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Useful topologies and separable systems

G. HERDEN, A. PALLACK

ABSTRACT. Let X be an arbitrary set. A topology t on X is
said to be useful if every continuous linear preorder on X is rep-
resentable by a continuous real-valued order preserving function.
Continuous linear preorders on X are induced by certain families
of open subsets of X that are called (linear) separable systems on
X. Therefore, in a first step useful topologies on X will be char-
acterized by means of (linear) separable systems on X. Then, in
a second step particular topologies on X are studied that do not
allow the construction of (linear) separable systems on X that
correspond to non-representable continuous linear preorders. In
this way generalizations of the Eilenberg—Debreu theorems which
state that second countable or separable and connected topologies
on X are useful and of the theorem of Estévez and Hervés which
states that a metrizable topology on X is useful, if and only if it
is second countable can be proved.
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1. INTRODUCTION

A topology t on an arbitrary set X is said to be useful, if every continuous
linear (total) preorder X on X has a continuous utility representation, i.e. can
be represented by a continuous real-valued order preserving function (utility
function) (see [15]). Continuity of < means that the order topology ¢~ induced
by = is coarser than ¢. Sufficient conditions for a topology ¢ on X to be useful
are, for instance, given by the classical Eilenberg-Debreu Theorems (EDT) and
(DT) (]9, 10, 11]). Necessary and sufficient conditions for a topology ¢ on X
to be useful have been presented by the theorem of Estévez and Hervés (EHT)
in case that t is a metrizable topology on X ([13], see also [6, 7]) Using the
concept of a useful topology ¢ on X these theorems can be restated as follows:
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(EDT) Every connected and separable topology ¢ on X is useful.
(DT) Every second countable topology ¢ on X is useful.
(EHT) A metrizable topology ¢ on X is useful, if and only if ¢ is second count-
able.

The aim of this paper is the characterization of all useful topologies ¢ on
X. A theorem which solves this problem, in particular, would generalize the
Eilenberg-Debreu Theorems and the Theorem of Estévez and Hervés. Mean-
while Banach-spaces or, more generally, convex spaces are frequently studied
in mathematical utility theory. In the infinite dimensional case these spaces
may fail to be second countable or separable. This means that continuous
representation of linear orderings (preference orderings) in these spaces is not
guaranteed by the classical Eilenberg-Debreu Theorems. Therefore, a charac-
terization of useful topologies is of particular interest in mathematical utility
theory (cf. also Remark 6.8).

2. A FIRST APPROACH

Let throughout this section X be a fixed given set and let ¢ be some topology
on X. For every subset A of X we denote by A its topological closure. The
most fundamental result that is known on useful topologies is DT. DT easily
implies EDT (cf. [14, 16]) and also generalizes the sufficiency part of the The-
orem of Estévez and Hervés. On the other hand, it is well known that second
countability, in general, is not necessary for ¢ to be useful (cf., for instance, the
Niemitzki plane that is extensively discussed in [32]). Hence, in order to at least
approximate second countability we consider linearly ordered subtopologies ¢
of t. t is linearly ordered if it is linearly ordered by set inclusion.

It is easily to be seen that second countability of £ implies second countability
of all its linearly ordered subtopologies t. Indeed, let t! be a linearly ordered
subtopology of the second countable topology t. Then we choose a countable
base B of t and consider the countable subset

Bl = {0et|3IBeB(BCOAVO €t(0'C 0= B¢ 0}
U {O et ‘ dB € B(O = UBQ_*O/EHOI)
u{e, X}

of t in order to immediately verify that B’ is a base of t'. Let us now assume
that all linearly ordered subtopologies ¢/ of ¢ are second countable and let < be
a continuous linear (total) preorder on X. Then we consider the family

L:={L(x)} ey ={{yeX|y<2}},ex

of open decreasing subsets of X. The linearly ordered subtopology t' of t that
is induced by L is second countable which means that there exists a countable
subset L5 of LU {@, X} that is a base of t'. The countability of Lz implies
that the corresponding chain (Lg,C) only has countably many jumps. The
reader may recall that a jump of (Lp,C) is a pair of sets E ; E' € L such
that there exists no set E” € Lp such that £ G E" G E'. By interposing
the rationals into the jumps of (L, C) we, thus, obtain some chain (L%, <)
that extends (Lg,C) and may, without loss of generality, be assumed to be
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order-isomorphic to the chain ([0,1]g, <) of all rationals in the real interval
[0,1]. Let g: (L%, <) — ([0,1]g, <) be some order-isomorphism. Then one

verifies that f: (X, 3) — ([0, 1]r, <) defined for all points z € X by f(z) :=
sup{g(L(y))| L(y) € Lp,y 3 z} is a continuous utility representation of 3.

Clearly, t is not necessarily second countable if all its linearly ordered sub-
topologies t! are second countable. In order to obtain a counterexample one
only has to choose some topology on the natural numbers that is not second
countable. Hence, the above result does not only provide an alternative proof
of DT but also generalizes DT.

In order to also generalize EDT we consider the first infinite ordinal w. Then
we consider the family 7¢ of all linearly ordered subtopologies ¢! of ¢ that are
induced by some linearly (totally) ordered set (O, C) of open subsets of X that
satisfy the following conditions:

(LO1): VO' € (’)_(W C ﬂoEOEO O) or, equivalently, YO' € O VO €
O’ S0 = 0 C0), and
(LO2): T{o €01 Ups0c0 0 G ONUos0co ' NX\ O # @H <w.

Now it follows that in case that ¢ is a separable and connected topology on
X every linearly ordered subtopology ' € T¢ of ¢ must be second countable.
Indeed, let some topology t' € T¢ be arbitrarily chosen. Then the separability
of ¢ implies that no chain (O, C) or (O, D) of open subsets of X which satis-
fies the conditions (LO1) and (LO2) and induces # contains some uncountable
well-ordered subchain, i.e. (O, C) or (O, D) is short which, in particular, means
that t! is first countable (cf. [1]). In addition, the connectedness of ¢ implies
that none of the sets O\U(99O'§O O’ such that @ G UOsOEO 0coGX
is empty. Let, therefore, S be a countable dense subset of X. Then we
choose for every point € S some countable base of t!-neighborhoods of .
The union of the collection of these t!-neighborhoods with the countable set

{O €O Uan,goﬁ SONA UOBO&O O'NX\O # @} is a countable base of

t!. Let us now assume that all linearly ordered subtopologies t' € T¢ are second
countable. Then the same arguments that already have been applied in order to
generalize DT allow us to conclude that every continuous linear (total) preorder
= on X has a continuous utility representation.

On the other hand, it also cannot be expected that second countability of
the linearly ordered subtopologies ¢ € T¢ of t is necessary in order to guarantee
usefulness of ¢. Indeed, let = be some arbitrary continuous linear preorder
on X. Then the linearly ordered set (£,C) := ({L(x)},cx,C) satisfies the
following additional condition that strengthens condition (LO2).

(Lo3): voecL( |J 0So= |J oco).
£30'GO £30'GO
Therefore, it is somewhat surprising that in case that we concentrate on

normal topologies ¢ on X (cf. Definition 3.3) the conditions (LO1) and (LO2)
completed by two straightforward conditions that are necessary in order to also
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include the case that ¢ is not necessarily connected already characterize useful
topologies. This characterization provides a generalization of EDT in the just
described way. In particular, it can be shown that our results are generalizations
of the theorem of Estévez and Hervés. The reader may still notice that the afore-
discussed generalizations of DT and EDT provide a possibility of how to apply
our results on useful topologies that will be proved in the following sections.

3. R-SEPARABLE SYSTEMS

It is well known that continuous linear preorders are closely related to R-
separable systems (see [16]). Therefore, we shall approach the characterization
of useful topologies in a first step with help of R-separable systems.

Suppose that R is an arbitrary binary relation on some fixed given topologi-
cal space (X, t) (briefly we speak of an R-space). Then the reader may recall at
first the following notation: A subset A of X is said to be R-decreasing (or sim-
ply decreasing, if the relation is clear from the context), if a € A and bRa imply
that b € A. An increasing set is defined in an analogous manner. Each subset
F of X gives rise to the smallest decreasing (respectively, increasing) subset
d(F) (respectively, ¢(F")) containing F. If F' = {z} for some point z € X, then
we write d(z) (respectively, i(z)) instead of d({z}) (respectively, of i({z})). For
each subset F' of X there is a smallest closed decreasing subset D(F) (respec-
tively, smallest closed increasing subset I(F')) containing F. If F = {z} for
some point z € X, then we write D(x) (respectively, I(x)) instead of D({z})
(respectively, of I({z}). Notice that for each subset F of X we have F C D(F).
In general, this inequality is strict as is seen from the following simple example.
Let X := {1,2},t := {@,{1},{2},{1,2}} and R := {(,j) € X x X |i < j}.
Then {2} = {2} & D(2) = {1,2} = X. With these preliminaries we are fully
prepared for the following definition.

Definition 3.1. A family € of open R—decreasing subsets of X is said to be an
R-separable system on X, if it satisfies the following conditions:

(RS1) There exist sets Ey, By € € such that E| C Es.
(RS2) For all sets By, By € & such that By C Ey there exists some set B3 € £
such that B4 C B3 C E3 C Es.

Moreover, if R is the equality relation “=” on X, i.e. the discrete order on X,
we say that € is a separable system on X.

Remark 3.2. In mathematical utility theory R-separable systems on X were
constructed for the first time by Peleg [30] in order to prove his utility repre-
sentation theorem. In Peleg's Theorem R is a strict partial order or briefly an
order on X. In 1977 Burgess and Fitzpatrick [4] studied decreasing scales in
X. We recall that a family S := {F},},., of open decreasing subsets of X is
said to be a decreasing scale in X, if the following two conditions are satisfied:

(DS1) D is a dense subset of the real interval [0,1] such that 1 € D and
Fi =X, -

(DS2) For every pair of real numbers r; < ro € D the inclusion F,, C Fp,
holds.



Useful topologies and separable systems 65

One immediately verifies that decreasing scales in X are particular cases of
R-separable systems on X.

The concept of an R-separable system on X is closely related to the concept
of a normally preordered space (cf. [29]) or more generally normal R-space.

Definition 3.3. An R-space (X, R, t) is said to be a normal R-space, if for
any pair A, B of disjoint closed decreasing (respectively, increasing) subsets of
X there exist disjoint open decreasing, (respectively, increasing) subsets U, V

of X such that ACU and BCV.

Notice that, if R coincides with the equality-relation 7 = 7 on X, then
(X, R, t) is a normal space.

The connections between the concept of an R-separable system and of a
normal R-space is described in the following lemma ([16, Lemma 2.1]).

Lemma 3.4. Let (X, R,t) be an arbitrary R-space. Then in order for (X, R,t)
to be a normal R-space it is necessary and sufficient that for every pair Cy, Co
of disjoint closed subsets of X, C1 being decreasing and Co increasing, there
exists an R-separable system € on X such that Cy C E and Cy C X\E for
every set B € €.

Now we turn our attention to linear R-separable systems. Given an arbitrary
R-space (X, R, t), an R-separable system £ on X is said to be linear if, for
every pair of sets E, E' € £ such that E # E' at least one of the inclusions
E C E' or E' C E holds. Linear R-separable systems £ on X easily can be
characterized ([17, Proposition 1.4.1]).

Proposition 3.5. Let £ be a family of open decreasing subsets of X, that is
linearly ordered by set inclusion, and let B be the family of all sets E € £ such
that E G E and for which there exists some set B € € such that E G B. Then
the following assertions are equivalent:

(i) € is a linear R-separable system on X,
(i) VE € B(ﬂE_%Beg B = ﬂE%Beg B),

(i) VE € B((E C ﬂEgBegB) N (ﬂE%BE:‘IB €& — ﬂEgBegB =
ﬂE%BES B))

Every R-separable system £ on X contains some linear R-separable system.
Indeed, let Q denote the rationals. Then this result is an immediate consequence
of the following lemma ([16, Lemma 2.2]).

Lemma 3.6. Let £ be an R-separable system on X. Then there exists a func-

tion f: Q — & such that f(p) C f(p) C f(q) forall p<qeQ.

The reader may recall that a real-valued function f on X is said to be in-
creasing if, for all pairs (z,y) € R, the inequality f(z) < f(y) holds. With help
of this notation we are already able to present the general separation theorem
GST of Nachbin-Urysohn-type, which corresponds to GURT in [16] (see also
[29], [34])-
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Theorem 3.7. Let (X, R, t) be an R-space. Then in order for (X, R, t) to be
a normal R-space it is necessary and sufficient that for any two disjoint closed
subsets C1, Co of X such that Cy is decreasing and Cs increasing, there exists
some continuous increasing real-valued function f on X such that 0 < f <1,

f(z) =0 for all z € Cy and f(x) =1 for all z € Cs.

Now we present the most important result of this section (see [16, Lemma
2.3]).

Theorem 3.8. Let (X, R, t) be an R-space. Then every linear R-separable
system € on X induces a linear preorder 3 on X which satisfies the following
properties:

(L1): RCZ,,

(L2): The order topology t= is coarser than te.

For later use we recall the definition of <. Let £ be a linear R-separable sys-
tem on X and let points z, y € X be arbitrarily chosen. Set £, :={F € €|y € £}
and define = by setting

r3y<=&=0OVVE€ENBeE(EZ BV €EB).

It is easily seen that =< can be divided into the following two less complicated
subrelations:

(i) z < y <= there exists some R-separable systemB C £ on X such that
z € Band y € X\B for all sets B € B,
(ii) z ~y <= —(z < y) and ~(y < z).

It seems that Theorem 3.8 is closely related to the famous Szpilrajn’s Theo-
rem [33] which states that every partially order can be refined to a linear order.
But = is not necessarily a refinement of A, since we did not require that < is
contained in the set of all pairs (z,y) € R such that (y,z) ¢ R. For later use
we abbreviate this set by Rg. Hence, Szpilrajn’s Theorem is not a consequence
of Theorem 3.8. As far as the authors know the continuous analogous of Szpil-
rajn’s Theorem never has been discussed in the literature. In order to be more
precise, the reader may recall that a linear preorder < on X is continuous if and
only if for each pair of points © < y € X there exists some continuous increasing
real-valued function f,, on X such that fy(2) < fzy(y) (the reader may apply
[22, Lemma 1] and GST to verify this result). Obviously, this characterization
of continuous linear preorders can be generalized to arbitrary preorders. There-
fore, a continuous preorder < on X is said to satisfy the Szpilrajn-property, if
there exists a continuous linear preorder <* on X such that 3* is a refinement
of =. The Szpilrajn-property will be discussed in [17, Chapter 6].

4. REAL ORDER-EMBEDDINGS

Let throughout this section X be some fixed given set and R some relation
on X. We recall some definitions. (X, R) is said to be Jaffray-separable if
there exists a countable subset Z of X such that, if z,y € X and (z,y) € Rg,
then there exist points z,2' € Z such that zRzRsz'Ry. (X, R) is said to be
Birkhoff-separable if there exists a countable subset Z of X such that, for every
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pair (z,y) € RsN(X\Z) x (X\Z), there exists some z € Z such that zRgzRgy.
The space (X, R) is called Debreu-separable if there exists a countable subset
Z of X such that for every pair (z,y) € Rg there exists some z € Z such that
zRzRy, and it is called Cantor-separable if there exists a countable subset Z
of X such that, for every pair (z,y) € Rg, there exists some z € Z such that
zRszRgsy.

Now we are fully prepared for presenting the following Representation The-
orem (see, for example, [3, Proposition 1.6.11] and [13, Lemma 3.1]).

Theorem 4.1. Let (X, 3) be a linearly preordered set. Then the following
assertions are equivalent:

(i) There exists an order preserving function f: (X, 3) — (R, <),
(ii) (X, 4) is Jaffray-separable,

iii) (X‘N, NN ~) is Birkhoff-separable,

(iv) (X, ) is Debreu-separable,

(v) (X t3) is separable and (Xj~, Zj~) has only countably many jumps,

(vi) (X, tR) is second countable.

The reader may notice that in contrast to Proposition 1.6.11 in Bridges
and Mehta [3] the assertion concerning Birkhoff-separability has been mod-
ified somewhat. Indeed, the concepts of Birkhoff-separability and Debreu-
separability are not equivalent in the context of preorders but only in the context
of orders. This hint is due to Mehta [24, November 1999, oral communication].

5. THE STRUCTURE OF USEFUL TOPOLOGIES

Let X be a fixed given set and let ¢t be some topology on X. It is the aim
of this section to characterize all useful topologies on X with help of linear
separable systems on X. Because of Proposition 3.5 the characterization of
useful topologies with help of linear separable systems is a quite satisfactory
approximation of the desired results that have been announced in the second
section. In order to also include the non-connected case we need at first the
following notation. A topological space (X, t) is said to satisfy the open-closed
countable chain condition (OCCC), if every family F of non-empty open and
closed subsets F' of X that satisfies the following two conditions is countable:

(OCl): VFe F(FCF' VF' CF),
(0C2): VP e FU{F e FIF'GFYSFSN{F" e FIF G F"}).

Let now £ be a linear separable system on X. We consider the set Z(&)
of all pairs B ; E € & for which there exists some set C € &£ such that
B ; cccC ; E. Then € is said to have a countable refinement if there exists
a countable family O of non—empty open subsets of X such that for every pair
(B,E) € Z(€) there exists some set O € O such that O C EN X\B. & is
said to be second countable, if there exists a countable subset H of £ such that
for every pair of sets (B, E) € Z(£) there exists some set ET € H such that
B C ET C ET C E. In addition, if G(£) is the set of all (open) sets E € & such
that (Jgs BGE B ;Cé E, let Gg denote the family of all linear separable systems &
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on X for which G(€) is a countable set. With help of this notation the following
proposition characterizes all useful topologies ¢ on X.

Proposition 5.1. For a topology t on a set X, the following assertions are
equivalent:
(i) t is useful,
(ii) t satisfies OCCC and every linear separable system £ on X has a
countable refinement,
(iii) ¢ satisfies OCCC and every linear separable system £ on X is second
countable,
(iv) t satisfies OCCC and every linearly ordered subtopology ' of ¢ that is
induced by some linear separable system £ € Gg is second countable.

Proof. (i) = (ii) At first we assume, in contrast, that ¢ does not satisfy OCCC.
Then there exists an uncountable family F of non-empty open and closed sub-
sets F' of X that satisfies the conditions (OC1) and (OC2). Since every set
F € F is open and closed, condition (OC1) implies that the preorder = defined
for every pair of points z,y € X by

r3y<—=vVFeFlyecF = zelF)

is linear and continuous. In addition, the uncountability of F allows us to
conclude with help of condition (OC2) that = has uncountably many jumps.
Indeed, for every set ' € F any pair of points © € F\U{B € F|B G F},
y € N{C € F|F G C}\F defines a jump of 3. Hence, 3 is not representable.
This contradiction implies that ¢ satisfies OCCC. Let now £ be a linear separable
system on X. It remains to show that there exists a countable family O of
open subsets of X such that for every pair (B, E) € Z(£) there exists some set
O € O such that O C ENX\B. As remarked after Theorem 3.8 we may define
a continuous linear preorder = on X induced by £ such that for every pair
(B,E) € Z(£) and every pair of points € C\B,y € E\C the strict inequality
x < y holds. This means that we may choose for every pair (B, F) € Z(£)
points z < y € X such that |z,y[C E N X\B. Because of assertion (i), the
linear preorder 3 is representable. This means, in particular, that (X, 3-)

only has countably many jumps and that < is second countable (cf. Theorem
4.1, assertions (v) and (vi)). The existence of the desired family O of open
subsets of X, thus, follows immediately, which finishes the proof of assertion
(47).

(ii) = (i) Let 3 be a continuous linear preorder on X . Because of the Open
Gap Lemma ([9, 10]) it suffices to prove that 3 is representable. Therefore, we
consider the linear separable system £ := {L(z)},cx == {{y € X |y < z}},cx
on X. Since (X, t) satisties OCCC it follows that (X|., 3|~) only has countably
many jumps. Indeed, let {([z;], [yi])};c; be the family of all jumps of (X |, Z|~
). Then we may choose for every index ¢ € I the open and closed subset
Fi={zeX|zZ3z}={2€X|z<y} of X. Let F be the family of these
subsets. Because (X, 33) is a chain, we may conclude that F satisfies condition
(OC1). In addition, the definition of F implies that F also satisfies condition
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(OC2). Hence, it follows from OCCC that F is countable, and this means that
the family {([z:], [yi]) };c; of all jumps of (X, Z|.) actually is countable. In
order to now finish the proof of the representability of = it remains to verify
that (X, t<) is separable (cf. Theorem 4.1 (v)). £ has a countable refinement.
Hence, there exists a countable family O of non—empty open subsets of X such
that for every pair z < y € X for which |z, y[ is neither empty nor contains a
jump of (X, Z|.), there exists some set O € O such that O C]z,y[. Choosing
in every set O € O some point £ € O and considering, in addition, for every
jump ([z], [y]) of (X|<, Z}~) points z € [z] and y € [y] respectively, we may
conclude that (X, <) must be separable, and assertion (i) follows.

(1) A (ii) = (iii) Let £ be a linear separable system on X. It suffices to show
that £ is second countable. Let, therefore, O be a countable family of non—
empty open subsets of X such that for every pair of sets (B, E) € Z(€) there
exists some set O € O such that O C EN X\B. By eliminating redundant sets
we may assume without loss of generality that for every set O € O there exist
sets B C E € £ such that O C EN X\B. Hence, we may choose for every set
O € O the non—empty linear separable systems W) := {B € £ | O\B # @} and
Wy :={E € £|O\E = @}. It follows that there exist countable sets O; C W,
and Oy C Wy such that Ugco, B = Ugew, £ and Ngeo, B = Negew, E-
Indeed, otherwise the construction described after Theorem 3.8 implies that
both continuous linear preorders =; and 3o on X which are induced by W,
and by W, respectively, are not short and, thus, not representable in contrast
to assertion (i). Since O is countable we may conclude that B := [Jycp O1 U
Uoeco O2 is a countable set. The construction of B implies that for every pair of

sets (B, E) € Z(&) there exists some set E+ € B such that B C ET C E' CE,
as desired.

(iii) = (iv) Trivial.

(iv) = (i) Let 3 be some continuous linear (total) preorder on X. Then
we consider the linear separable system £ := {L(z)},.x on X. In the proof
of the implication (ii) = (i) it already has been shown that OCCC implies
that (X|., Z|~) only has countably many jumps. Since £ satisfies condition
(LO3) it follows that L € Gg. The reader may recall that condition (LO3)
implies condition (LO2). Assertion (iv), thus, implies that the linearly ordered
subtopology # of ¢ that is induced by £ is second countable which allows us
to conclude with help of the considerations in the second section that = has
a continuous utility representation. Therefore, the proof of the proposition is
complete. [l

Clearly, in case that t is connected OCCC may be omitted. Hence, the
characterization of ¢ to be useful simplifies somewhat.

Corollary 5.2. Let t be connected. Then the following assertions are equiva-
lent:
(i) t is useful,
(ii) ewvery linear separable system & on X has a countable refinement,
(iii) ewvery linear separable system £ on X is second countable,
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(iv) every linear ordered subtopology ' of t that is induced by some linear
separable system £ € Gg 1s second countable.

6. A DIFFERENT APPROACH

Let (X, t) be an arbitrary topological space and let G := {&;},.; be a family
of separable systems on X. Then G is said to be well-separated, if it satisfies
the following conditions:

(WSL): VielVjelIVEcEYVBeE(i# )= ENB=0).
(WS2): V{Ei}ie[ (B €& = Uie[ E; = Uie[ E;).

Now the following lemma holds:

Lemma 6.1. Lett be a useful topology on X. Then every well-separated family
G := {&i};c; of separable systems on X is countable.

Proof. Let G := {&;};c; be some well-separated family of separable systems on
X. Then we may assume without loss of generality that every subset J of I for
which there exists for every j € J some non-empty open and closed set E; € &;
is countable. Indeed, otherwise we consider some well ordering < on J, choose
for every j € J some fixed non-empty open and closed set E; € &; in order
to consider for every j € J the set Fj := (J;; E;. Then the conditions (WS1)
and (WS2) imply that F := {F}} jes 18 an uncountable family of non-empty
open and closed subsets of X that satisfies the conditions (OC1) and (OC2)
and, thus, contradicts the usefulness of ¢.

Let us now assume, in contrast, that I is uncountable. Then we consider some
well-ordering < on I, choose the first uncountable ordinal w; and consider some

subfamily {Ea}ycy, of G. The above considerations allow us to assume that

E, E for every (open) set E, € &, and every ordinal number o < wj.
Now we choose for every ordinal number @ < w; non-empty (open) sets Eqo, =
Eoy G Eay G Ea, and fixed points 2, € Eq,. Lemma 3.6 allows us to consider
for every ordinal number o < w1 some countable linear separable system B, on
X such that E,, C B, C B, C E,, for every (open) set B, € B,. For every

Q1 £
ordinal number o < w; we then set Oy 1= UB,. Let now {Cy} be a family

of closed subsets C, C O,. Condition (WS2) implies that | J
Hence, it follows that also Ua<w,
also implies that (J,.,, Oa is closed. We abbreviate these observations by (*).
With help of Theorem 3.7, we may conclude that for every ordinal number
a < w; there exists some continuous function f, : X — [0,1] such that
fa(za) = 0and fo(X\Oy) = {1}. For every ordinal number o < w; there exists
some order preserving function g, : {0, ..., a} — [0, 1] such that ¢g,(0) = 0
and g (a) = 1. We, thus, may conclude that for every ordinal number o < w;
there exists some order-isomorphism ¢, : [0,1] — [0,a] C L*, where L* is
the Long Line (see, for example [32]). ¢, is the canonical order-isomorphism
that is induced by g;!. Since the sets Oy (a0 < wy) are pairwise disjoint there
exists for every point y € |J « some uniquely determined ordinal number

a<(41
a<w; Pa, 18 closed.
C, is closed. Obviously, the same argument

a<w1
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ay < wy such that y € Oq,. Hence, we may define a total preorder 3 on X by
setting

j:: {(y7z) € X x X|y ¢ Ua<w10a}u
{(y,2) € X X X | bpa, (1 = fa, () < ¢a. (1 = fo. ()} -

With help of observations (*) it follows that = is a continuous linear (total)
preorder on X. In addition, the definition of 3 implies that (X|., 3/.) is not
a short chain. This contradiction finishes the proof.

Lemma 6.1 is based upon a generalization and completion of the central idea
of the proof of the already quoted result of Estévez and Hervés on metrizable
topologies. It implies that in case that ¢ is a useful completely regular topology
on X, it follows that ¢t must satisfy some particular countable chain condition.
Let, therefore, ¢ said to satisfy the countable chain condition for locally finite
families of open sets (CLF) if every locally finite family {O;}, ; of pairwise
disjoint open subsets of X is countable. Then the following corollary holds.

Corollary 6.2. Let t be a useful completely regular topology on a set X. Then
t satisfies CLF.

Proof. Let {O;};c; be a locally finite family of pairwise disjoint open subsets of
X. We may assume without loss of generality that O; # @ for all © € I. Hence,
we may choose in every (open) set O; € {O;},;-; some fixed point z; in order
to consider some continuous function h; : X — [0, 1] such that h;(z;) = 0 and
hi(X\O;) = {1}. For every i € I we finally set &; := {h;l([O,q[)}qe[m]. Since
{Oi};cr is a locally finite family of open sets it follows that G := {&;};.; is a
well-separated family of separable systems on X. Now the desired conclusion
is implied by Lemma 6.1. U

Before formulating and proving the main result of this section we still want
to discuss some consequences of the above considerations. For every topological
space (Y, t), we denote by o(Y, C(Y)) the weak topology on Y that is induced
by the family of all continuous real-valued functions on Y, i.e. o(Y, C(Y)) is
the coarsest topology on Y for which every continuous real-valued function on
Y is continuous. It is well known that o(Y, C(Y)) is completely regular or,
equivalently, uniformizable (see, for instance [8]). The next lemma is at least
implicitly well known. Its proof is based upon the fact that a continuous linear
preorder = on a topological space (Y, t) is continuous if and only if for every
pair of points £ < y € Y there exists some continuous and increasing real-valued
function f;, on Y such that f; () < fiy(y) (cf. the corresponding remark
on Theorem 3.8). The proof of the next lemma, therefore, may be omitted for
the sake of brevity.

Lemma 6.3. The following assertions are equivalent:
(i) t is useful,
(ii) o(Y, C(Y)) is useful.
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The reader may recall that a pseudometric  on a set X is a function ¢ : X x

X — [0, +o0o[ that satisfies for all points z,y,z € X the following conditions.
(PM1): 0(z,z) =0,
(PM2): 6(z,y) = d(y,z),
(PM3): 6(z,2) < 0(z,y) + d(y, 2).

The concept of a pseudometric on X, thus, differs from the concept of a
metric on X only in condition (PM1). Indeed, a metric 6 on X is a function
d: X x X — [0, 400 that satisfies the conditions (PM2) and (PM3) and the
stronger definiteness condition

(DM1): (z,y) =0<=z=1y.
In case that ¢ = ts5 for some pseudometric 6 on X, then the topology t is said

to be pseudometrizable.
The following lemma is implicitly well-known (see [12] or [13]).

Lemma 6.4. Let § be some pseudometric on X and let the topology ts that
s induced by 0 be coarser than t. Then in order for ts to satisfy CLF it is
necessary and sufficient that ts is second countable.

Proof. Since the necessity part of the lemma is trivial it suffices to verify the
suffiency part. Therefore, we assume that t; satisfies CLF. Let b, be the
quotient topology on X | that is induced by the canonical equivalence relation
z ~y <= 6(z,y) = 0. Then it is well known that ¢5__ is induced by the metric

don X |~ that is induced by 0 and that ¢5 is second countable if and only if b,
is second countable or, equivalently, ts,. is separable. In addition, it is easily to
be seen that ts satisfies CLF if and only if b, satisfies CLF. Summarizing these
considerations we may assume that t5_ satisfies CLF and that it is sufficient
to prove that b, is separable. Let us assume, in contrast, that b5, is not
separable. We shall show that in this case there exists some real € > 0 and some
uncountable subset S of X|. such that 0(z,y) > € for all points © # y € S.
Indeed, otherwise, for every natural number n > 0, every subset Z;, of X such
that §(z,y) > % for all points z # y € Z, is countable. The Lemma of Zorn
allows us to choose, for every natural number n > 0, some maximal subset Y,
of X|. such that §(z,y) > L for all points z # y € Y. Then Y := Unem (o} Yn
is a countable subset of X |~ such that Y = X vy contradiction. Thus, the
existence of S follows. The inclusion t5 C ¢ implies that ts. C b~ Hence, we
may conclude that the family {{y € X~ |0(x,y) < %}}xes is an uncountable
family of pairwise disjoint non-empty open subsets of X|. that, obviously, is
locally finite. This contradiction finishes the proof. O

Now we are ready to summarize our considerations for some interesting re-
sults.

Proposition 6.5. Let o(X,C (X)) be induced by some uniformity that has a
countable base. Then the following assertions are equivalent:

(i) t is useful,

(ii) o(X, C(X)) is second countable.
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Proof. (i) = (ii) Since o(X, C(X)) is induced by some uniformity which has
a countable base we may conclude that o(X,C(X)) is induced by some pseu-
dometric 6 on X. With help of the inclusion o(X,C(X)) C ¢t and Lemma 6.3
the desired conclusion now follows from Lemma 6.4.

(i) = (i) Let = be a continuous linear preorder on X. Then ¢tX C
o(X,C(X)) and assertion (i) follows from DT. O

Corollary 6.6. Let (G, o,t) be a first countable topological group. Then the
following assertions are equivalent:

(i) t is useful,

(ii) t is second countable.

Proof. Every topology t of a first countable topological group (G, o, t) is induced
by some uniformity which has a countable base (see, for example, [18]). O

Corollary 6.7. [13] Let t be induced by some metric 6. Then the following
assertions are equivalent:

(i) t is useful,

(ii) t is second countable.

Remark 6.8. Corollary 6.7 has an important consequence. It implies, in par-
ticular, that for a metric space (X, d) the assumptions of Debreu’s Theorem are
not only sufficient but also necessary for a continuous linear preorder = on (X, §)
to be representable by a continuous utility function. On the other hand, metric
spaces (in particular Hilbert spaces or more generally Banach spaces) which are
not second countable are meanwhile commonly encountered in economic theory
(see [23] or our remark in the introduction). This is the case, for example, if the
commodity space is L*(u), the space of u-essentially bounded p-measurable
functions on a o-finite measure space, which arises in the analysis of allocation
of resources over time or states of nature ([2]), or ca(K), the space of countably
additive signed measures on a compact metric space which has been exploited
for the analysis of commodity differentiation ([21] and [19]). Linear preorders
defined on these spaces principally must satisfy more properties than just be-
ing continuous in order to have a continuous utility representation. Hence, the
approaches of Shafer [31], Mas-Colell [21], Monteiro [28], Mehta and Monteiro
[25] and others gain additional importance. The problem which arises is to
look for useful natural additional conditions which a linear preorder on these
spaces should satisfy and which also guarantee its representability by a contin-
uous utility function. Such a useful condition could be countably boundedness.
The reader may recall that a linear preorder < on X is countably bounded if
there exists a countable subset Y of X such that for every point x € X there
exist points y,y’ € Y such that y 3 z 3 ¢'. For example, since every convex
subset of the space L>(u) and ca(K) respectively is path connected, it follows
from Monteiro [28] that every continuous countably bounded linear preorder
on a convex subset of L>(u) and ca(K) respectively has a continuous utility
representation. Another useful condition could be convezity (see [5, Theorem

3]).
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In order to now prove the main result of this section let ¢ be an arbitrary
but fixed given topology on X. In case that ¢’ is a topology on X that cannot
be excluded to be different from ¢ we denote for every subset A of X by ¢/(A)
the t'-closure of A. In case that we are sure that ¢’ = ¢ the ¢-closure of A
is abbreviated as usual by A. Then a topology t' on X is said to be well-
compatible, if for every t'-open subset O of X and every point z € O the
t'-closure ¢/ ({z}) of {z} is contained in O. The reader may recall that ¢’ is
well-compatible, if and only if for each pair of points x,y € X the equivalence
d({z}) = ({y}) <= ({z}) N ({y}) # @ holds. Now L, is the family of all
well-compatible topologies ¢ on X for which there exists some linear separable
system € € Gg (cf. section 5) such that &€ C t' C tg and ¢/(E’) C E for every
pair of sets F' C E' C E € £. tg is the topology on X that is induced by &
(cf. section 3). The reader may prove as an easy exercise that ¢/(E') C E for
every pair of sets E' C E' G E €&, if and only if (¢(E)\E) Nd(E') = @ for
every pair of sets E' C E' ;Cé E € £ . In case that t is connected it follows that
L; is the set of all well-compatible topologies t' on X for which there exists
some linear separable system £ on X such that £ C ¢ C tg and ¢(E') C E for
every pair of sets E' C E' ; E € £. Let finally £ be some arbitrarily chosen
linear separable system on X. Then the reader may verify, in addition, that
te € Ly, if and only if for every pair of sets E' C E' C E € £ the equation
E'=n{E" € £|FE' C E" C E} holds and, furthermore, a possible first element
or a possible last element of the chain (€, C) is open and closed.

Now we are fully prepared for proving the main result of this section.

Proposition 6.9. The following assertions are equivalent:

(i) t is useful,

(ii) ¢ satisfies OCCC, every well-separated family G := {&;},c; of separable
systems on X is countable and every topology t' € L; is pseudometriz-
able.

(iii) ¢ satisfies OCCC, o(X, C(X)) satisfies CLF and every topology t' € L,
is pseudometrizable.

Proof. (i) = (ii) Because of Proposition 5.1 and Lemma 6.1 it is sufficient
to prove that every topology ¢ € L; is pseudometrizable. Let, therefore,
some topology t' € L; be arbitrarily chosen. Then there exists some linear
separable system & on X, whose associated set G(€) is countable, such that
E Ct Cte and ¢(E') C E for every pair of sets E' C E' C E € £. Let
now t_ be the quotient topology that is induced by the equivalence relation
“o ~y <= d({z}) = ({y})“ The well-compatibility of ¢ implies that the
equivalence relation ~ is open, i.e. the canonical projection p : X — X|.
is open. This means, in particular, that ¢’ is pseudometrizable, if and only
if tIN is metrizable. In order to verify that ¢/_ is metrizable we show at first

~

that tTN is second countable. Then we prove that tTN is normal which finally

allows us to conclude with help of the Alexandroff-Urysohn Metrization The-
orem that th is metrizable. One more application of the well compatibility
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of ¢ implies that to is second countable, if and only if ¢ is second count-
able. Since G(£) is countable it follows with help of Proposition 5.1 (iii)
that t¢ is second countable. This means that there exists a countable set
C(&) of pairs of sets B! C E' C E € £ U {2,X} such that the family of
corresponding open sets £ N X\E' is a base of tg. We want to show that
B:={ENX\J(E')|E CE CE€C()} is a base of . Then the second
countability of ¢’ follows. Let, therefore, O be some (non-empty) ¢’-open subset
of X and let € O be some arbitrary point. We must show that there exists
some set ET N X\c'(ETT) € B such that x € ET N X\d(ETT) C O. The
inclusion ¢’ C tg implies that there exists some pair of sets ' C E' G E € C(€)
such that z € ENX\E' C O. We, thus, distinguish between the following two
cases:

Case 1. = € E\d'(E'). In this case the inclusion E' C ¢(E') implies that
r€ ENX\d(E') C ENX\E' C O and we are done.

Case 2. = ¢ E\J(E'), ie. z € ¢(E"\E' C ¢(E')\E'. In this situation we
show at first that E'\E'N O # @. In order to verify this inequality the validity
of the equation ¢/(E'\E') = ¢(E')\E' is needed. Since E'\E' C ¢/(E')\E' and
' (E"\E' is t'-closed the inclusion ¢'(E'\E') C ¢/(E')\E' follows immediately.
Hence, the desired equation will be proved if we are able to show that also the
inclusion ¢/(E')\E' C ¢/(E"\E') holds. Let, therefore, some point y € ¢/(E')\E'
and some t'-neighborhood U of y be arbitrarily chosen. We must show that
UNE\E'# @. Then y € ¢(E'\E') and the inclusion follows. The inclusion
t' C te implies that there exist some pair of sets E** C E** G E* € C(€) such
that y € E* N X\E* C U. Since y € E*\E' the linearity of £ implies that
E' C E*. On the other hand, it follows that E** C E’. Indeed, otherwise we
may conclude that E' G E**, which means that ¢'(E') C E**. Since y € ¢/(E')
this inclusion contradicts the relation y € £ N X\E£**. A combination of these
considerations implies that E'\E' ¢ EN X\E**. Hence, UNE'\E' # @, which
finishes the proof of the desired equation. With help of the equation ¢’ (E'\E') =
c'(E")\E' the inequality E'\ E'NO # @ easily can be verified. Indeed, otherwise
we may conclude that E/\E' C X\O. Since X\O is t'-closed it, thus, follows
that ¢ (E')\E' = ¢(E'\E') C X\O which contradicts the relation = € ¢/(E")\ E'
and z € O. Now we proceed by choosing some arbitrary point z € E'\E' N O
in order to then consider some pair of sets E+T C E++ G Et € C(€) such
that z € ET N X\EtT C O. Since z € E'\E' and, thus, z € E*\E' the
linearity of £ implies that E' C E' C E* which, in particular, means that
z € ¢(E') C Et. Because of the relations z ¢ Et*+ and z € E’ it follows, on
the other hand, that E++ ¢ E++ G E'. Hence, ¢'(E*") C E'. We, thus, may
summarize our considerations for the conclusions z € EYNX\d'(E*T1) C O and
Et N X\d(ETT) € B which completes the second case and, therefore, shows
that ¢’ is second countable. The particular construction of B finally allows us
to apply the arguments of the proof of Proposition 1.4.2 in [17] in order to
verify that ¢’ is normal. Then the well-compatibility of ¢’ implies that also t‘N
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is normal and the Alexandroff-Urysohn Metrization Theorem can be applied.
This last conclusion finishes the proof of assertion (ii).

(ii) = (iii) This implication follows immediately with help of Corollary 6.2.

(ili) = (i) Let = be some arbitrary continuous linear (total) preorder
on X. Then we consider the linear separable system £ := {L(X)},.x :=
{{y € X |y < x}},cx on X. Since ¢ satisfies OCCC it follows that 3 only has
countably many jumps which means that G(L£) is countable (cf. the corre-
sponding argument in the proof of the implication (ii) = (i) of Proposition
5.1. Clearly, = coincides with the linear preorder on X that is induced by £
(cf. Theorem 3.8). Hence, we may apply Theorem 3.8 in order to conclude
that the order topology = that is induced by = is coarser than t.. For every
point z € X its t<-closure ¢'({z}) coincides with the equivalence class [z] that
is defined by ~. Hence, it follows that t< is well-compatible. Since, in addition,
LCtSandd(x) ={ye X |y 3z} C L(z) = {u € X |u < z} for every pair of
points y < z € X we may conclude that t< € £;. Hence, ¢t= is pseudometriz-
able. The underlying argument which the proof of Lemma 6.3 is based upon
implies that t< C o(X,C(X)). This means, in particular, that < satisfies CLF.
Therefore, it follows from Lemma 6.4 that ¢< is second countable which implies
that 3 has a continuous utility representation. This last conclusion settles the
implication (iii) = (i) and nothing remains to be shown. O

Corollary 6.10. Let t be connected. Then the following assertions are equiv-
alent:
(i) t is useful,
(ii) Every well-separated family G := {&;},c; of separable systems on X is
countable and every topology t € L, is pseudometrizable,
(iii) o(X,C(X)) satisfies CLF and every topology t € Ly is pseudometriz-
able.

Remark 6.11. The condition that every topology ¢ € L; is pseudometrizable
seems to be a bit artificial. On the other hand, Proposition 6.9 means that ¢ is
useful if and only if ¢ satisfies OCCC, o (X, C(X)) satisfies CLF and t allows the
definition of enough (continuous) pseudometrics on X. Hence, Proposition 6.9
which, in particular, generalizes the nice result of Estévez and Hervés completes
Proposition 5.1 and may at least serve as basis for finally obtaining still more
satisfactory results.

7. USEFUL NORMAL TOPOLOGIES

In the second section we already have announced some optimal result on the
usefulness of normal topologies. In order to prove this result let ¢ be a fixed
given normal topology on X. For every subset A of X the interior of A is
denoted by A°. Then we choose the family O of all sets O of open subsets O
of X that are linearly ordered by set inclusion and satisfy condition (LO1) (cf.
section b).

Let some set O € O be arbitrarily chosen. Then the sets Z(0), G(O) and Og
and the concepts of O to have a countable refinement or to be second countable
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are defined in the same way as the corresponding sets Z(0), G(O) and Gg, and
the similar concepts in section 5. In addition, we consider the family F of all
sets O € O which also satisfy the following condition which completes condition
(LO2) in order to also include the case that ¢ is not necessarily connected (cf.
section 2).

LO27T : oeo| |J OSon |J onx\O#@}|+
OBO’%O OBO'%O

+soeo| |J ocon |J o=( | o0)rvo=0; <
OBO'%O OBO’%O OBO'%O

<w.

The reader may verify that in case that ¢ is connected the conditions (LO2)
and (LO2T) coincide.

Proposition 7.1. Let t be a normal topology on X. Then the following asser-

tions are equivalent:
(i) t is useful,

(ii) t satisfies OCCC and every set O € O has a countable refinement,

(iii) ¢t satisfies OCCC and every set O € O is second countable,

(iv) t satisfies OCCC and every linearly ordered subtopology t' of t that is
induced by some set O € Og s second countable,

(v) t satisfiecs OCCC and every linearly ordered subtopology t' of t that is
induced by some set O € F is second countable.

Proof. (1) = (ii) Let some set O € O be arbitrarily chosen. Then we consider
the set M(O) of all sets O € O for which there exists some maximal set
oO>0 ; O. Since t is a normal topology on X it follows from Lemma
3.4 and Lemma 3.6 with help of condition (LO1) that for every pair of sets
0 > 0" S O € M(O) there exists a linear separable system £(0) on X such
that O' C E C O for every set E € £(0). We, thus, set £(0) := O U
(Uoem(o) €(0)), and show that £(O) is a linear separable system on X. Let,

therefore, £'(0) C £(0O) be the subset of all sets E € £(O) such that £ G E and
for which U(E) := {E' € £(0)|E G E'} # @. Then we choose some arbitrary
set B/ € £'(0) and distinguish between the following two cases:

Case 1: (U(FE),C) does not contain a minimal element. In this case the
construction of £(0) allows us to conclude with help of condition (LO1) that
mE’EU(E) B = nE’eU(E) L.

Case 2: (U(E),C) contains a minimal element. Let E' be this minimal
element of (U(E),C). Then the definition of M(O) implies with help of the
construction of £(0) that E' is closed.

Summarizing both cases it follows with help of Proposition 3.5 (ii) that £(O),
actually, is a linear separable system on X. Assertion (ii) now is an immediate
consequence of the corresponding assertion of Proposition 5.1.
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(il) = (i) Since every linear separable system £ on X satisfies condition
(LO1) the desired implication follows with help of the implication (ii) = (i)
in the proof of Proposition 5.1.

(i) = (iii) Let O € O be some arbitrarily chosen set. As in the proof
of the implication (i) = (ii) we consider the set M(O) and construct the
linear separable system £(0) on X. Of course, we may assume without loss of
generality that for every pair of sets O 3 O' & O € M(O) such that O’ or O
is closed the corresponding linear separable system £(0) on X consists of O’
and O. Let us abbreviate this assumption by (*). Because of Proposition 5.1
(iii) there exists some countable subset E’ of £'(O) such that for every pair of
sets (E',E) € Z(E(O)) there exists some set Et € E' such that B’ C E+ C
E+ C E. Now we consider the situation O’ G 0" C or G O for some pair
of sets (0',0) € Z(O) and some set O" € O. There exists some set I/ € E'
such that O' C E C E C O. If E ¢ O, then there exists because of (*) and
the construction of £(0) some pair of sets O > O* G 0T+ € M(O) such
that O+ S EC E G OT*. Since O is linearly ordered by set inclusion it
follows with help of condition (LO1) and the chain O’ & 0" € O" G O that
o' G Ot C Ot c ot G O. Hence, one immediately verlﬁes that assert1on
(iii) will follow with help of assertion (iii) of Proposition 5.1, if we are able to
show that the set of all pairs O > O G O** € M(O) for which there exists
some set £ € E'\O such that OF ¢ E C E c Ot € M(O) is countable.
But this is easily seen since the corresponding sets O+ N X \W are pairwise
disjoint and E' is countable.

(iii) = (iv) Trivial.

(iv) = (i) In the same way as the implication (ii) = (i) also this implica-
tion follows with help of the proof of the corresponding implication (iv) = (i)
of Proposition 5.1.

(i) A (iv) = (v) Let some set O € F be arbitrarily chosen. Then we
consider the linear separable system £(O) on X that already has been con-
structed in the proof of the implication (i) = (ii). Since the linearly ordered
subtopology # of ¢ that is induced by O is coarser than the linearly ordered
subtopology ' " of t that is induced by £(0) it suffices to verify that ¢’ " is sec-
ond countable (cf. the argument of the generalization of DT in the second
section). In order to show that ¢’ " is second countable it is because of assertion
(iv) and condition (LO2T) sufficient to prove that the set K(O) of all (open)
sets O € O such that (Ugs0rco0)° S Uosorco O G O S O is countable.
In order to show the countabiﬁty of K(O) we ayf)ply the normality of ¢ in or-
der to construct for every (open) set O € K(O) some linear separable system
E'(O) on X such that UOaO'COO C E' C E' C O for every set E' € £'(0)
(cf. corresponding argument in the proof of the implication (i) = (ii)). Since
(UOSO’COO) - Uoso’CoO C 0 € O we may conclude that £'(0) # @.
In the same way as in the correspondmg part of the proof of the implication
(i) = (ii) it follows that £'(O) := £(0) U (Upek (o) €'(0)) also is a linear
separable system on X. Let us now assume, in contrast, that K(O) is not
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countable. Then, since £'(0) # @ for every (open) set O € K(O) we may
conclude that the continuous linear (total) preorder = on X that is induced
by £'(O) has uncountably many jumps or contains an uncountable family of
pairwise disjoint open (non-degenerate) intervals. This means, in particular,
that < has no continuous utility representation, which contradicts assertion (i).
Hence, assertion (v) follows.

(v) = (iv) Since Og C F assertion (iv) is an immediate consequence of
assertion (v). O

In case that t is connected, Proposition 7.1 is the generalization of EDT to
normal topologies (cf. the corresponding remark in section 2).

Corollary 7.2. Let t be a normal and connected topology on X. Then the

following assertions are equivalent:
(i) t is useful,

(ii) every set O € O has a countable refinement,

(iii) every set O € O is second countable,

(iv) every linearly ordered subtopology t' of t that is induced by some set
O € Og 1is second countable,

(v) every linearly ordered subtopology t' of t that is induced by some set
O € F s second countable.

Let, for the moment, a normal topology ¢ on X said to be short, if every set
O € O that is well-ordered by set inclusion is countable. Then the following
interesting proposition holds which, in particular, shows that condition (LO1)
is a generalization of CLF. This means that Proposition 7.1 and Corollary 7.2
are generalizations of the theorem of Estévez and Hervés.

Proposition 7.3. In order for a normal topology t on X to be short it is
necessary that t satisfies CLF.

Proof. Let t be short. We assume, in contrast, that ¢ does not satisfy CLF.
Then there exists an uncountable locally finite family O := {O;},.; of pairwise
disjoint (non-empty) open subsets of X. In analogy to the proof of Lemma
6.1 we may assume that none of the sets O; (i € I) contains some non-empty
open and closed subset. Let us abbreviate this assumption by (*). In addition,
the proof of Lemma 6.1 allows us to assume that I coincides with the first
uncountable ordinal wy, i.e., O = {O;};c; = {Oa}qc,,- Now we proceed by
choosing in every set Oy (a < wy) some fixed point z,. The normality of ¢
implies with help of the Long-Line-argument in the proof of Lemma 6.1 that
for every ordinal number a < w) there exists some set Uq := {Up} 4, € O such

that U, C Ug,if 1 < B < a, U, C O, and 4 € Ua\Ug<a Up. Hence, we may
construct by transfinite induction on all countable ordinals, i.e. on all ordinals
7 < wi some uncountable set O’ € O that is well-ordered by set inclusion. If
v = 0 we choose in every set U, (o < wy) the set Uy. Then O',, is the union of
these sets Uy with X'\ U(Kw1 U,. On the other hand, if 0 < v < wy, we choose
in every set U, (a < w;) all sets Ug for which 5 <. Then O’ is the union of
these sets Ug with X\ J Ua.

a<wi
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Since the family O has been assumed to be locally finite it follows with help
of assumption (¥) that O' := {0y} _, € O which means that ¢ cannot be
short. This contradiction proves the proposition. O

The reader may notice that the proof of Proposition 7.3 also clarifies the
topological structure of the central idea of the proof of Estévez and Hervés on
the usefulness of metrizable topologies.

[1]

REFERENCES

A F. Beardon, J.C. Candeal, G. Herden, E. Indurain and G.B. Mehta, The non-existence
of a utility function and the structure of non-representable chains, Preprint, Universidad
de Zaragoza (J.C. Candeal), 1999.

T. Bewley, Existence of equilibria in economies with infinitely many commodities, Journal
of Economic Theory 4 (1972), 514-540.

D. Bridges and G.B. Mehta, Representation of preference orderings, Springer, New York,
1995
D.C.J. Burgess and M. Fitzpatrick, On separation azioms for certain types of topological
spaces, Mathematical Proceedings of the Cambridge Philosophical Society 82 (1977),
59-65.

J.C. Candeal and E. Indurdin and G.B. Mehta, Some wutility theorems on inductive
limits of preordered topological spaces, Bulletin of the Australian Mathematical Society
52 (1995), 235-246.

J.C. Candeal, C. Hervés and E. Induréin, Useful topologies on preordered metric spaces,
Preprint, Universidad de Zaragoza, 1995.

J.C. Candeal, C. Hervés and E. Indurdin, Some results on representation and extension
of preferences, Journal of Mathematical Economics 29 (1998), 75-81.

J. Cigler and H.C. Reichel, Topologie, BI Hochschultaschenbiicher (BI, Mannheim, 1986,
second edition).

G. Debreu, Representation of a preference ordering by a numerical function, in: R.
Thrall, C. Coombs and R. Davies (eds.), Decision Processes. New York: John Wiley,
1954.

G. Debreu, Continuity properties of Paretian utility, International Economic Review 5
(1964) 285-293.

S. Eilenberg, Ordered topological spaces, American Journal of Mathematics 63, 39-45
(1941).

R. Engelking, General Topology, (Warzawa, 1977, second edition).

M. Estévez and C. Hervés, On the existence of continuous preference orderings without
utility representations, Journal of Mathematical Economics 24 (1995), 305-309.

G. Herden, On the existence of utility functions II, Mathematical Social Sciences 18
(1989), 107-117.

G. Herden, Topological spaces for which every continuous total preorder can be represented
by a continuous utility function, Mathematical Social Sciences 22 (1991), 123-136.

G. Herden, On some equivalent approaches to mathematical utility theory, Mathematical
Social Sciences 29 (1995), 19-31.

G. Herden and G.B. Mehta, Order, Topology and Utility, Preprint, Universitit—GH
Essen, 2000.

T. Husain, Introduction to Topological Groups, W.B. Saunders Company (Saunders,
Philadephia, 1966.

L. Jones, A competitive Model of product differentiation, Econometrica 52 (1984), 507-
530.

A. Mas-Colell, A model of equilibrium with differentiation, Journal of Mathematical
Economics 2 (1975), 263-295.



[21]
[22]
23]
[24]
[25]

[26]

[27]
[28]
29]
[30]
31]
32]
[33]

[34]

Useful topologies and separable systems 81

A. Mas-Colell, The price equilibrium ezistence problem in topological vector lattices,
Econometrica 54 (1986), 1039-2053.

G.B. Mehta, Ezistence of an order-preserving function on a normally preordered space,
Bulletin of the Australian Mathemataical Society 34 (1986), 141-147.

G.B. Mehta, Infinite dimensional Arrow-Hahn theorem, Preprint, University of Brisbane,
1989.

G.B. Mehta, Birkhoff- and Debreu separability, Oral communication, Essen-Brisbane
(November 1999).

G.B. Mehta and P.K. Monteiro, Infinite dimensional utility representation theorems,
Economic Theory 53 (1996), 169-173.

A. Milgram, Partially ordered sets, separating systems and inductiveness, in: Reports
of a mathematical colloquium (second series, No. 1),K. Menger ed. (University of Notre
Dame, 1939), 18-30.

A. Milgram, Partially ordered sets and topology, Reports of a Mathematical Colloquium
Second Series (University of Notre Dame, 1940), 3-9.

P.K. Monteiro, Some results on the existence of utility functions on path connected spaces,
Journal of Mathematical Economics 16 (1987), 147-156.

L. Nachbin, Topology and Order, Van Nostrand Reinhold (Van Nostrand, New York,
1965).

B. Peleg, Utility functions for partially ordered topological spaces, Econometrica 38
(1970), 93-96.

W. Shafer, Representations of preorders on normed spaces, Preprint, University of South-
ern California, 1984.

L. Steen and J. Seebach, Counterexamples in Topology, (Rinehart and Winston, New
York, 1978, second edition).

E. Szpilrajn, Sur lextension de l’ordre partial, Fundamenta Mathematica 16 (1930),
386-389.

P. Urysohn, Uber die Madchtigkeit der zusammenhdngenden Mengen, Mathem. Annalen
94 (1925), 262-295.

RECEIVED MARCH 2000

G. HERDEN AND A. PALLACK

Fb.

6 (Mathematik/Informatik)

Universitit/GH Essen

Universitietsstrasse 3, D-45117 Essen

Germany

E-mail address: andreas.pallack@uni-essen.de



