,Vze X;
(1ff) sup, A(z) * (Ex(z,2) — F(z,y)) < (y) VyeY;
(2ff) F(z,y) + (Ey(y, y) — By (y,y)) < y Vo € X,Vy,y' €Y;
(4) Fla,y) + (Ex(%:v) — F(z,y)) < Ey(y,y’) Vo € X, Vy,y' €Y;
In particular, when A = Tx and B = Ty we write F : (X, Ex) — (Y, Ey)
instead of F': (X, EXT)() — (Y, EyTy).
Notice that conditions (0ff) - (3ff) say that F' is a certain L-relation, while axiom
(4ff) specifies that the L-relation F' is a function.

Remark 3.1. Since F(z,y) < Ex(z,z), and a < b= a =bx* (b —> a) (by
divisibility of L), we have
F("E7 y) * (EX(xu ‘T) — Ex(.T, .’E,))
Ex(z,z) * (Ex(z,2) — F(x,v)) * (BEx(z,2) — Ex(z,2'))
= EX("E7:U’) * (Bx (z,2) — F(z,y)).
Therefore axiom (3ff) can be given in the following equivalent form:
(3'ff) F(z,y) * (Ex(z,2) — Ex(z,2")) < F(2',y).

Remark 3.2. Applying (4ff) it is easy to establish that

F(z,p1) * F(z,y2) < F(z,51)* (Ex(z,z) — F(z,y2))
Ey (y1,92)
By (y1,91) — By (y1,92)-
Remark 3.3. Let F : (X, Ex) — (Y, Ey) be a fuzzy function, X' C X Y’ C Y,
and let the L-equalities Exs and Ey+ on X’ and Y’ be defined as the restrictions
of the equalities Ex and Ey respectively. Then defining a mapping F’ : X' x
Y' — L by the equality F'(z,y) = F(z,y) Vz € X',Vy € Y’ a fuzzy function
F': (X',Ex') — (Y', Ey’) is obtained. We refer to it as the restriction of F to
the subspaces (X', Ex/) and (Y', Ey).

Given two fuzzy functions F' : (X, Ex,A) — (Y,Ey,B)and G : (Y, Ey, B) —
(Z,Ez,C) we define their composition Go F : (X,Ex,A) — (Z,E;,C) by the

<
<
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formula
(GoF)(w,2) = \/ (Fle,y)  (By(,9) — G(y,2))).
yey

Since, by divisibility of L, F(z,y) = Ey(y,y) * (Ey(y,y) — F(z,y)) and
G(y,2) = Ev(y,y) * (Ev(y,y) — G(y,%)), the composition can be defined
also by the formula

(GoF)w,2) = \/ ((By(n.9) — Flo,9) = Gly,2)).
yey
Proposition 3.4. Go F: (X,Ex,A) — (Z,Ez,C) is indeed a fuzzy function.
Proof. The proof of the validity of (0ff) is straightforward.

(1ff): Taking into account divisibility of L, strictness of A and axiom (1ff)
for F we get:

Sup[A(:v) * (EX(.’E, z) — (G oF)(x,z))]
sup,, (E)((.’L‘ x) — A(:r)) (GoF)(x,z)
V (EX(%‘ z) — A(z)) * F(z,y) * (By (y,y) — G(y,2))

ygy (EY(y7 ) G(’y,Z))
C(z).

(2ff): By axiom (2ff) for G we have
Ez(z,2) — Ez(2,2) < G(y,2) — G(y,2") VyeY,Vz 7 € Z
Then for fixed x € X, y € Y and z,2' € Z we have
F(z,y) * (By (y,y) = G(y,2)) * (Bz(2,2) — Ez(2,7'))
< F(z,y) * (By(y,y) — G(y,2)) * (Gly, 2) — Gy, "))
< F(z,y) * (By(y,y) — G(y, 7).
Now taking suprema by y € Y on the both sides of the inequality we get:
(GoF)(z,2) x (Ez(z,2) — Ez(z,2')) < (Go F)(x,2").
(3ff) (We prove this axiom in the form (3'ff)): Applying (3'ff) for F' we have
(Go F)(z,2) x (Ex(z,z) — Ex(z,2"))
V, F(z,9) * (Ey(y,y) — G(y,2)) * (Ex(z,2) — Ex(z,2'))
V, F(z',y) * (By(y,y) — Gy, 2))
(Go F)(d',2)
(4ff): We have to show that for all z € X, 2,2' € Z
(Go F)(z,2) x (Ex(z,z) — (G o F)(z,2')) < Ez(z,7').
To establish this inequality we have to show that for any y,vy’ € Y it holds:
[F(z,y) * (By (y,y) — Gy, 2))]*
[Bx(,5) — (F(@y)  (Br(y,y) — G/, 2) )]
< Ez(z,7).

*

IAINA

[Nl
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By divisibility of L, axiom (4ff) for F' and G and axiom (3ff) for G, we have:
[F(z,y) * (By (y,y) — G(y,2))]*
[Bx(z,2) — (Flo,y) * (By(y,y) — Gy, 2) )]
= F(z,y) * (E(y,y) — G(y,2))*
(E(a;,a;) — Bz, x)*
(B(z,2) — F(a,y) (B, y') — Gy, 2))
[F( ) (EY(y? ) = G(y?z))]*

( z) — F(z,y)) * (B(y,y) — G(¢/, 7))
) * (Ey (y,y) — Gy

( Fi St )+ By () — Gl )
Ey(y y ) ? (E(y7y) — G(y,Z)Iz «(E(/,y) — G(y,7"))

By a direct veriﬁcation it is easy to show that the operation of composition is as-
sociative: given fuzzy functions F': (X, Ex,A) — (Y, Ey,B), G: (Y, Ey,B) —
(Z,Ez,C),and H : (Z,Ez,C) = (T, Er,D) it holds (HoG)oF = Ho(GoF) :
(X,Ex,A) = (T, Er, D). Further, the identity morphism is defined by the cor-
responding L-valued equality: Ex : (X, Ex,A) — (X, Ex,A). It is easy to
verify that it satisfies the conditions (0ff) - (4ff) above and that F o Ex = Ex
and By o F' = By for each fuzzy function F': (X, Ex,A) — (Y, Ey, B). Thus
L — FSET(L) is indeed a category. O

IAIAIA

Remark 3.5. In case when the equalities Ex and Ey on X and Y respectively,
are global, the condition (0ff) becomes redundant and the conditions (1ff) - (41f)
can be reformulated in the following simpler way:

(LE) sup, A(z) = F(z,y) < B(y) VyeY;

(26F) F(z,y) * By (y,y') < F(z,y') Vo€ X,Vy,y' €Y;

(3ff) Ex(z,2") x F(z,y) < F(z',y) Vz,2" € X,Vy € Y;

(4f) F(z,y) « F(z,y') < By(y,y) Vo€ X,Vy,y' €Y.

3.2. Fuzzy category L—FSET(L). Given a fuzzy function F' : (X, Ex, A) —
(Y, Ey, B) let
w(F) = infsup F(z,y).
xZ
y

Thus we define an L-subclass p of the class of all morphisms of L — FSET (L)
In case pu(F) > « we refer to F' as a fuzzy a-function. If F: (X,Ex,A) —
(Y,Ey,B)and G : (Y, Ey,B) = (Z, Ez,C) are fuzzy functions, then u(Go#') >
p(G) * p(F). Indeed, let € X and y € Y be fixed. Then

sup F(z,y) * (By (y,y) — G(y,2)) > F(z,y) *sup Gy, z) > F(z,y) * n(G),
and therefore for a fixed x € X
supsup F(z,y) * (Ey (y,y) — G(y,2)) = sup F(z,y) * n(G) = u(F) * u(G).
y oz y

Since z € X is arbitrary, we get (G o F') > u(G) * u(F).
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Further, given an L-valued set (X, E) let
w(X, E) = pu(E) = inf E(z, ).
x
Thus a fuzzy category L — FSET(L) = (L — FSET(L),w, j1) is obtained.

Remark 3.6. If F' : (X', Ey) — (Y, Ey) is the restriction of F : (X,Ex) —
(Y, Ey) (see Remark 3.3 above) and u(F) > «, then u(F') > a. However,
generally the restriction F' : (X', Ex/) — (Y, Eys) of F : (X, Ex) — (Y, Ey)
may fail to satisfy the condition p(F') > a.

3.3. Some (fuzzy) subcategories of the fuzzy category L — FSET(L).
For a fixed a let L — Fo,SET (L) consist of all objects of L — FSET(L) and its
fuzzy a-morphisms. In case « is idempotent, L — F,SET (L) is a usual (crisp)
category. In particular, it is a crisp category for o = T.

If Ly, Ly, Ly C L, then by L1 —FSET(L2, L3) we denote the (fuzzy) subcate-
gory of L—FSET(L), whose objects (X, E, A) satisfy the conditions A(X) C L;
and E(X x X) C Lo, and whose morphisms satisfy the condition F(X x
Y) C Ls. By specifying the sets L;, Ly and L3 some known and new (fuzzy)
categories related to L-sets can be characterized as (fuzzy) subcategories of

- FSET(LQ, L3)—type or of L1 - fSET’(LQ, Lg)—type.

4. ELEMENTARY PROPERTIES OF FUZZY FUNCTIONS. SPECIAL TYPES OF
FUZZY FUNCTIONS.

4.1. Images and preimages of L-sets under fuzzy functions. Assume
that the GL-monoid (L, A, V,*) is equipped with an additional operation ®
which is distributive over arbitrary joins and meets and is dominated by x, i.e.
(a1 ® B1) * (e ® Ba) < (a1 % B1) © (ag * B2). In particular, A can be taken as
®. Another option: in case when (L, A,V,*) is an MV -algebra, the original
conjunction * can be taken as ®. Given a fuzzy function F' : (X, Ex) — (Y, Ey)
and L-subsets A : X — L and B :' Y — L of X and Y respectively, we
define the fuzzy set F7(A) : Y — L (the image of A under F') by the equality
F7(A)(y) =V, F(z,y)©A(z) and the fuzzy set F*(B) : X — L (the preimage
of B under F) by the equality F'"(B)(z) =V, F(z,y) © B(y).

Note that if A € LY is extensional, then F~(A) € LY is extensional (by
(2ff)) and if B € LY is extensional, then F*(B) € L¥ is extensional (by
(3'15)).

Proposition 4.1 (Basic properties of images and preimages of L-sets under
fuzzy functions).
(1) F?(Viez(A) = Vier F7(Ai) V{4i:i €T} C LY,
(2) F%(A1 NA2) < F7(A)ANF7(A2) VA, Ay € LK
(3) F(Niez(Bi)) < Niez F©(Bi) W{Bi:i€I}C LY.
9) In case L is completely distributive

(3
(NF=(B:) < F-(\B)) < NF=(B) ¥{Bi:iet}c LY
i€l i€z icT
i particular,
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(3%) (Niez F(B))? < FT(Niez(Bi)) < Nier FT(Bi) W{Bi :i € I} C
LX, in case ® = A and
(822) Aoz FC(B:) = F- (N (B) W{Bii €T} C LY, in case © = + =
AV
() F< (Vg (B) = Vier F=(B) W{B;:i €T} C L;
(5%) In case L is completely distributive and ® = *, F* (F<(B)) < B.

Proof. (1):

(Vi F7(A)) () = V,; V. (F(z,y) © Ai(z))
= V.(F(z,y) © (V,; 4i)(z))
= F7(Vidi)(y).

The validity of (2) follows from the monotonicity of F.
To prove (3) notice that

(A F(Bi)) («)

IV IV
<

F(N\; Bi)().

Assume now that L is completely distributive. Recall that complete distribu-
tivity of a lattice L means that the way-below relation < in L is approximative
(ie. «a =V{B €L :p <K a} for every a € L) and every element « is a
supremum of coprimes way-below « (see e.g. [3]). Let

(N\FCB)() = A\ Flay) © Bily) = a.
i Ty

Then

VB < a,Vi € Z,3y; € Y such that F(x,y;) ® Bi(y;) > 5.
In particular, this means that F(x,y;) > [ for every i € Z. We fix some ig € Z
and let y;, := yo. Further, notice that by Remark 3.2

B2 < F(z,yi) * F(x,90) < Eyi,vi) — E(Yi,90),
and hence for every 1 € Z

[F(z,y:) © Bi(ys)] * B* < (F(z,u:) * (By (yi, %) — By (i,%0)))®
(Bi(y:) = (Ey (yi, yi) — By (¥i,90)))
S F(x7y0) O] Bl(xay())
Therefore
B A EF(%‘,%) ® Bi(y;)] * 8*

N (F(z,90) © Bi(yo))
F(z,y0) © A\; Bi(yo)
F(N\; Bi)(z)
and, since this holds for any # < «, by complete distributivity we obtain
F=(A\; Bi)(z) > o and hence

(N\F=(B:) < F-(\(B)).

1€T 1€

VAN IRVANRVAN
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In case ® = A in the above proof it is sufficient to multiply by 8% instead of
B*, and therefore the resulting inequality is

3
(N\FE(B) <FO(N\B).
1€l €L
Finally, in case ® = * = A by idempotency we get the equality
A FE(B) = F(\(By).
i€ ieT

The proof of (4) is similar to the proof of (1) and is therefore omitted.

To prove (5) assume that F*< (F(B))(yo) > «, for some yp € Y, € L, then
for each § < « there exist zg,y; € Y such that F(xg,yo)*F (zo,y1)*B(y1) > B
Therefore, by extensionality of B:

B(yo) (E(y1,91) — E(y1,90)) * B(y1)
F(z0,y0) * F(zo,y1) * B(y1)
B,

and hence, since L is completely distributive, it follows that
B(yo) > F* (F*(B))(yo)
and thus B > F<(F<(B)). O

(AVARAVARLY,

4.2. Injectivity, surjectivity and bijectivity of fuzzy functions. A fuzzy
function F': (X, Ex,A) — (Y, Ey, B) is called injective, if
(inj) F(z,y) * (Ey(y,y) — F(2',y)) < Ex(z,2') Vz,2' € X,VyeY.
Notice that injective fuzzy functions satisfy the following condition
(inj#) F(z,y) = F(z',y) < (Ex(z,z) V Ex(2',2")) — Ex(z,2") Vz,2' €
X,VyeY.
Indeed,

F(x,y) « F(a',y) F(z,y) * (E(y,y) — F(z',y))
E(z,z")
(E(z,z) — E(x,2)).
Notice, that in case when Ey is global, then (inj) just means that F(z,y) *
F(a',y) < Ex(x,a).

A fuzzy function F : (X, Ex,A) — (Y, Ey,B) is called a-surjective if it
satisfies the following two conditions:

VANVANRIVAN

(surl®) infy sup, F'(z,y) > «
(sur2) F7(A) > BOa.
In case F' is injective and a-surjective, it is called a-bijective.

Remark 4.2. Notice that in case A = T x the second condition in the definition
of a-surjectivity (for any B € LY, in particular, for B = Ty) follows from the
first one. Moreover, in case A = Tx, B = Ty and if T acts as a unit with
respect to ®, the both conditions become equivalent.
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Remark 4.3. Let (X, Ex), (Y, Ey) be L-valued sets and (X', Ex+), (Y', Ey)
be their subspaces. Obviously, the restriction F' : (X', Ex/) — (Y', Eys) of an
injection F' : (X, Ex) — (Y, Ey) is an injection. The restriction F' : (X, Ex) —
(Y', Ey+) of an a-surjection F : (X,Ex) — (Y, Ey) is an a-surjection. On
the other hand, generally the restriction F' : (X', Ex/) — (Y, Eys) of an -
surjection F': (X, Ex) — (Y, Ey) may fail to be an a-surjection.

A fuzzy function F : (X, Ex, A) — (Y, Ey, B) defines a fuzzy relation F~!:
(Y,Ey,B) — (X, Ex, A) by setting F~!(y,z) = F(z,y) Vzxe€X,VyecY.

Proposition 4.4 (Basic properties of injections, a-surjections and a-biject-
ions).
(1) F1is a fuzzy function iff F is injective (actually F~' satisfies (4fF) iff
F satisfies (inj))
(2) F is a-bijective iff F~ ' is a-bijective.
(3) if L is completely distributive and F satisfies (inj#), then

/\F" <F"/\A </\F_> V{A;:i€T}cCL”.

In particular

(30) (A F~ (A < P (A, 43) < AP (A) if © = A and;

(3h) F7(N; Ai) = \; F7(A;) in case © = N\ = x;

(4) If F is T-surjective, then F*(F<(B)) > B VB € LY; and hence,
in particular, F*<(F<(B)) = B in case ® = * and L is completely
distributive.

Proof. The validity of (1) and (2) is obvious.

To show (3) fix y € Y and let (A;F7(4;))(y) > «. Then for each coprime
0 < « and each € Z one can find z; € X such that F(z;,y) © Ai(z;) > 5
and hence, in particular, F'(z;,y) > . We fix some iy and denote z;, := zy,
Ajy; = Ag. By (inj#) it is easy to conclude that Ex (z;,7;) — Ex (w0, 7;) > 8%
Now, by extensionality of all A; we get

B < N[(Flzi,y) © Ai(z;)) = 54

< (F(z0,y) © Ao(20)) A [Aisiy (F(2i,y) * 57) © (Ai(i) * 5)]
< (F(z0,y) © Ag(wo))A

[/\z;ﬁzo ( (xlu ) * ( (xhxl) — E(IZ,.’E())))Q

( ) * (E(xh*rz) — E($Zax0)))]

< (F(z0,y) © Ao(20)) A [Aigio (F(20,9)) © Ai(x)]
= A F(wo,y) © Ai(zo)
= F(xo,y) ©\; Ai(zo)
< F(NA)(y).

Since this holds for any # <« « and L is completely distributive we get

(NE* (AP < (\4) < \F(4)
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To show (4) let B(yo) > «. Then

FE(FC(B) (o) = V. (F(z,9) 6 (F©(B))(z)
= V.V, (F(z,y0) © F(z,y) © B(y))
> \/x(F(x,yo) © F(z,yo) @B(yo)).

Now, by T-surjectivity of F' we complete the proof noticing that
FT(F(B))(y0) 2 TO T ® B(yo) > B(yo)-
O

Proposition 4.5. Let F : X XY — L be a fuzzy function and p(F) > a.
Then for each coprime 8 < « there exists Z C Y such that the restriction
G:=F |xxz: X x Z — L is a B-surjection and u(G) > f.

Proof. Given coprime 8 < a, let Z := {y | 3z € X such that (z,y) > 8}, and
let G:=F : X x Z — L be the restriction of F' to X x Z.

To show that (G) > B assume that, contrary, inf, sup,c, F(z,y) = u(G) 2
B. Then there would exist zp € X such that F(z,y) 2 0 for each y € Z.
On the other hand, from p(F) > « > f, it follows that for each z € X, in
particular, for zy there exists yo € Y such that F(zg,y9) > (. Besides, by
definition of Z it is clear that yy € Z. The obtained contradiction implies that
u(G) > B.

To show that G is [(-surjective, assume that infyczsup, .y G(z,y) 2 B.
It follows from here that there exists yp € Z such that sup,cx G(z,y0) =
sup,c x F'(z,y0) 2 8. However, this contradicts the definition of Z. Thus the
first condition of the definition of (-surjectivity holds. To conclude the proof
it is sufficient to apply Remark 4.2.

U

Problem 4.6. Is it true (at least in the case of a completely distributive lattice
L), that given a fuzzy function F : X XY — L where u(F) > « there exists
Z CY such that the restriction G .= F |xxz: X X Z — L is an a-surjection
and p(G) > a?

5. CONSTRUCTIONS IN THE FUZZY CATEGORY L — FSET(L)

5.1. Products. Let L—FSET (L) be the subcategory of L—FSET(L) having
the same potential objects as L — FSET (L) and only such potential morphisms
F:XxY — L from L — FSET (L) which satisfy the following additional
condition (a certain counterpart of the axiom of strictness and the weaken form
of the axiom of preservation of equalities; see e.g. [6]):

() F(z,y) # 0= E(z,z) = E(y,y).

Let Y = {(Y;, £, B;) : i € Z} be a family of L-valued sets, Yo = {(yi)icz €
1LY | Ei(yi,yi) = Ej(yj,yj) Vi,j € I}, let By be the restriction of B = HiEI B;
to Yy, and let E(y,y') = A; Ei(yi,v)Vy = (vi),y' = (y;) € Y. Further, let
m; Yo — Y; be the restriction of the projection p; : [[,Y; — Y; to Y.
The pair (Y, E) thus defined is the product of the family ) in the category
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L — FSET(L). Indeed let F; : (X,Ex,A) — (Yi, Ey,,B;), i € Z, be a fam-
ily of fuzzy functions in L — FSETV(L) and let F := A;F; : (X, Ex,A) —
(Yo, Ey, B), be defined by F(z,y) = A, Fi(z,y;). Then F is a fuzzy function.
Indeed, the validity of (0ff), (1ff), (3ff) and (4ff) is easy to verify directly apply-
ing the corresponding axiom for all Fj, while the validity of (2ff) is guaranteed
by the condition (<)) for all Fj,7 € Z. Besides, it is clear that F; = m; o F' and
that pu(F) = A, p(£3). Thus, (Yo, By, B) is indeed the product of the family
(Yi, By, B;) in L — FSET(L). Notice, that the condition <) obviously holds
for the subcategory L — FSET'(L) of L — FSET(L). Moreover, if all (Y;, E;)
are taken from L — FSET'(L), then Yy = [[, V.

5.2. Coproducts. Let X = {(X;, A;, E;) : i € I} be a family of L-valued sets,
let Xg = JX; be the disjoint sum of sets X; and let Ag € LX be defined by
Ap(xz) = Aij(z) whenever z € X;. Further, let ¢; : X; — X be the inclusion
map. We introduce the L-equality on X, by setting E(z,z') = E;(z,z') if
(z,2') € X; x X; for some i € T and E(z,z") = 0 otherwise (cf [6]). Then
(Xo, Ao, E) is the coproduct of X in L — FSET(L) (and hence also in L —
FSET®(L)).

Indeed, let F; : (X5, A;, E;) — (Y, B, Ey), i € Z, be a family of fuzzy functions
in L— FSET(L) and let F := @;F; : ®(X;, A;, E;) = Y, B, Ey) be defined by
F(z,y) = Fi(z;,y) whenever z = z; € X;. Then the direct verification shows
that F' is a fuzzy function, F; = F o g; and u(F) = Aju(F;).

Theorem 5.1 (Factorization of a family of e-morphisms). Let
F; : (X7 E7 A) - (Y;7EZ7BZ)

be a family of fuzzy a-functions in L — FSETY(L). Then for every 8 < «
there exists a fuzzy (B-surjective B-function G : (X, E,A) — (Z,E;,C) and a
family of usual functions w; : (Z,C,Ez) — (Y;, B;, E;) separating points such
that F; = G o for every i € I.

Proof. Indeed, let (Y, Ey) = [[;cz(Y;, Ei) be the product in L — FSETV(L)
and let F = NjerF; : X x [[;c7Y: — L. Further, given 8 < «, let Z C Y and
G : X xZ — L have the same meaning as in Proposition 4.1 and let C' := G(A).
Thus, by Proposition 4.1 we conclude that G : (X, A, Ex) — (Z,C,Ey) is a -
surjective fuzzy function and p(G) > 8. To complete the proof it is sufficient to
notice that the mappings m; : Z — Y; defined as the restrictions of projections
p; . Y — Y, separate points of Z and that F; = 7; o G. [l

6. FUZZY CATEGORIES RELATED TO ALGEBRA AND TOPOLOGY WITH FUZZY
FUNCTIONS AS MORPHISMS.

On the basis of L — FSET(L) some fuzzy categories related to topology and
algebra can be naturally defined. Here are three examples:

Definition 6.1 (Fuzzy category FTOP(L)). Let (X, Ex) be an L-valued set
and let Tx C LX be the (Chang-Goguen) L-topology on X, [2], [4], [5]; see also
9]. A fuzzy function F' : (X,Ex,7x) — (Y,Ey,7y) is called continuous if
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F(V) €1x for all V € 1y. L-topological spaces and continuous fuzzy mappings
between them form the fuzzy category FTOP(L).

Definition 6.2 (Fuzzy category FFTOP(L)). Let (X, Ex) be an L-valued set
and let Tx : LX — L be the L-fuzzy topology on X, [16], [9]. A fuzzy function
F:(X,Ex,Tx) = (Y, Ey,Ty) is called continuous if Tx(F(V)) > Ty (V) for
all V€ LY. L-fuzzy topological spaces and continuous fuzzy mappings between
them form the fuzzy category FFTOP(L).

Definition 6.3 (A fuzzy category L — FGr(L)). Let X be a group and Ex be
an L-valued equality on X such that Ex(x-y,z'-y') > Ex(z,2') * Ex (y,y') for
all x,2',y,y' € X. Further, let Gx : X — L be an (extensional) L-subgroup
of X (see e.g. [10], [13]). A fuzzy function F : (X,Ex,Gx) — (Y, Ey,Gy)
is called a fuzzy homomorphism if F(x -2,y -y') > F(z,y) * F(z',y") for all
z, 7' € X, y,y € Y. L-subgroups of groups endowed with L-valued equalities,
and fuzzy homomorphisms between them form a fuzzy category L — FGr(L).

These and some other fuzzy categories with fuzzy functions in the role of
fuzzy morphisms will be studied elsewhere.
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