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ABSTRACT. The first part of the paper is a brief survey on
recent topics concerning the relationship between C*-embedding
and C-embedding for closed subsets. The second part studies
extension properties of the Niemytzki plane NP. A zero-set, z-,
C*-, C-, and P-embedded subsets of VP are determined. Finally,
we prove that every C*-embedded subset of NP is a P-embedded
zero-set, which answers a problem raised in the first part.
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1. INTRODUCTION

All spaces are assumed to be completely regular T7-spaces. A subset Y of a
space X is said to be C-embedded in X if every real-valued continuous function
on Y can be continuously extended over X, and Y is said to be C*-embedded in
X if every bounded real-valued continuous function on Y can be continuously
extended over X. Obviously, every C-embedded subset is C*-embedded, but
the converse is not true, in general. In the first part of the paper, formed by
Sections 2, 3 and 4, we discuss several problems concerning the relationship
between C*-embedding and C-embedding for closed subsets. For example, the
following problem is still open as far as the author knows:

Problem 1.1. Does there exist a first countable space having a closed C*-em-

bedded subset which is not C-embedded?

Since a space which answers the above problem positively cannot be normal,
the following problem naturally arises:

Problem 1.2. Let X be one of the following spaces: The Niemytzki plane (i.e.,
the space NP defined in Section 4 below); the Sorgenfrey plane ( [3, Example
2.3.12]); Michael’s product space ([3, Example 5.1.32]). Then, does the space
X have a closed C*-embedded subset which is not C'-embedded?
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In the second part, formed by Sections 5, 6 and 7, we answer Problem 1.2
for the Niemytzki plane N P negatively by determining a zero-set, z-, C*-, C-
and P-embedded subsets of NP. The problem, however, remains open for the
Sorgenfrey plane and Michael’s product space.

Throughout the paper, let R denote the real line with the Euclidean topology,
Q the subspace of rational numbers and N the subspace of positive integers.
The cardinality of a set A is denoted by |A|. As usual, a cardinal is the initial
ordinal and an ordinal is identified with the space of all smaller ordinals with
the order topology. Let w denote the first infinite ordinal and w; the first
uncountable ordinal. All undefined terms will be found in [3].

2. C*-EMBEDDING VERSUS C-EMBEDDING

It is an interesting problem to find a closed C*-embedded subset which is not
C-embedded. We begin by showing typical examples of such subsets. First, let
us consider the subspace A = BR\ (AN \ N) of SN. The subset N is closed C*-
embedded but not C-embedded in A, because A is pseudocompact (cf. [4, 6P,
p.97]). More generally, Noble proved in [16] that every space Y can be embedded
in a pseudocompact space pY as a closed C*-embedded subspace. Thus, every
non-pseudocompact space Y embeds in pY as a closed C*-embedded subset
which is not C-embedded. Shakhmatov [20] constructed a pseudocompact space
X with a much stronger property that every countable subset of X is closed
and C*-embedded.

Now, we give another examples which does not rely on pseudocompactness.
For every space X there exist an extremally disconnected space E(X), called
the absolute of X, and a perfect onto map ex : E(X) — X (cf. [3, 6.3.20 (b)]).
We now call a space X weakly normal if every two disjoint closed sets in X, one
of which is countable discrete, have disjoint neighborhoods.

Lemma 2.1. Let X be a space which is not weakly normal. Then E(X) con-
tains a closed C*-embedded subset which is not C-embedded.

Proof. By the assumption, X has a closed set A and a countable discrete closed
set B = {p, : n € N} such that AN B = @& but they have no disjoint neigh-
borhoods. We show that the closed set F = e} '[B] in E(X) is C*-embedded
but not C-embedded. Since B is countable discrete closed in X, we can find
a disjoint family 4 = {U, : n € N} of open-closed sets in E(X) such that
ex'(pn) C U, C B(X) \ ex'[A] for each n € N. Let U = J{U,, : n € N};
then U is a cozero-set in E(X). Since F' and E(X) \ U cannot be separated by
disjoint open sets, it follows from Theorem 3.1 below that F' is not C-embedded
in £(X). On the other hand, F' is C-embedded in U, because each e)_(1 (pp) is
compact and U is disjoint, and further, U is C*-embedded in E(X) by [4, 1H6,
p.23]. Consequently, A is C*-embedded in E(X). O

Corollary 2.2. Let X be one of the following spaces: The Niemytzki plane N P;
the Sorgenfrey plane S*; Michael’s product space Ry x P; the Tychonoff plank
T (see Example 3.3 below). Then E(X) contains a closed C*-embedded subset
which s not C-embedded.
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Proof. Tt is well known (and easily shown) that the spaces NP, S? and T are
not weakly normal. Now, we show that Michael’s product space Ry x P is
not weakly normal. The space Rg is obtained from R by making each point
of P = R\ Q isolated. Enumerate Q as {z,, : n € N} and choose y, € P
with |z, — yn| < 1/n for each n € N. Let A = {(zp,yn) : n € N} and
B = {{(z,z) : © € P}. Then A and B have no disjoint neighborhoods in
Ry x P. Since A is discrete closed in Ry x P, Rg x P is not weakly normal.
Hence, the corollary follows from Lemma 2.1. O

As another application, we have the following example concerning Problem
1.1.

Example 2.3. There exists a space X in which every point is a G5 and there
exists a closed C*-embedded subset which is not C-embedded. In fact, let
R be a maximal almost disjoint family of infinite subsets of N. Pick a point
pa €clgy A\ A for each A€ R and let R = {p4 : A € R}. Then the subspace
X = NUR of N is extremally disconnected (i.e., £(X) = X) and R is discrete
closed in X. Let E be a countable infinite subset of R. Then £ and R\ £ have
no disjoint neighborhoods in X by the maximality of R. Hence, by the proof
of Lemma 2.1, F is closed C*-embedded in X but not C-embedded. U

We change the topology of the space X = NU R in Example 2.3 by declaring
the sets {pa} U (A \ {L1,2,---,n}), n € N, to be basic neighborhoods of py
for each A € R. The resulting space is first countable and is usually called a
W-space (see [4, 51, p.79]). A positive answer to the following problem answers
Problem 1.1 positively.

Problem 2.4. Does there exist a W-space having a closed C*-embedded subset
which is not C-embedded?

For an infinite cardinal 7, a subset Y of a space X is said to be P7-embedded
in X if for every Banach space B with the weight w(Y) < A, every continuous
map f: Y — B can be continuously extended over X. A subset Y of X is said
to be P-embedded in X if Y is P7-embedded in X for every ~. It is known that
Y is P7-embedded in X if and only if for every locally finite cozero-set cover
U of Y with [U] < 7, there exists a locally finite cozero-set cover V of X such
that {V NY : V € V} refines Y. In particular, Y is C-embedded in X if and
only if Y is P¥-embedded in X. For further information about P7-embedding,
the reader is referred to [1]. The following problem concerning the relationship
between C-embedding and P-embedding is also open:

Problem 2.5. Does there exist an example in ZFC of a space X, with |X| =
w1, having a closed C-embedded subset which is not P-embedded?

Problem 2.6. Does there exist an example in ZFC of a first countable space
having a closed C-embedded subset which is not P-embedded?

It is known that under certain set-theoretic assumption such as MA+-CH,
there exists a first countable, normal space X which is not collectionwise normal
(see [21]). Since a space is collectionwise normal if and only if every closed subset
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is P-embedded, such a space X has a closed C-embedded subset which is not
P-embedded (cf. Remark 6.4 in Section 6 below).

3. SPACES IN WHICH EVERY CLOSED C*-EMBEDDED SET IS C-EMBEDDED

We say that a space X has the property (C* = Q) if every closed C*-
embedded subset of X is Q-embedded in X, where Q € {C, P?, P}. A subset Y
of a space X is said to be z-embedded in X if every zero-set in Y is the restriction
of a zero-set in X to Y (cf. [2]). Every C*-embedded subset is z-embedded.
Two subsets A and B are said to be completely separated in X if there exists a
real-valued continuous function f on X such that f[A] = {0} and f[B] = {1}.
The following theorem was proved by Blair and Hager in [2, Corollary 3.6.B].

Theorem 3.1. [Blair-Hager| A subset Y of a space X is C-embedded in X if
and only if Y is z-embedded in X and Y is completely separated from every
zero-set in X disjoint from Y.

Recall from [11] that a space X is d-normally separated if every two disjoint
closed sets, one of which is a zero-set, are completely separated in X. All
normal spaces and all countably compact spaces are §-normally separated. By
Theorem 3.1, we have the following corollary:

Corollary 3.2. Every 0-normally separated space has the property (C* = C).
The converse of Corollary 3.2 does not hold as the next example shows:

Example 3.3. The Tychonoff plank 7' = ((w;+1) X (w+1)) \ {{w1,w)} is not J-
normally separated but every closed C*-embedded subset of 1" is P-embedded,
i.e., T has the property (C* = P). To prove these facts, let A = {w1} X w
and B = w; X {w}; then A is closed in T and B is a zero-set in 7. Since A
and B cannot be completely separated in T', T" is not J-normally separated.
Next, let F' be a closed C*-embedded subset of 7. We have to show that F
is P-embedded in 7T". Since there is no uncountable discrete closed set in 7',
every locally finite cozero-set cover of F' is countable. Hence, it suffices to show
that F' is C-embedded in T'. Since F' is closed in T, either F' includes a closed
unbounded subset of B or FN{(8,m): a < <wi,n <m < w} = for some
a < w; and some n < w. In the former case, every zero-set in 1" disjoint from
F must be compact. In the latter case, AN F is finite since F' is C-embedded,
which implies that F' is compact. In both cases, F' is completely separated
form a zero-set disjoint from it. Hence, it follows from Theorem 2.1 that F' is
C-embedded.

The following example shows that the product of a space with the property
(C* = P) and a compact space need not have the property (C* = C).

Example 3.4. Let T be the Tychonoff plank. As we showed in Example 3.3,
T has the property (C* = P). We show that T" x SE(T) fails to have the
property (C* = C), where E(T) is the absolute of T'. Let ey : E(T) — T be
the perfect onto map. Then the subspace G = {{er(z),z) : z € E(T)} is closed
in T x BE(T), because ey is perfect. Since T' is not weakly normal, it follows



Extension properties and the Niemytzki plane 49

from Lemma 2.1 that E(7T) does not have the property (C* = C'), and hence, G
also fails to have the property (C* = C), because G is homeomorphic to E(T).
Hence, if we prove that G is C*-embedded in T' x SE(T), then it would follow
that T' x SE(T) does not have the property (C* = C'). For this end, let f be
a bounded real-valued continuous function on G and define g : E(T) — R by
g(x) = f({er(z),x)) for x € E(T). Since g is bounded continuous, g extends
to a continuous function h on SE(T). Then h o 7 is a continuous extension of
fover T x BE(T), where 7 : T x BE(T) — BE(T) is the projection. Hence, G
is C*-embedded in T' x BE(T). O

Problem 3.5. Does there exist a space X with the property (C* = C) and a
metric space M such that X x M fails to have the property (C* = C)?

The positive answer to Problem 1.2 for Michael’s product space answers
Problem 3.5 positively. We conclude this section by giving a class of spaces
having the property (C* = P7). Recall from [10, 14] that a family F of subsets
of a space X is uniformly locally finite in X if there exists a locally finite cozero-
set cover U of X such that every U € U intersects only finitely many members
of F. Let v be an infinite cardinal. A subset Y of a space X is said to be
U7-embedded in X if every uniformly locally finite family F of subsets in Y
with |F| <« is uniformly locally finite in X (cf. [7]). The following theorem
was proved in [15] (see also [7, Proposition 1.6]).

Theorem 3.6. [Morita-Hoshina] For every infinite cardinal v, a subset Y of
a space X is P7-embedded in X if and only if Y is both z-embedded and U7 -
embedded in X.

Recall from [7] that a space X has the property (U7) (resp. property (U7)*)
if every locally finite (resp. discrete) family F of subsets of X with |F| <« is
uniformly locally finite in X. All y-collectionwise normal and countably para-
compact spaces have the property (U7), and all y-collectionwise normal spaces
have the property (U7)*. Hoshina [7] proved that a space X has the property
(U7)* if and only if every closed subset of X is U7-embedded. Combining this
with Theorem 3.6, we have the following corollary:

Corollary 3.7. For every infinite cardinal vy, every space having the property
(UY)* has the property (C* = P7).

It will be worth noting that every vy-collectionwise normal Dowker space (see
[17]) has the property (U7)* for every v but does not have the property (U).

4. PRODUCTS

It is quite interesting to consider the relationship between C*- and C-em-
beddings in the realm of product spaces. In spite of extensive studies, the
following problem is still unanswered.

Problem 4.1. Let A be a closed C-embedded subset of a space X, Y a space,
and assume that A XY 1is C*-embedded in X xY. Then, is A XY C-embedded
inX xY?
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In this section, we summarize partial answers to Problem 4.1 and also discuss
the following problem:

Problem 4.2. Let X and Y be spaces with the property (C* = C). Under what
conditions on X and Y does X XY have the property (C* = C)?

First, we consider product spaces with a compact factor. Morita-Hoshina
[15] proved the following theorem which answers Problem 4.1 positively when
Y is a compact space.

Theorem 4.3. [Morita-Hoshina] Let A be a subset of a space X, Y an infinite
compact space, and assume that A XY is C*-embedded in X xY. Then AXY
is PUY)_embedded in X xY, where w(Y) is the weight of Y.

From now on, let v denote an infinite cardinal. The next theorem is an
answer to Problem 4.2.

Theorem 4.4. If a space X has the property (U7), then X XY has the property
(C* = P7) for every compact space Y .

Proof. If X has the property (U7) and Y is a compact space, then it is easily
proved that X x Y has the property (U”). Hence, X x Y has the property
(C* = P7) by Corollary 3.7. O

Example 3.4 shows that ‘property (U?)’ in Theorem 4.4 cannot be weakened
to ‘property (C* = P7)’. The following problem remains open:

Problem 4.5. If X XY has the property (C* = P7) for every compact space Y,
then does X have the property (UY)? More specially, does Theorem 4.4 remain
true if ‘property (UY)’ is weakened to ‘property (UV)*’?

A space is called o-locally compact if it is the union of countably many closed
locally compact subspaces. Concerning products with a o-locally compact,
paracompact factor, the following theorem was proved by Yamazaki in [23] and
[25]:

Theorem 4.6. [Yamazaki| Let A be a C-embedded subset of a space X, Y a
o-locally compact, paracompact space, and assume that A XY is C*-embedded
in X XY. Then AXY is C-embedded in X XY . Moreover, if A is P7-embedded
in X in addition, then A XY is also PY-embedded in X X Y.

Problem 4.7. Does Theorem 4.4 remain true if ‘compact’ is weakened to ‘o-
locally compact, paracompact’?

Next, we consider products with a metric factor. The difficulty of this case
is in the fact that A X Y need not be U%-embedded in X x Y even if A is P-
embedded in X (consider Michael’s product space). Nevertheless, the following
Theorems 4.8 and 4.9 were proved by Gutev-Ohta [6]:

Theorem 4.8. [Gutev-Ohta| Let A be a subset of a space X, Y a non-discrete
metric space, and assume that A X Y is C*-embedded in X X Y. Then A XY
1s C'-embedded in X x Y.
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Theorem 4.9. [Gutev-Ohta] Let A be a P7-embedded subset of a space X and
Y a metric space. Then the following conditions are equivalent:

(1) AXY is P"-embedded in X XY
(2) AxY is C*-embedded in X xY;
(3) AxY isU%-embedded in X xY.

Corollary 4.10. Let A be a PY-embedded subset of a space X, Y the product of
a o-locally compact, paracompact space K with a metric space M, and assume
that A XY 14s C*-embedded in X xY. Then A XY is P7-embedded in X X Y.

Proof. Since (A x K) x M is C*-embedded in (X x K) x M, A x K is C*-
embedded in X x K. Hence, A x K is P7-embedded in X x K by Theorem
4.6. Finally, it follows from Theorem 4.9 that (A x K) x M is P7-embedded in
(X x K)x M. O

Problem 4.11. Does Theorem 4.8 remain true if ‘metric space’ is weakened
to ‘paracompact M -space’ or ‘Lasnev space’?

Problem 4.12. Let A be a P7-embedded subset of a space X and Y a paracom-
pact M -space. Then, does the condition (2) in Theorem 4.9 imply the condition

(1)7

Problem 4.13. Let A be a P7-embedded subset of a space X and let Y be one
of the following spaces (i)—-(iii): (i) a Lasnev space; (ii) a stratifiable space; (iii)
a paracompact o-space. Then, are the conditions (1), (2), (3) in Theorem 4.9
equivalent?

For the definitions of the spaces (i), (ii) and (iii) in Problem 4.13, we refer
the reader to [5]. Problems 4.12 and 4.13 were raised in [6].

Now, we try to extend Theorems 4.3 and 4.8 to products with a factor space
in wider class of spaces. For this end, we write Y € II(Q) if for every space X
and every closed subset A of X, if A xY is C*-embedded in X XY, then A XY
is Q-embedded in X x Y, where Q € {C, P?}. By Theorem 4.3, Y € II(P*(Y))
for every infinite compact space Y, and by Theorem 4.8, Y € II(C) for every
non-discrete metric space Y. The following results show that the classes II(P7)
and II(C) are much wider than we expected.

Theorem 4.14. Let Y be a space with Y € II(PY). Then Y x Z € 1I(P7) for
every space Z.

Proof. Let X be a space with a closed subset A such that A x (Y x Z) is
C*-embedded in X x (Y x Z). Then, it is obvious that (A x Z) x Y is C*-
embedded in (X x Z) x Y. Since Y € IlI(P7), (A x Z) x Y is P7-embedded in
(X x Z) x Y, which means that A x (Y x Z) is P7-embedded in X x (Y x Z).
Hence, Y x Z € II(P7). O

Corollary 4.15. For every space Y, Y x (w+ 1) € II(C).

Proof. Since w + 1 € II(C') by Theorem 4.3 (or Theorem 4.8), this follows
immediately from Theorem 4.14. O



52 Haruto Ohta

The next theorem and its corollary were proved by Hoshina and Yamazaki
in [9].

Theorem 4.16. [Hoshina-Yamazaki] Let Y be a space which is homeomorphic
to Y x Y and contains an infinite compact subset K. Then Y € TI(P¥(K)),

Corollary 4.17. [Hoshina-Yamazaki] For every space Y with |Y| > 2, Y7 €
[I(P7).

Finally, we counsider some miscellaneous products. The following theorem
was proved by Yamazaki in [24] and [25]. By a P-space, we mean a P-space in
the sense of Morita [13]. For the definition of a ¥-space, see [5].

Theorem 4.18. [Yamazaki] Let A be a closed subset of a normal P-space X,
Y a paracompact X-space, and assume that A XY is C*-embedded in X X Y.
Then A XY is C-embedded in X XY . Moreover, if A is P7-embedded in X in
addition, then A XY is PY-embedded in X X Y.

Since a P-space is countably paracompact, all normal P-spaces have the
property (U%) and all y-collectionwise normal P-spaces have the property (U7).
Hence, the following problem naturally arises after Theorem 4.18.

Problem 4.19. Let X be a normal P-space and Y a paracompact Yi-space.
Then, does X XY have the property (C* = C)? Moreover, if X is y-collection-
wise normal in addition, then does X XY have the property (C* = P7)?

Recently, a partial answer to Problem 4.19 was given by Yajima [22].

Theorem 4.20. [Yajima] Let X be a collectionwise normal P-space and Y
a paracompact -space. Then every closed C-embedded subset of X XY 1is
P-embedded in X X Y.

5. ZERO-SETS IN THE NIEMYTZKI PLANE

In the remainder of this paper, we consider extension properties of the
Niemytzki plane NP, and in the final section, we answer Problem 1.2 for NP
negatively. The Niemytzki plane N P is the closed upper half-plane R x [0, +00)
with the topology defined as follows: For each p = (z,y) € NP and € > 0, let

S.(p) = {{qENP;d((x,s>,q) <elUfp)  fory=0,
€ {QENP:d(p,q)<g} fOI‘y>O’

where d is the Euclidean metric on the plane. The topology of NP is generated
by the family {S.(p) :p € NP,e > 0}. Let L = {{(z,0) : . € R} C NP.

From now on, we always consider a subset of R to be a subspace of R, and
consider a subset of VP to be a subspace of NP unless otherwise stated. For
example, an interval I is a subspace of R but I x {0} is a subspace of NP.
When A C X C NP, we say that A is e-open in X if A is open with respect
to the relative topology on X induced from the Euclidean topology. The words
e-closed and e-continuous are used similarly.

In this section, we determine a zero-set in N P. We first state the main results
in this section, then proceed to the proofs.
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Theorem 5.1. Let F be a closed subset of NP. Then F is a zero-set in NP
if and only if the set {x € R: (z,0) € F'} is a Gs-set in R.

Corollary 5.2. If S is a subset of NP with SNL = @&, then clyp S is a zero-set
in NP. In particular, every closed subset S of NP with SNL = @ is a zero-set
in NP.

Proof. This follows from Theorem 5.1 above and Lemma 5.11 below. U

The next corollary follows from Corollary 5.2, since F' = clyp(F \ L) for
every regular-closed set F' in NP.

Corollary 5.3. Every regular-closed set in NP is a zero-set.

Theorem 5.1 also shows that every zero-set in NP is a Gs-set with respect
to the Euclidean topology. On the other hand, every e-closed set in the closed
upper half-plane is a zero-set in N P. Hence, we have the following corollary.

Corollary 5.4. For a subset S of NP, S is a Baire set in NP if and only if
S is a Borel set with respect to the Euclidean topology.

The final theorem of this section describes a zero-set in a subspace of NP.

Theorem 5.5. Let Y be a subspace of NP and Yy = cly (Y \ L). Let F be a
closed subset of Y. Then F is a zero-set in Y if and only if A is a Gy-set in
B, where A={zx e R:(z,0) € FNYy} and B={zx € R: (z,0) € Yp}.

Before proving Theorems 5.1 and 5.5, let us observe some examples of non-
trivial zero-sets in N P.

Example 5.6. (1) The first one is a zero-set E in NP such that ENL = @& but
the set {z € R: (x,0) € cl. E'} is the Cantor set /IC, where cl; E is the closure of
E with respect to the Euclidean topology. Let Z be the set of all components
of [0,1] \ K. For each open interval I = (a,b) € Z, define

Er={{z,y):a<z<b, y=min{l — /1 —(x —a)?,1—+/1—(z—0b)?}}.

Then Ej is a closed set in NP such that cl. £ \ Er = {(a,0), (b,0)}. Define
E =\{E;:1 €1} Then E is a closed set in NP such that EN L = @ and
K ={z €R: (z,0) € cle E}, as required. By Corollary 5.2, E is a zero-set in
NP.

(2) The second one is a zero-set F' of NP such that F' = clyp(F\L) and {z €
R: (z,0) € F} = R\Q. Since Qx{0} is countable and discrete closed in N P, we
can find a disjoint family § = {S.(,)((z,0)) : * € Q} of basic open sets in N P.
Define F' = NP\ |J{S : S € §}. Then, {z € R: (z,0) € F} =R\ Q clearly. To
show that F' = clyp(F'\ L), consider a point ¢ = (,0) € (R\ Q) x {0}. Then,
Se(q) N (F\ L) # @ for each € > 0, because S is disjoint and the open interval
{y € R: (z,y) € Sc(q) \ {q}} cannot be covered by disjoint open intervals .J
with infJ > 0. Hence, ¢ € clyp(F \ L), which implies that F' = clyp(F \ L).
Finally, F' is a zero-set in NP by Corollary 5.2. U
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To prove Theorems 5.1 and 5.5, we need some definitions and lemmas. Let
Rf = R U {—00,+00} and consider —oo < z < +o0 for each z € R. For each
a € R, we define a function h, : R — [0, 1] as follows: For a € R, define

1—+/1—(z—a)? if |zx—al<1,

1 otherwise,
and define hyo(z) = h_o(z) = 1 for £ € R. By an open interval in R, we
mean a set of the form (a,b) = {x € R:a < z < b} for a,b € R* with a < b.
For an open interval J = (a,b) in R, we define

Ujy={(z,y) :a <z <b0 <y <min{hy(z), hp(z)}}.

Lemma 5.7. For every open interval J = (a,b) in R, the following are valid:
(1) J x {0} - UJ7
(2) J x {0} is a zero-set in NP and Uy is a cozero-set in NP.

Proof. (1) is obvious. To prove (2), let H = J x [0, +00). Since Uy is e-open in
H, there is an e-continuous function f : H — [0, 1] such that f1(0) = J x {0}
and f1(1) = H\ U;. We extend f to the function f, : NP — [0,1] by letting
f«lg = f and f.(p) =1 for each p € NP\ H. Then f, is continuous on NP
by the definition of U;. Since J x {0} = £, 1(0) and U; = f, [[0,1)], we have
(2). O

Lemma 5.8. If J is a family of disjoint open intervals in R, then the family
U={Uy:JeJ} is discrete in NP.

Proof. Let p = (z,y) € NP. If y = 0, then S)(p) meets at most one member of
U. If y > 0, then S, /5(p) meets at most one member of U. O

Let F be a family of subsets of a space X. It is known [14, 18] that F is
uniformly locally finite in X if and only if there exist a locally finite family
{G(F) : F € F} of cozero-sets in X and a family {Z(F) : F € F} of zero-
sets in X such that FF C Z(F) C U(F) for each F € F. Now, we say that
F is uniformly discrete in X if there exist a discrete family {U(F) : F € F}
of cozero-sets in X and a family {Z(F) : F' € F} of zero-sets in X such that
F CZ(F)CU(F) for each F € F.

Lemma 5.9. [15, Lemma 2.3] The union of a uniformly locally finite family of
zero-sets in a space X is a zero-set in X.

Lemma 5.10. If A is a Gs-set in R, then A x {0} is a zero-set in NP.

Proof. There exist open sets G, n € N, in R such that A =, .y G For each
n € N, G,, is the union of a family {J; : ¢ € M} of disjoint open intervals in
R. By Lemmas 5.7 and 5.8, {J; x {0} : ¢ € M} is a uniformly discrete family
of zero-sets in NP. Hence, G,, x {0} is a zero-set in NP by Lemma 5.9. Since

the intersection of countably many zero-sets is a zero-set, A x {0} is a zero-set
in NP. O

Lemma 5.11. If S is a subset of NP with SN L = &, then the set A= {z €
R: (z,0) € clyp S} is a Gs-set in R.
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Proof. For each z € R\ A, there exists n(x) € N such that S} /,(,)((z,0)) NS =
@. For each n € N, let B, = {z € R:n(z) =n}. Then it is easily proved that
AnNclg B, = 3. Since R\ A = J, ey clr By, A is a Gs-set in R. O

Lemma 5.12. Let Y be a subspace of NP such that Y = cly(Y \ L) and let F'
be a zero-set in Y. Then A is a Gs-set in B, where A ={z € R: (z,0) € F}
and B={z €R: (z,0) e Y}.

Proof. Since F' is a zero-set in Y, there exist open sets G, n € N, in Y such
that F' = (), cycly Gn. Let H =, onclvp(Gr \ L); then F = HNY by the
condition of Y. Moreover, the set C = {x € R: (z,0) € H} is a Gs-set in R by
Lemma 5.11. Since A = BNC, A is a Gs-set in B. 0

Lemma 5.13. Let E and F be closed sets in NP such that L C E and ENF =
@. Then there exists an open set U in NP such that E CU C clyp U C NP\F.

Proof. For each p € F, there is n(p) € N such that Sy /) (p) NF = &. For each
n €N, let B, ={p € E:n(p) =n} and U, = U{S1/2.(p) : p € Ey}. Then U,
is an open set in NP with F,, C U,,. We show that clyp U, N F = & for each
n € N. Suppose on the contrary that there is a point ¢ = (z,y) € clyp U, N F
for some n € N. Then y > 0, because F'N L = &. Thus, we can find § > 0 such
that for every x € R, if ¢ € 51/,,((%,0)), then S5(q) N S1/2,((7,0)) = @. If we
put € = min{d, 1/2n}, then

Vp € NP (q & Si/n(p) = S:(q) N Sy 20 (p) = D).

Now, since ¢ € clyp Un, S:(q) N S1/2,(p) # @ for some p € E,,. By (1), this
implies that ¢ € S,/,(p), which contradicts the fact that S,/,(p) N F = @.
Hence, clyp U, N F = @ for every n € N, and obviously, E C |J,,cx Un. On the
other hand, since F' is Lindeldf, there exists a countable family {V,, : n € N} of
open sets in NP such that F' C UneN Vi, and clyp V, N E = & for each n € N.
Finally, the set U = {J,,cn(Un \ N;<p, clvp Vi) is a required open set in NP. [

We are now ready to prove Theorems 5.1 and 5.5.

Proof. (of Theorem 5.1) Let A = {x € R: (z,0) € F'}. If F' is a zero-set in NP,
then A is a Gg-set in R by Lemma 5.12. Conversely, assume that A is a G-set
in R, i.e., there exist open sets G, n € N, in R with A = (1, .y G For each
n €N, let K,, = (R\ G, ) x{0}. Then both A x {0} and K,, are zero-sets in NP
by Lemma 5.10. Hence, there exists a continuous function f,, : NP — [0,1]
such that f,[A x {0}] = {0} and f,[K,] = {1}. Let H, = Fn f~[[1/2,1]].
Then H, is a closed set in NP with H, N L = &. By using Lemma 5.13 and
the technique used in the proof of Urysohn’s lemma, we can define another
continuous function g, : NP — [0,1] such that ¢g,[L] = {0} and g¢,[H,] = {1}.
Define Z, = £,;1[[0,1/2]] U g, '[{1}]. Then Z, is a zero-set in NP such that
F CZ,and Z, N K, = @. On the other hand, F U L is a zero-set in NP,
because it is an e-closed set. Since F' = (F U L) N(,cn Zn, F is a zero-set in
NP. O

Proof. (of Theorem 5.5) If F' is a zero-set in Y, then F'NY) is a zero-set in Yj.
Since Yy = cly (Yp \ L), it follows from Lemma 5.12 that A is a Gg-set in B. To
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prove the converse, assume that A is a Gg-set in B. Since Y \ Y} is a discrete,
open and closed subset of Y, F'\ Y is a zero-set in Y. Hence, it suffices to show
that F'NYp is a zero-set in Y. To show this, let Z; = clyp(F \ L) NY, and
Zy =(FNYy)NL. Then FNYy =73 UZs. By Corollary 5.2, Z; is a zero-set
in Yy. On the other hand, by the assumption, there exists a Gg-set C' in R such
that A = BN C. Since Zy = (C x {0}) N Yy, Z3 is a zero-set in Yy by Lemma
5.10. Consequently, F' N Yy is a zero-set in Yy, and hence, in Y, because Yy is
open and closed in Y. [l

6. z-EMBEDDED SUBSETS IN NP

A subset A of R is called a @)-set if every subset of A is a Gg-set in A. All
countable sets are ()-sets and the existence of an uncountable ()-set is known
to be independent of the usual axioms of set theory (cf. [12]). It is quite easy
to determine a z-embedded set Y in NP such that Y C L. Indeed, the first
theorem immediately follows from Theorem 5.1:

Theorem 6.1. For a subset A of R, A x {0} is z-embedded in NP if and only
if Ais a Q-set in R.

Next, we consider a z-embedded subset in NP which is not necessarily a
subset of L.

Lemma 6.2. Let Y be a subset of NP such that Y = cly(Y \ L). ThenY is
z-embedded in NP.

Proof. Let F be a zero-set in Y. Let A = {x € R: (2,0) € F} and B = {z €
R: (z,0) € Y}. Then by Lemma 5.12, A is a Gs-set in B, i.e., there is a G4-set
CinRwith A=BNC. Let Z = (C x{0})Uclyp(F\L). Then Z is a zero-set
in NP, because both C' x {0} and clyp(F \ L) are zero-sets in NP by Lemma,
5.10 and Corollary 5.2, respectively. Since F' = ZNY, Y is z-embedded in
NP. O

Theorem 6.3. Let Y be a subspace of NP and Yy = cly (Y \ L). Then Y is
z-embedded in NP if and only if A is a Q-set in R and is a Gg-set in B, where
A={zeR: (2,00 eY\Yy} and B={r e R: (z,0) € Y}.

Proof. First, assume that Y is z-embedded in NP. Then Y \ Y} is z-embedded
in NP, because Y is open and closed in Y. Hence, it follows from Theorem 6.1
that A is a (}-set. Moreover, since Y is z-embedded in N P, there is a zero-set
F in NP such that Y \ Yy = FNY. By Theorem 5.1, the set C = {z € R :
(z,0) € F} is a Gs-set in R. Since A = BNC, Ais a Gg-set in B. Next,
we prove the converse. By the assumption, there is a Gs-set D in R such that
A=BnND. Let Z; =D x {0} and Zy = clyp(Y \ L). Then both Z; and Z,
are zero-sets in NP by Lemma 5.10 and Corollary 5.2, respectively, and they
satisfy that Y \ YWCZ,Y0C 4y, Z1NYy = and Zo N (Y \ Yo) = . Hence,
it suffices to show that both Y \ Yy and Yj are z-embedded in NP. Since A is
a Q-set, Y \ Yy is z-embedded in NP by Theorem 6.1, and Y} is z-embedded
in NP by Lemma 6.2. U
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Remark 6.4. It is known that if A C R is a @-set, then the subspace Y =
(Ax{0})U(NP\L)of NP is normal (cf. [21, Example F]). Hence, the closed
set Ax {0} is then C-embedded in Y. However, this does not mean that Ax {0}
is C-embedded in NP even if A is countable. In fact, it is known ([8, Example
3.14]) that Qx {0} is not C*-embedded in N P; this also follows from Theorem
7.1 below.

7. P-, C- AND C*-EMBEDDED SUBSETS IN NP

Recall from [6] that a subset Y of a space X is CU-embedded in X if for every
pair of a zero-set /' in Y and a zero-set £ in X with ENF =g, Fand FNY
are completely separated in X. The extension properties we have considered
are related as the following diagram, where the arrow ‘A — B’ means that
every A-embedded subset is B-embedded:

P — C — C* — =z

S \

vv — CU
Moreover, we say that a subset Y C X is uniformly discrete in X if the family
{{z} : z € Y} is uniformly discrete in X, in other words, there exists a discrete
family {U(z) : z € Y} of cozero-sets in X such that z € U(z) for each z € Y.
As is easily shown, every uniformly discrete set in X is P-embedded in X.
Finally, we briefly review scattered sets in R. Let A C R. For every ordinal «,
we define the set A® inductively as follows: A©®) = A; if « = 8+ 1, then A(®)
is the derived set of A; and if « is a limit, then A(®) = N{A®) : g < a}.
A subset A of R is called scattered if A® = & for some «, and then we write
k(A) = min{a : A® = @}. It is known that x(A) < w; for every scattered set
Ain R.

Theorem 7.1. For a subset A of R, the following conditions are equivalent:

(1) A is a scattered set in R;

(2) A x {0} is uniformly discrete in NP;
(3) A x {0} is P-embedded in NP;

(4) A x {0} is CU-embedded in NP.

Proof. (1) = (2): We prove this implication by induction on x(A4). If k(4) =0,
it is obviously true since A = @. Now, let a > 0 and assume that the implication
holds for every subset A’ C R with k(A’) < a. Let A C R be a scattered set
with k(A) = . In case o = B+ 1, (A\ AP)) x {0} is uniformly discrete in
NP by inductive hypothesis, because r(A4\ A®) < a. Since AP is discrete,
there is a family {I, : z € A} of disjoint open intervals in R such that z € I,
for each z € A, Hence, it follows from Lemmas 5.7 and 5.8 that A% x {0}
is also uniformly discrete in NP. Since the union of finitely many uniformly
discrete subsets is uniformly discrete, A x {0} is uniformly discrete in NP.
In case a is a limit, then & = {A\ AP : B < a} is an open cover of A.
Since every scattered set in R is zero-dimensional, there exists a disjoint open
refinement V of Y. By considering order components of each member of V, we
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can find a family J = {J, : n € M} of disjoint open intervals in R such that
J covers A and {J, N A :n € M} refines V. By Lemmas 5.7 and 5.8 again,
the family {J,, x {0} : n € M} is uniformly discrete in NP, and hence, so is
{(JnNA) x{0}:ne M} . Moreover, each (J, N A) x {0} is uniformly discrete
in NP by inductive hypothesis. Since the union of a uniformly discrete family
of uniformly discrete subsets is also uniformly discrete, A x {0} is uniformly
discrete in NP.

(2) = (3) = (4): Obvious.

(4) = (1): Suppose that A is not scattered; then A includes a perfect subset
B which is closed in A. Let K = clg B and take a countable dense subset By of
B such that the set By = B\ By is also dense in B, i.e., K = clg By = clg B;.
Let E = (K \ By) x {0}; then F is a zero-set in NP by Lemma 5.10. Now,
By x {0} is a zero-set in A x {0}, because A x {0} is discrete. On the other hand,
B; x{0} = EN(A x {0}). Since A x {0} is CU-embedded in N P, there exists
a continuous function f : NP — [0,1] such that f[B; x {0}] =4 for ¢ =0, 1.
Let C; = {z € R: f({z,0)) =i} for each ¢ = 0,1. Then Cy and C; are disjoint
Gs-sets in R by Theorem 5.1. Hence, we can write K \ C; = UjEN D; j, where
each D; ; is e-closed in K, for each ¢ = 0, 1. Since B C CoUC and both By and
By are dense in K, D; ; is nowhere dense in K for all 4 and j. This contradicts
the completeness of K. O O

Lemma 7.2. Fvery CU-embedded subset Y in a first countable space X is
closed.

Proof. If Y is not closed in X, then there exists a sequence {p, : n € N} C Y
which converges to a point p € X \ Y. We may assume that p,, # p, if m # n.
Let E = {po, : n € N} and F = {pg,—1 : n € N} U {p}. It is easily proved
that F is a compact Gs-set in X, and hence, a zero-set in X, because X is
completely regular. On the other hand, since E U {p} is also a zero-set in X,
E is a zero-set in Y. Since Y is CU-embedded in X, £ and F'\ {p} must be
completely separated in X, which is impossible. O

Lemma 7.3. Fvery scattered subset A of R is a Gs-set in R.

Proof. This is well-known and also follows from our results. In fact, by Theorem
7.1, Ax {0} is uniformly discrete in N P, which implies that A x {0} is a zero-set
in NP by Lemma 5.9. Hence, A is a Gs-set in R by Theorem 5.1. U

By Lemma 7.2, we can restrict our attention to closed subsets of N P. The fol-
lowing theorem shows that every CU-embedded subset of NP is P-embedded,
which answers Problem 1.2 for the Niemytzki plane negatively.

Theorem 7.4. Let Y be a closed subspace of NP and let Yy = cly (Y \ L).
Then the following conditions are equivalent:

(1) The set A={z € R:(z,0) € Y \ Yo} is a scattered set in R;
(2) Y\ Yo is uniformly discrete in NP;

(3) Y is P-embedded in NP;

(4) Y is CU-embedded in NP.
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Proof. (1) < (2): This equivalence follows from Theorem 7.1.

(1) = (3): Suppose that (1) is true. Then A is a Gs-set in R by Lemma
7.3. Hence, the set A x {0} (= Y \ Yp) is a zero-set in NP by Lemma 5.10.
On the other hand, by the definition of Yy, it follows from Corollary 5.2 that
Y is a zero-set. Consequently, Yy and Y\ Yy are completely separated in N P.
Hence, it suffices to show that both Yy and Y \ Yp are P-embedded in NP.
By Theorem 6.3 and Corollary 5.2, Y is a z-embedded zero-set in N P, which
implies that Yy is C-embedded in NP by Theorem 3.1. Since Yj is separable,
Yy has no uncountable locally finite cozero-set cover. Hence, Y} is P-embedded
in NP. On the other hand, Y \ Yj is P-embedded in NP by Theorem 7.1.

(3) = (4): Obvious.

(4) = (1): If Y is CU-embedded in NP, then the set A x {0} (=Y \Yp) is
also CU-embedded in N P, because Y \ Y} is open and closed in Y. Hence, this
implication follows from Theorem 7.1. U

By Theorem 7.4, both of the zero-sets E and F' defined in Example 5.6 are
P-embedded in NP.

Corollary 7.5. Every CU-embedded subset in NP is a P-embedded zero-set.

Proof. Let Y be a CU-embedded set in NP and let Yy = cly (Y \ L). By
Theorem 7.4, Y is P-embedded in NP. Moreover, as I showed in the proof of
Theorem 7.4 (1) = (3), both Yy and Y \ Yj are zero-sets in NP. Hence, Y is a
zero-set in NP. U

Recall from [19] that a subset A of a space X is m-embedded in X if A xY
is C*-embedded in X x Y for every space Y. The following problem is open:

Problem 7.6. Is every P-embedded subset in NP w-embedded in NP?
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