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Some properties of o-bounded and strictly
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ABSTRACT.  We continue the study of (strictly) o-bounded
topological groups initiated by the first listed author and solve
two problems posed earlier. It is shown here that the product of
a Comfort-like topological group by a (strictly) o-bounded group
is (strictly) o-bounded. Some non-trivial examples of strictly o-
bounded free topological groups are given. We also show that
o-boundedness is not productive, and strict o-boundedness can-
not be characterized by means of second countable continuous
homomorphic images.
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1. INTRODUCTION

The class of o-compact topological groups has many nice properties. For
example, every o-compact group is countably cellular [11] and perfectly r-
normal [13, 15]. The subgroups of o-compact groups inherit these properties,
but clearly need not be o-compact. The notions of o-boundedness and strict
o-boundedness introduced by O. Okunev and M. Tkachenko respectively, were
considered in [9]. The idea was to find a wider class of topological groups as
close to the class of o-compact groups as possible which is additionally closed
under taking subgroups. Let us recall the corresponding definitions.

A topological group G is called o-bounded if for every sequence {U,, : n € N}
of open neighborhoods of the neutral element in G, there exists a sequence
{F, : n € N} of finite subsets of G such that G = |,y Frn - Upn. It is clear
that all o-compact groups as well as their subgroups are o-bounded. In a sense,
o-bounded groups have to be small: the group R¥ fails to be o-bounded [9,
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Example 2.6]. The class of o-bounded groups has good categorical properties:
all subgroups and all continuous homomorphic images of an o-bounded group
are o-bounded [9]. It was not known, however, whether this class was finitely
productive [9, Problem 5.2]. We show in Example 2.12 that there exists a
second countable o-bounded group G whose square is not o-bounded. Actually,
the group G first appeared in [9, Example 6.1] in order to distinguish the classes
of o-bounded and strictly o-bounded groups. However, the properties of this
group were not completely exhausted there. As is shown in [4], the group G is
additionally analytic, that is, G is a continuous image of a separable complete
metric space.

To define strictly o-bounded groups, we need to describe the OF-game (see
[9] or [14]). Suppose that G is a topological group and that two players, say 1
and 11, play the following game. Player I chooses an open neighborhood U; of
the identity in G, and player II responds choosing a finite subset F} of G. In
the second turn, player I chooses another neighborhood Us of the identity in
G and player II chooses a finite subset F» of G. The game continues this way
until we have the sequences {U,, : n € N} and {F), : n € N}. Player II wins
if G = U,~, F - Uy. Otherwise, player I wins. The group G is called strictly
o-bounded if player 11 has a winning strategy in the OF-game on G. It is easy to
see that o-compact groups are strictly o-bounded and every strictly o-bounded
group is o-bounded. As we mentioned above, o-bounded groups need not be
strictly o-bounded. In addition, there are lots of strictly o-bounded groups
that are neither o-compact nor isomorphic to subgroups of o-compact groups
[9, Example 3.1]. However, an o-bounded continuous homomorphic image of a
Weil-complete group is o-bounded, hence strictly o-bounded [3]. All this makes
the problem of studying the properties of these two classes of topological groups
fairly interesting.

The class of o-bounded groups is not productive in view of Example 2.12.
However, we have no examples of strictly o-bounded groups G and H such that
the product G x H is not strictly o-bounded (see Problem 4.1). On the other
hand, it was known that a product of an o-bounded group by a o-compact group
was o-bounded [9, Theorem 5.3], and a similar result for strictly o-bounded
groups was recently proved by Jian He (see Theorem 2.7) who in fact has
proved the result with ‘c-bounded’ instead of ‘c-compact’ and by a method
that extends the o-bounded result as well. It turns out that there are many
topological groups G (far from being o-compact) with the property that the
product G x H is (strictly) o-bounded for every (strictly) o-bounded group H.
Let G be a o-product of countable discrete groups endowed with the Rp-box
topology. We shall call any subgroup of such a group G a Comfort-like group.
(It was W. Comfort who proved that every o-product of countable discrete
spaces with the Ng-box topology inherited from the whole product is Lindeldf,
see [5]). We prove in Section 2 that multiplication by a Comfort-like group
G does not destroy (strict) o-boundedness: the product G x H is (strictly) o-
bounded for every (strictly) o-bounded group H. It is also shown that the
free topological group F'(X) is strictly o-bounded whenever X is the one-point
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Lindel6fication of any uncountable discrete space (Theorem 2.8). In fact, the
product F(X) x H is strictly o-bounded for every strictly o-bounded group H
(see Theorem 2.11).

It is clear that every o-bounded group is Np-bounded in the sense of [6],
that is, it can be covered by countably many translates of any neighborhood
of the identity. By Theorem 4.1 of [9], if G is Ny-bounded and all second
countable continuous homomorphic images of G are o-bounded, then G itself
is o-bounded. In Section 3 we use ¢ to construct an o-bounded group G whose
second countable continuous homomorphic images are countable (hence strictly
o-bounded), but G itself is not strictly o-bounded. Therefore, the class of
strictly o-bounded groups is considerably more complicated than that of o-
bounded groups. In other words, strict o-boundedness is not reflected in the
class of second countable groups.

The group G in Theorem 3.1 has another interesting feature. Let us call a
topological group H OF-undetermined if neither player I nor player II has a
winning strategy in the OF-game in . It was an open problem whether there
exist OF-undetermined groups. It turns out that the group G in Example
3.1 is OF-undetermined. We do not know, however, if such a group can be
constructed in ZFC. Another problem is considered by T. Banakh in [4]: Does
there exist a metrizable OF-undetermined group? He shows that such groups
exist under Martin’s Axiom and have necessarily to be second countable.

1.1. Notation and terminology. We denote by N the positive integers, by Z
the additive group of integers, and by R the group of reals. A topological group
G is called Rg-bounded [6] if countably many translates of every neighborhood
of the identity in G cover the group G. By a result of [6], G is Ry-bounded if
and only if it is topologically isomorphic to a subgroup of a direct product of
second countable topological groups. This class of groups is closed under taking
direct products, subgroups and continuous homomorphic images.

We say that H is a P-group if the intersection of any countable family of open
sets in H is open. Every topological group H admits a finer group topology
that makes it a P-group: a base of such a topology counsists of all Gs-subsets of
H.

If X is a subset of a group G, we use (X) to denote the subgroup of G
generated by X. Finally, the families of all non-empty finite and countable
subsets of a set A will be denoted by [A]<“ and [A]<¥, respectively.

2. PRODUCTIVE PROPERTIES OF O-BOUNDED GROUPS

Here we introduce the class of Comfort-like topological groups and show that
the product G x H is (strictly) o-bounded whenever G is a Comfort-like group
and H is (stricly) o-bounded. We start with a simple but useful lemma.

Lemma 2.1. Suppose that G, H and K are groups that o: G — H and
v: G — K are homomorphisms such that kery C kerw. Then there exists
a homomorphism f: K — H such that ¢ = f o). If in addition, G, H and K
are topological groups, ¢ and ¥ are continuous, and for each neighborhood U
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of the identity ey in H there exists a neighborhood V of the identity ex in K
such that ¢~ 1(V) C o 1 (U), then f is continuous.

Proof. The algebraic part of the lemma is well known. Let us verify the conti-
nuity of f in the second part of the lemma. Suppose that U is a neighborhood
of ey in H. By our assumption, there exists a neighborhood V of ex in K such
that W = 1(V) C ¢ }(U). Then f(V) = (W) C U, that is, f is continuous
at the identity of K. Therefore, f is continuous. O

Our second auxiliary result concerns continuous homomorphic images of Ng-
bounded P-groups.

Lemma 2.2. Let ¢: G — H be a continuous homomorphism of an Rg-bounded
P-group G to a topological group H of countable pseudocharacter. Then the
image ©(QG) is countable.

Proof. Let {U, : n € N} be a countable pseudobase at the identity ey of H.
Since G is a P-group, the kernel N = ker ¢ = [,y ¢~ '(Un) is a normal open
subgroup of G. Let ©: G — G/N be the quotient homomorphism. By Lemma
2.1, there exists a homomorphism f: G/N — H such that ¢ = f o). Since
G is Np-bounded, the quotient group G/N is countable, and hence |p(G)| =
F@(G)] < IG/N| < w. O

Let Il = [],;c; Gi be the direct product of topological groups G; and let e be
the identity of II. For every z € 11, put supp(z) = {i € [ : z(i) # e;}, where ¢;
is the identity of G, ¢ € I. Then we define

o = {z € I1: |supp(z)| < w}.

It is clear that op is a subgroup of II. This subgroup is called the o-product
of the groups Gy, ¢+ € I. Suppose that II carries the Ry-box topology 7, the
standard base of which consists of the sets w}l(V), where J is a countable
subset of I, my: II = II; = [[;c, G; is the projection, and V' = [];.,Vj is a
product of open subsets V; C G, j € J. Then II with the topology 7., becomes
a topological group. Note that if all groups G; are discrete, then every G-set
in (II,7,) is open. In the special case when the groups G; are countable and
discrete, we shall call ogp (as well as every subgroup of o11) a Comfort-like group.
Therefore, every Comfort-like group is a P-group. In particular, such a group
is zero-dimensional.

Let us show that Comfort-like groups form a subclass of Np-bounded P-
groups. It is helpful to note that by Theorem 2.4 of [9], every Np-bounded
P-group is o-bounded (in precise terms, the result in [9] was formulated for
Lindel6f P-groups, but its proof remains valid for Rg-bounded groups as well).

Corollary 2.3. Every Comfort-like group G is Rg-bounded. Therefore, G is an
No-bounded P-group, hence o-bounded.

Proof. Every Comfort-like group G is a P-group. We show that the group G is
Np-bounded. Since a subgroup of an Rg-bounded group is also Rp-bounded [6],
we can assume that G = oy, where Il = [[;.; G; is the product of countable
discrete groups G;, and II is endowed with the Ng-box topology. Let U =
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Gn 7'(';1(.’1)) be a non-empty basic open set in G, where J € [I|<%, 7r;: IT — I
is the projection and € II;. Since 7;(G) is countable, there exists a countable
subset K of G such that 7;(K) = w;(G). One easily verifies that G = K - U.
This proves that G is Np-bounded.

To finish the proof, note that the class of Ng-bounded P-groups is closed
with respect to taking arbitrary subgroups, and every group in this class is
o-bounded by Theorem 2.4 of [9]. O

Now we present one of the main results of this section.

Theorem 2.4. Let G be an Ng-bounded P-group and H be an o-bounded topo-
logical group. Then G X H is o-bounded.

Proof. Let us show that if ¢: G x H — K is a continuous epimorphisimn,
where K is a second countable group, then K is o-bounded. Suppose that
Wi, Wao, ... is a neighborhood basis at the identity ex of K. For each
i € N, we take a neighborhood U; x V; of (eq,ep), where U; and V; are
neighborhoods of the identities e and ey of G and H respectively, such that
U, xV;, C (pfl(Wi). Since G and H are Np-bounded, there exist continuous
homomorphisms f;: G — G; and h;: H — H;, where G; and H; are second
countable groups, and neighborhoods U/ and V; of the identities eq,; and eg,
of G; and H; respectively, such that f; 1(U!) C U; and h; 1(V/) C V; (see [14,
Lemma 37]) Let f = Ajenfi: G — HiEN G; and h = Ajenhi: H — HiEN H;
be the diagonal products of the families {f; : ¢ € N} and {h; : i € N}, re-
spectively. The groups G' = f(G) and H' = h(H) are second countable and
by Theorem 2.3 of [9], are o-bounded as continuous homomorphic images of
o-bounded groups G and H, respectively. In addition, G' = f(@) is countable
by Lemma 2.2, and so, o-compact. It then follows from [9, Theorem 5.3] that
G’ x H' is o-bounded. Observe that ker(f x h) C ker ¢ and then, for each neigh-
borhood W of the identity in K, there exists a neighborhood V of the identity
(eqr,enr) in G'x H' such that (f xh) (V) C ¢ }(W). So, by Lemma 2.1, there
exists a continuous homomorphism : G’ x H' — K such that ¢ = (f x h) o).
Applying again Theorem 2.3 of [9], we infer that K is o-bounded. Therefore,
all continuous homomorphic images of G x H are o-bounded, so [9, Theorem
4.1] implies that the group G x H is o-bounded. a

The above theorem and Corollary 2.3 together imply the following.

Corollary 2.5. If G is a Comfort-like group, then the product G x H is o-
bounded for every o-bounded group H.

It is shown in [9, Example 3.1] that every o-product of countable discrete
groups that carries the Ryp-box topology is strictly o-bounded. Since subgroups
of a strictly o-bounded group inherit this property [9, Theorem 2.1], every
Comfort-like group is strictly o-bounded. Here we strengthen this result by
considering the product of a Comfort-like group by a strictly o-bounded group.

Theorem 2.6. If G is a Comfort-like group and H is a strictly o-bounded
group, then G x H is strictly o-bounded.
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Proof. By Theorem 2.1 of [9], a subgroup of a strictly o-bounded group is
strictly o-bounded. Therefore, it suffices to consider the case G = o C I,
where the product IT =[], G of countable discrete groups G, is equipped
with the Rg-box topology. For every A € [7]=¥) let ma: [I — [I4 = [Toca Ga
be the projection. Denote by e4 the identity of 11 4. Then the family U = {Uy :
A € [7]5¥} is a base at the identity e of G, where Uy = G N7 (ea). One
easily verifies the following:

(1) every Uy is a normal subgroup of G;
(2) the sets Uy are clopen in G;
(3) |G/U4| < Ny for each A € [7]=v.

It was proved in [9, Example 3.1] that G is strictly o-bounded. We need to
refer to aspects of that proof, so the needed parts are reproduced here with
appropriate adaptation for our present proof. Suppose that player I chooses in
the turn ¢ the neighborhood W; of the identity in G x . We can assume without
loss of generality that each W; has the form W; = U; x V; where U; and V; are
neighborhoods of the identity in G and H respectively. In addition, we can
assume that U; = Uga,, where A; € [7]<%, and that A] C Ay C--- C A4; C---.

First consider the group G. If z € G, put supp(z) = {a < 7 : 24 # €},
where e, is the identity of G,. Clearly, supp(x) is a finite subset of 7 for each
z €.

Since each Uy has a countable number of cosets in G we may do as follows:

For every A € [7]=%, we define a countable set B4 = {z{!,z4',...} choosing
elements z7' in every coset of U4 in G in such a way that supp(z:!) C A for
each ¢ € N.

Choose = € (G. Then of course = € :vf‘ U4 for some :vf‘ € B4. We note that
as any element v € Uy has u, = e, for « € A, therefore z, = (:v{‘)a fora € A,
and moreover, supp(z:') C supp(x). We further note that if A, B € [7]<¥ and
A C B then Ug C Uy, and if z € a;jBUB then a;jBUB C a;{‘UA, SO supp(a;{‘) C
supp(zf) C supp(«).

With reference to the U; = Uy, above, and writing .’L‘; for mfi we see that
for each n, we have that = € z7 U, C --- C x?ZUQ - .’L‘}lUl and supp(a;}l) C
supp(z?,) C -+ C supp(z ) C -+ C supp(x).

As all of these sets are finite we must have some n = n(x) such that
supp(z"TF) = supp(:v;?n), for each K = 1,2,.... Since also by our remarks

In+k
above  must agree with each one of the Ty

support, therefore :v]nt’z =z} for all £ > 1.

Thus we have our main point as follows: z € x?(f)) Uy for each n > n(z).

For each n, let E, = {a;; :4,j < n}. Then certainly z € E, - U, for each
n > n' = max{n(z), j,(y)}- To prove that G is strictly o-bounded we only need
one n > n/, but to prove our present theorem we need the full set of n > n' as
we will now see.

Since H is strictly o-bounded, player II has a winning strategy in the OF-
game on H. So, we are able to construct finite non-empty subsets F; ; of H as

at each one of their coordinates of
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set out in the following scheme:

i Vo V3 ..oV, .V
Fl,l F271 F3,1 Fp,l Fjl
F272 F3,2 Fp,2 Fj,2

Fpp... Fip...
FJ,] oo

such that for each p > 1,

o0
H=JF, Vv,

g=p
If we put F; = U;':1 F; j, clearly then H = [J2 F; - V; for each p > 1. Now we
shall prove that G x H = {J;2,(E; x F;) - (U; x V;). Let (z,y) € G x H. Then
& € Ey Uy where n' = max{n(z), jn() }. Now, H = ;2 F;-V;. Soy € F;-Vj,
for some j > n'. But then z € E; - U;. Hence (z,y) € (E;-Uj) x (Fj-V;) =
(E; x Fj) - (Uj x Vj), as required. O

It is clear that every o-compact group is strictly o-bounded. By [9, Theorem
2.1], subgroups of o-compact groups inherit this property. The following theo-
rem proved by Jian He strengthens this result and complements Theorem 2.6.
We present its proof with his kind permission.

Theorem 2.7. If G is a strictly o-bounded group and H is a subgroup of a
o-compact group, then G x H is strictly o-bounded.

Proof. Since H is a subgroup of a g-compact group it is o-bounded, that is, H =
U2, Xi, where the sets X; are precompact in H and may be taken such that
X; is included in X; whenever ¢ < j. Therefore, for each sequence {V; : i € N}
of neighborhoods of the identity, ey, of H, there exists a sequence {Q); : i € N}
of finite non-empty subsets of H such that for each ¢, X; C @; - V;. Now we
suppose that at turn ¢, player I chooses a neighborhood U; x V; of the identity
in G x H. Since player II has a winning strategy in the OF-game on G, we are
able to construct finite non-empty subsets F; ; of G as set out in the following
scheme:

Uy Uy Uz ... Uy ... Uy ...

F171 F172 F173 Fl,p Fl,q

FQ,Q F273 FQ,p F27q

Fpp.o. Fpg ...

Fug ...
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such that for each p > 1,
o0
G=JF, U,
q=p

For every i > 1, let
F,=F;UF;JU---UF;; and K; = F; x Q;.

We claim that G x H = J;2; K; - (U; x V;). That is because if (z,y) € G x H,
then there exists p > 1 such that y € X,. But then there exists ¢ > p such that
z € Fpq-Us Nowas Qq -V, 2 Xy 2 Xp, then y € Q- V5. Since F, , C F, we
have

(:v,y) € Kq ’ (Uq x V;])u
and so G x H is strictly o-bounded. U

Another interesting problem is to characterize the spaces X such that the
free topological group F(X) is strictly o-bounded. Here we find a special class
of spaces X with this property.

Let D be a discrete space of uncountable cardinality. Denote by D* =
D U {z*} the space obtained by adjoining to D the point z* not in D, whose
topology consists of all subsets of D and all subsets of D* with countable
complements. Such a space D* is known as the one-point Lindeldfication of D.

Theorem 2.8. The free topological group F(D*) is strictly o-bounded.
To prove the above theorem we need two auxiliary results.

Lemma 2.9. The family v = {Ux : K € [D]<¥}, where Uk is the normal
subgroup of F(D*) generated by D* \ K, is a base at the identity of F(D*).

Proof. Let K € [D]=¥ and K* = K U {z*}. Define the natural retraction
r: D* — K* by the formula r(z) =z if z € K* and r(z) = z* if z ¢ K*. Now,
consider 7: F(D*) — F(K*), the extension of  to a continuous homomorphism.
It is easy to see that ker7# = Upg. Since K* is a discrete space, the group
F(K™*) is discrete, so Uy is a normal open subgroup of F(D*). Let us prove
that (v = {e}, where e is the identity of F(D*). Note that an element z =
aital? ...air € F(D*), with a; € D* and ¢; = %1, belongs to Uk if and only
if the word representing x becomes equal to e when all elements a; € D* \ K*
are replaced by z*. Hence if we choose K = {ay,...,ay}, then x # e implies

Clearly, D* is a Lindelof P-space, and hence all finite powers of D* are also
Lindel6f [10]. Therefore, the group F(D*) is Lindeldf (see also [11]). Suppose
that U is an open neighborhood of the neutral element e. Since the group
F(D*) is Lindel6f and {e} =)y C U, we can find a countable subfamily y of
v such that (¢ € U. Finally, observe that the intersection of any countable
subfamily of v is in . So, v is a base at e for F(D*). O

Lemma 2.10. Let Uk be the normal subgroup of F(D*) generated by D* \ K,
where K € [D]S%. Then F(D*) = (K) - Ukg.
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Proof. Let g be an element of F(D*). Then g = x1 - - - x,, where each z; is in
D*U(D*)~!. We use mathematical induction on n to prove that g is in (K)-Ug.
If n =1, then g = z7 is either in KUK ' C (K) orin (D*\K)U(D*\K) ! C
Uk. In either case, g € (K)-Ug. We suppose that n > land z1 - - x—1 = f-u,
where f € (K) and u € Uk.

If z,, € D*\ K, then it is clear that uz,, € Uk, hence g = f-uz, € (K)-U,. On
the other hand, if z,, is in K, then for Ux to be a normal subgroup, v’ = x,, 'uz,,

is in Ug. Therefore, g = fx,, - u' € (K) - Ug. This finishes the proof. O

Proof of Theorem 2.8. For every K € [D|¥, let {gX : n € N} be an enu-
meration of the group (K). Without loss of generality, we may suppose that
player I chooses open sets of the form Uy (Lemma 2.9 applies here). If player
I chooses Uk, , player II chooses F| = {gf(l}. In general, if player I chooses
Uk, , then player II chooses F;,, = {g]K’ : 1 < 4,5 < n}. We can also as-
sume that K1 C Ko C --- C K, C ---. Let K = |J72; K;. Observe that
(K) = U2 (i) = U2y Frn. Finally, since Ug C Uk, for each n, Lemma 2.10
implies that

o.¢] o.¢] o
F(D*) =(K) Uk = (|J Fn) - Ux = |J(F - Ux) € | B Uk,.-
n=1 n=1 n=1
Then, F(D*) is strictly o-bounded. O

In fact, the above theorem admits a stronger form.

Theorem 2.11. The product F(D*) x H is strictly o-bounded for each strictly
o-bounded group H.

Proof. We can modify slightly the proof of Theorem 2.6 and obtain the proof
of our theorem. Indeed, the sets Ux are now the normal subgroups of F(D*)
generated by D* \ K, where K € [D]=¥. These sets were used in the proof of
Theorem 2.8 and, as before, form a base for the identity that has the following
properties:

(1) each Uk is a normal subgroup of F(D*);

(2) the subsets Uy are clopen in F/(D*);

(3) |F(D*)/Uk| < g for each K € [D]=“.

We may suppose that player I chooses neighborhoods of the form U; x V;,
where U; and V; are neighborhoods of the identity e of F/(D*) and ey of H
respectively, and U; = Ug,, where K; is in [D]=¥, i € N.

As in the proof of Theorem 2.8, we choose an enumeration {gX : n € N} of
(K), and put E, = {:105(z 4,7 < m}. At this point, the proof of the theorem
continues in the same way as the proof of Theorem 2.6. O

The following example shows that the class of o-bounded groups is not finitely
multiplicative. This answers the corresponding problem posed in [9] in the
negative. It turns out that the o-bounded group G from [9, Example 8] suits.

Example 2.12. There exists a second countable o-bounded topological group
G such that G x G is not o-bounded.
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For every z € RY, define suppz = {n € N: z(n) # 0}. Let {ng(z) : k € w}
be the enumeration of supp z in the increasing order. Denote by X the set of
all x € R¥ such that

lim 736(”]9)

ko0 Mg 11(2)
Consider the subgroup G of R¥ generated by X, i.e., G = (X). In what follows
we use the additive notation for the group operation in R¥.

We already know that G is o-bounded. We shall prove that G2 is not o-
bounded describing a sequence {U,, : n € N} of open neighborhoods of the
identity e € G for which no sequence of finite subsets {E, : n € N} in G
will make G% = J2,[(E, x Ep) + (Uy x Uy)]. For every n € N, let U,, =
GNII7Z, Vaj, where V;, ; = (=1,1) for 0 <j <nand V, ; =R if j > n. Now,
when considering E,, + U, the only coordinates of the elements F,, that matter
are 0,1,...,n since U, is unrestricted on w \ n coordinates. So, we may as well
only consider E,, where the elements have 0 at each of the w\n places. Moreover,
we can assume that E, C E, ;. Let A, = max{|z(i)| : z € E,, 0 <i < n}.
Observe that Ag < A; < ---. We shall prove that G2 # J2° |[(E, x Ep) +
(U, x Up)] for any finite subsets E,, C G. That is, there exists at least one
pair of elements z, y € G such that (z,y) ¢ U, [(En x Ep) + (Uy, x Uy)]. We
construct = and y as follows. Choose ng =0, n; = 1 and set z(0) = zo > Ap,.
We now choose any ng such that z/ne < 1/2. Now, for all 4, 0 < i < ng, we put
z(i) = 0. Let y(n1) = yn, > Ap,. Then we choose ng € w so that y,, /ns < 1/3.
We set y(j) = 0if 0 < j < nj or ny < j < n3. We continue in this way to
define numbers {n;, : k € w}. We put z(ng) = z,, > Ay, ,, for k even and such
that z(ng)/ngre < 1/(k + 2). The other values for z(j) so far undefined for
j < npyo are set as 0. Similarly, if k is odd, then define y(ng) = yn, > An,,,
and ny4o is defined so that y(ng)/ngre < 1/(k + 2). It is clear that z,y € G.
We claim that (z,y) ¢ U,_,[(En X Ep) + (Un x Uy)]. Indeed, suppose that
n € N and that ny < n < ngy1. If k is even, then z,, > Ay, ., > Ay, s0
v ¢ By + Uy, If kis odd, then y,, > Ay, ., > Ay, soy ¢ E, +U,. Hence
(z,y) & US> o[(En X Ey)+ (Up, x Uy)]. This shows that G? is not o-bounded. O

=0.

3. AN EXAMPLE OF AN OF-UNDETERMINED GROUP

By Theorem 4.1 of [9], an Ryp-bounded group G is o-bounded if and only
if all second countable continuous homomorphic images of G are o-bounded.
Here we show that strictly o-bounded groups cannot be characterized this way,
thus answering [9, Problem 4.2] in the negative. In addition, the group G we
construct below will be OF-undetermined, that is, neither player I nor player
II has a winning strategy in the OF-game on G.

Theorem 3.1. Under {, there exists a topological group G with the following
properties:
(a) every countable intersection of open sets in G is open;
(b) the image f(G) is countable for every continuous homomorphism f :
G — H to a second countable topological group H; in particular, G is
o-bounded;
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(¢) G is OF-undetermined, hence not strictly o-bounded.

Proof. We shall construct G as a subgroup of the group Z“' endowed with
the Ng-box topology, where the group Z has the discrete topology. This will
guarantee (a). For every a < wi, let my: Z¥ — Z% be the projection and
K, be the kernel of 7,. Then K, is an open subgroup of Z“!, and we put
N, = GN K,. Clearly, the family {N, : @ < w;} forms a decreasing base at
the neutral element of G. The subgroup G of Z“' will also satisfy the following
strong condition:

(B) |G| = Ry, but m4(G) is countable for each a < w;.

Let us show that (B) implies (b). Suppose that f: G — H is a continuous
homomorphism to a second countable topological group H. Choose a countable
base {U, : n € N} at the neutral element of H. For every n € N, there
exists an ordinal o, < w; such that N, C f }(U,). Let a be a countable
ordinal satisfying a,, < « for each n € N. Then N, C ker f, so by Lemma
2.1 there exists a homomorphism g: 7,(G) — H such that f = g o m,. Since
the group 74 (G) is countable by (B), we have |f(G)| < |74(G)| < w. Clearly,
every countable group is o-bounded, so Theorem 4.1 of [9] implies that G is
o-bounded.

The difficult part of our construction is to guarantee (c¢). This requires some
preliminary work. For a point € Z“!, put supp(z) = {a < w; : z(a) # 0}
and consider the subgroup ¥ of Z“! defined by

Y ={z € Z* : |supp(z)| < w}.

It is clear that |X| = ¢ = N;. Actually, our group G will be constructed
as a subgroup of 3. Since {N, : @ < w;} is a base at the neutral element
of G, we can assume without loss of generality that player I always makes his
choice from this family, and this choice, say N, is defined by the corresponding
ordinal a. Therefore, every possible winning strategy for player II is a function
1 Seq — [G]<Y, where Seq is the family of all finite sequences (ag, aq,. .., ay)
with ap < a1 < -+ < @, < wy and [G]<Y is the family of all non-empty finite
subsets of G.

Denote by Lim the set of all infinite limit ordinals in w;. For every o €
Lim, denote by Seq(a) the family of all finite sequences (5y, 81, - .., Or), where
o < P < -+ < By < a. Using ¢ and Lemma 2 of [Fed], we can find a family
{%q : @ € Lim} satisfying the following conditions:

(i) q: Seq(a) — [Z]<¥ is a function for each «a € Lim;

(ii) for every function t: Seq — [X]<¥ satisfying |7, ((Seq))] < w for
each v < wq, there exists a € Lim such that ¢, = 7, 0 zp]Seq(a), ie.,
Ya(Boy- -, Pn) = ma(¥(Bo, ..., 0n)) for any sequence fy < -+ < B, < a.

If 8 < a < wy, denote by w3 the projection of Z* to ZP. Now, we will
construct a sequence {G, : @ < w;} satisfying the following conditions for each
o< wi:

(1) G4 is a countable subgroup of Z%;

(2) m§(Ga) = Gp if B <
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(3) Gat1 =Ga X Z;

(4) if @ € Lim, then Ug,(Gg X {05}) C Gq, where 0F is the neutral
element of Z\5;

(5) if @ € Lim, then 1, is not a winning strategy for player II in G,.

Put Gy = Z. Suppose that for some a < wy, we have defined a sequence
{Gs : B < a} satisfying (1)-(5). If o is non-limit, say o = B+ 1, then we put
Go=GgxZ< 7P x 7 = 7Z°. Let us consider, therefore, the case o € Lim.
Set H = Uz o(Gp x {05}). Clearly, the subgroup H of Z® is countable. Fix
a sequence {8, : n € N} C « such that lim,en 8, = a. For every n € N, put
Fy, = a(Bo, - - -, Bn). We claim that there exists a point z € Z*\J,,cn(Un +Fr)
such that 7§ (z) € Gg, for each n € N, where U, = mo(Kp,) C Z°. Indeed,
choose a point zg € Gg, \ 75, (F0). By induction, with the help of (2) and (3),

define a sequence {zy, : n € N} such that z, € Gg, \7j (£7) and wg;‘“ (Tpy1) =

xy for each n € N. This is possible because (2) and (3) together imply that
for every 3,7 with v < 8 < « and every z € G, there exist infinitely many
y € Gg with wg(y) = z. Let z € Z® be a point satisfying 7§ (z) = z, for each
n € N. It is easy to see then that = ¢ (J,.y(Un + Fy). Put Go = H @ ().
Then Go \ U,en(Un + Fr) # @, i.e., 94 is not a winning strategy for player II
in Go. Since 7§ (H) = G and 7§ (z) € G for each 8 < a, we conclude that
wg(Ga) = Gg for all B < a. Clearly, the group G, is countable, so that the
sequence {G : v < a} satisfies (1)—(5). This finishes our construction.

Consider the subgroup G = J,,, (Ga X {0(a)}) of Z*!, where 0(c) is the
neutral element of Z“\* for every @ < w;. Then G C X, |G| = N; and
To(G) = G4 for each a < wy, ie., G satisfies (B). Let us verify that G is
OF-undetermined.

First, we show that player II has no winning strategy. Let 1): Seq — [G]<* be
a function. Then |7, ()(Seq))| < [[Ga]<¥| < w for each a < wy, so (ii) implies
that there is a € Lim such that 1, = T4 © ¥[geq(a). However, 1, fails to be
a winning strategy for player Il in G,, and hence one can find an increasing
sequence (fy < -+ < f;, < --- < o and a point z € G \ U,cn(Un + Fy), where
F, = ¥a(Bo,...,0n) and U, = mo(Kp,) for each n € N. Choose an element
y € G with 7w, (y) = z. Since F,, = mo(¢¥(Bo,...,0,)) for every integer n, we
conclude that y ¢ J,cn(Ks, +9(00,.--,8n)), i.e., 1 is not a winning strategy
for player Il in G.

Let us show that player I has no winning strategy. Since player I always
chooses elements of the base {N, : a < w1}, every possible winning strategy
for him is a function ¢: F — wq, where F is the family of all finite sequences
(Fo, ..., F,) with Fy, ..., F, € [G]<¥. The equality o = ¢(Fp,...,F,) means
that player I chooses the neighborhood N, at the step n + 1. Suppose that
¢: F — wy is a function, and Fy is the player I's choice at the first step. Since
G C %, for every x € G there exists a < wy such that supp(z) C «. Therefore,
for every finite subset F' of G, we can define

s(F) = min{a < w; : supp(z) C « for each z € F}.
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Given an ordinal 8 < wq, put
A(B)=sup{p(Fy, ..., Fn) : (n € N) A (Vi <n)[F; € [G]™ A s(F;) < B}

Define a strictly increasing sequence {3, : n € N} C w; such that A(8,,) < Gn41
for each n € N and put o = sup,cn Bn. Let Go = {x, : n € N}. For every
n €N, H, = Gg, x{0(n)} is a subgroup of G, where 0(n) is the neutral element
of Z#1\P» (see (4)). It is easy to define a sequence {F}, : n € N} of finite subsets
of GG satisfying the following conditions for all n € N:

(6) F,, C Hy;

(7) mg, (z;) € mg, (Fy) for i =0,...,n.

We claim that if + € G and 74 (x) = z;, then © € Ng, + F), for each n > i.
Indeed, by (7), we have 7, (z;) € mg,(Fn), so z|g, = i|s, = y|s, for some
y € F,. This implies that © € Kg, +y C Kg, + F,, and hence x € Ng,  + F),.
This proves the claim. From (6) it follows that v,4+1 = ¢(Fy, ..., Fn) < Buti
for each n € N, so we conclude that

o0 o
GC | JWs, +F) € Ny, + Fo).
n=1 n=1

Therefore, ¢ cannot be a winning strategy for player I, and hence G is OF-un-
determined. It remains to note that an OF-undetermined group is not strictly
o-bounded. This completes the proof. [l

4. OPEN PROBLEMS

The class of o-bounded groups is not productive by Example 2.12. This
motivates the following

Problem 4.1. Does there exist strictly o-bounded groups G and H such that
the product G x H is not strictly o-bounded?

It is known that the product G x H is o-bounded whenever G is o-bounded
and H is either a o-compact or Comfort-like group (see [9, Theorem 5.3] and
our Corollary 2.5). We do not know whether the multiplication by a strictly
o-bounded group can destroy o-boundedness:

Problem 4.2. Is it true that a product of an o-bounded group by a strictly
o-bounded group is o-bounded?

Theorem 2.8 suggests the following problem:

Problem 4.3. Characterize the spaces X such that the free (Abelian) topological
group F(X) (A(X)) is o-bounded or strictly o-bounded.

In fact, the above problem splits up into four distinct subproblems.

By [9, Theorem 4.1], an Ng-bounded group G is o-bounded iff all second
countable continuous homomorphic images of G are o-bounded. We do not
know whether “Ng-bounded” can be omitted here:

Problem 4.4. Suppose that all second countable continuous homomorphic im-
ages of an (Abelian) topological group G are o-bounded. Is then G o-bounded?
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In Theorem 3.1 we constructed an example of an OF-undetermined topologi-
cal group G. Our group G is very far from being metrizable: it is a non-discrete
P-group. The following question is considered by T. Banakh in [4]:

Problem 4.5. Does there exist an OF-undetermined metrizable group?

Since every OF-undetermined group is o-bounded and o-bounded groups are
Rp-bounded, such a group has to be second countable. It is also shown in [4]
that the answer to the above question is “yes” under Martin’s Axiom.
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