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ABSTRACT. We present some results concerning the topological
dynamics of antitriangular maps, F' : X? — X? with the form
F(z,y) = (9(y), f(x)), where (X,d) is a compact metric space
and f,g : X — X are continuous maps. We make an special
analysis in the case of X = [0, 1].
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1. INTRODUCTION

Let (X,d) be a compact metric space and let ¢ : X — X be a continuous
map, ¢ € C(X,X). The pair (X,¢) is called a discrete dynamical system,
whose orbits are given by the sequence {¢"(z)}>2,, z € X, where ¢" = po
©" 1 n > 1 and ¢ = Identity. In general, the full knowledge of all orbits
of the system is a difficult problem and it is only known in some particular
cases. Nevertheless, good approximations can be given. These approaches
can be probabilistic (invariant measures, metric entropy, ...) or topological
(periodic structure, topological entropy, ...). In this paper we will follow this
last approach.

A point z € X is periodic when, for some n > 0, is " (z) = z. If n = 1,
the periodic point is called fized point. The order or period of a periodic point
is precisely the smallest of the values m for which ¢ (z) = x. We denote by
Per(¢) the set of periods that the continuous map ¢ has.

We use A(p) to denote one of the following sets: the set of periodic points,
P(p); the set AP(p) of almost periodic points, that is, the points x € X such
that for any neighborhood V' = V (z) of z, there is N = N(V) € N such that
©*N(z) € V, for every k > 0; the set UR(¢) of uniformly recurrent points, x € X
such that for any neighborhood V' = V(z) of z, there is N = N(V') such that
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for all ¢ > 0 it holds ¢"(z) € V for some ¢ <r < g+ N;R(p) ={r e X :z €
wy(x)} is the set of recurrent points, with wy(x) the omega-limit set of the point
x, that is, the points y € X such that there is a subsequence {n;}, C N with
©"(x) — y as n; — 00; C(p) = R(p) is the centre of ¢, where A denotes the
closure of a set of A C X; w(yp) is the (global) w-limit set, w(p) = U,cx we(T);
Q(p) is the set of non-wandering points, those points € X such that for
any neighborhood U = U(z) of = there exists N = N(U) € N in a way that
©N(U)NU # @; and finally the set CR(y) of chain-recurrent points, the points
z € X for which given any ¢ > 0, there is {x;};" ; C X such that zy = z,
d(ziy1,p(z;)) <efori=0,1,...,n —1 and d(zp, p(zs)) < €.
It follows from the definitions that

(L.1) P(p) € AP(¢) € UR(p) C R(p) € Clyp)
and
(1.2) w(p) € Qp) € CR(p).

In this paper, we are devoted to topological dynamics of antitriangular maps,
that is, continuous maps F': X X X — X X X of the form

(1.3) F(z,y) = (9(y), f (),

with (z,y) € X x X.

Antitriangular maps appear in some economical models, particularly with the
so—called Cournot duopoly (see [12] or [8]). The Cournot duopoly consists in an
economy in which two firms are competitors in the same sector. This situation
is modelled by a map F having the form of (1.3) and such that X =1 = [0, 1].

From (1.3) it is clear that

(1.4) F*(z,y) = ((go f)"(x),(f o 9)" ()
and
(1.5) FP Yz, y) = (go (fog)"(y),fo(go f)"(z))

for any (z,y) € X x X and for any n € N. So, it is natural to expect the
dynamics of F' to be strongly connected to the dynamics of go f and f og.

In [10] a program is developed for triangular maps, that is, continuous maps
T : I? — I? of the form T(z,y) = (f(x),g(z,y)). This is made investigating
the relationship between the sets A(T) C I? and A(f) C I, where

A() € {P(), AP(-), UR(-), R(-), C(),w(:), 2(), CR()}-

When X = I, a first step to follow a similar program for antitriangular maps
is to do the same with the sets A(F) C I? and A(go f), A(fog) CI.

For A(-) € {P(-), AP(-),C(-), CR(:)} we see that A(F) = A(go f) x A(fog)
and when A(F) = R(F) the two situations, R(F') = R(g o f) x R(f o g) and
R(F) & R(go f) x R(f og) are possible (see [3]). We also see that in the case of
the set of uniformly recurrent points the same result is true. For A(F) = Q(F)
the situation is more complicated and the case Q(F) € Q(go f) x Q(f o g)
can happen. It remains open what is the situation when A(F) = w(F). We
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conjecture that the cases w(F) = w(gof) xw(fog) and w(F) G w(go f)xw(fog)
could be found.

We underline that similarly to the interval case in antitriangular maps on I?
it is held C(F') = P(F'), which is not true in general in the triangular case (see
110]).

Similarly to the interval case, we construct examples proving that the follow-
ing chain is possible

(1.6) P(F) # AP(F) # UR(F) # R(F) # C(F) # w(F) # Q(F) # CR(F).
The paper is organized as follows. In the next section, we study the rela-

tionship between the sets A(F) and A(g o f) x A(f o g). The last section is
concerned with the introduction of the chain (1.6).

2. PROJECTION OF THE TOPOLOGICAL DYNAMICS

If (X, d) is a compact metric space, we denote the product space by (X x X, p),

where

p((z1,91), (w2, 92)) = max{d(z1,72), d(y1,y2) }
for all (z1,y1), (z2,y2) € X x X. If f,g € C(X, X) we define the product map
fxg: X xX—=XxXby(fxg)(z,y) = (f(z),9(y)) for all (z,y) € X x X.
So, if F(z,y) = (g(y), f(z)) is an antitriangular map, we obtain that F? =
(9o9) x (Fog).

In this section we consider an antitriangular map F : X x X - X x X and
we study if the equality A(F) = A(go f) x A(f o g) holds, where A(-) denotes
one of the subsets P(-), AP(:), UR(-), R(-), C(-), w(:), (-) or CR(-). Before
studying this problem, we need the following result.

Proposition 2.1. Let (X,d) be a compact metric space. Let f,g € C(X, X).
Then

(a) P(f?) =P(f) and P(f x g) = P(f) x P(g).
(b) AP(f?) = AP(f) and AP(f x g) = AP(f) x AP(g).
(c) UR(f?) = UR(f) and UR(f x g) C UR(f) x UR(g).
(d) R(f?) =R(f) and R(f x g) CR(f) x R(g).
(e) C(f?) = C(f) and C(f x g) € C(f) x C(g).
(f) w(f?) =w(f) and w(f x g) C w(f) x w(g).
(8) Qf?) CQ(f) and Q(f x g) € Qf) x Qg).
(h) CR(f?) = CR(f) and CR(f x g) = CR(f) x CR(g).

Additionally, if X =[0,1], then C(f x g) = C(f) x C(g).

Proof. For the first part of (a)-(h) see [4]. The second part of properties (a)—(h)
follow from definitions. For instance, we prove here the equality CR(f x g) =
CR(f) x CR(g).

Let (zo,y0) € CR(f % g). Given an arbitrary € > 0, we must prove that there
is an e-chain for x and f, and an e-chain for y and g. For £ > 0, there is an
e-chain for (zg,y0) and f X g,

(:I;Oa y0)7 (mla yl)a ) (mna yn)7 (xn-l-layn-l-l) = (370, y0)7
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such that d((f x g)(zi, yi), (Tit1,yi+1)) <€ for i =0,1,...,n. Clearly
Ly L1yeeey Ty Tn4+1 = L0

is an e—chain for zy and f and

Yo, Y1y -y Yns Yn+1 = Yo

is an e—chain for yy and g. So CR(f x g) C CR(f) x CR(g).

Now, let zyp € CR(f), yo € CR(g) and prove that (zg,y0) € CR(f X g).
Fix ¢ > 0 and let zg,x1,...,Zn, Tpt1 = xo be an e¢—chain for zy and f, and
Y0y YLy - Yms Ym+1 = Yo an e—chain for yo and g. We can clearly assume that
n = m (repeating the chains if necessary). Then,

(x07y0)7 (x17y1)7 ey (xn7yn)7 ey ($n+1,yn+1) = (x07y0)

is an e—chain for (z¢,yo) and f x g. Hence (zg,y0) € CR(f X g).
To finish the proof, assume that X = [0,1] and prove that C(f x g) =
C(f) x C(g). Since C(f) = P(f) = R(f) (cf. [6]), we obtain that

R(f) X R(g) = P(f) x P(g) = P(f) x P(g) = P(f x g) € C(f x g),
and jointly with (e) we conclude the proof. O

Theorem 2.2. Let (X,d) be a compact metric space. Consider f,g € C(X, X)
and let F(z,y) = (g(y), f(z)). Then

(a) P(F) P(go f) x P(feg).
(b) AP(F) = AP(g o f) x AP(f o g).
(¢) UR(F) C UR(go f) x UR(f 0 g).
(d) R(F) CR(go f) X R(f og).

(e) C(F) S C(go f) xC(foyg)

(f) w(F) Cw(ge f) xw(feg).

(8) QF?) CQ(go f) x Qf og).

(h) CR(F) = CR(go f) x CR(f o g).
If in addition X = I, then C(F) = C(go f) x C(f o g).

Proof. Just notice that F? = (go f) x (f o g) and apply Proposition 2.1. [

Now we fix X = I. It was proved in [3] that the inclusion (d) of Theorem
2.2 can be strict, that is, there is an antitriangular map F holding

(2.7) R(F) S R(go f) xR(fog).
We are able to give an example showing that
(2.8) UR(F) g UR(go f) x UR(f o g),

that is, the inclusion (c) of Theorem 2.2 can be strict. To this end, consider
the trapezoidal tent map f(z) = max{l — |2z — 1|, u} (# = 0.8249...) from [11].
The idea for constructing the example is the following: any infinite w-limit
set of f is contained in a solenoidal structure. This structure can be labelled
by codes which characterizes the elements of infinite w—limit sets (see below).
We take two uniformly recurrent points xg,yo belonging to the same infinite
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w-limit set and such that zg,yo are labelled by the same code. We prove that
(%0, 50) € UR(F) for the map F(z,y) = (y, f(z)).

Now, we need some definitions. For any Z C Z let Z%° = {a = (04)°, : o €
Z,ieN} ForneNlet 2" = {(a1,a2,....0pn) t; € Z, 1 <i<n}. If0eZ"
and 9 € Z™, n € N, m € NU{oco}, then 619 € Z"t"™ (where n + 0o means oo)
will denote the sequence A defined by A\; = 6; if 1 <14 < n and \; = ¥J;_, for any
i > n. In what follows we denote 0 = (0,0,...,0,...) and 1 = (1,1,...,1,...),
while if @ € Z*° then al,, € Z" is defined by al, = (a1, a9, ..., ay).

Proposition 2.3. Let f be the trapezoidal map defined above. Consider the
antitriangular map F(z,y) = (y, f(x)). Then

UR(F) G UR(f) x UR(/).

Proof. By [11], f has periodic points of periods 2", n € NU{0}. By [9, Propo-
sition 1], there is a family { K, }qez of pairwise disjoint (possibly degenerate)
compact subintervals of [0, 1] satisfying the following properties.

(P1) The interval K¢ contains all absolute maxima of f.

(P2) Define in Z the following total ordering: if o, 5 € Z*°, a # (8 and k is
the first integer such that oy # 0 then a < g if either Card{l < i <
k:a; <0} is even and o < O or Card{l <i < k:0; <0} is odd and
Br < ag. Then o < B if and only if K, < Kz (that is, z < y for all
z € Ky, y € Kpg).

(P3) Let o € Z*°, o # 0, and let k be the first integer such that ay # 0.
Define f € Z® by fi=1for 1 <i<k—1, fy=1—|ag| and 8 = o
for i > k. Then f(K,) = K. Also f(Kp) C K;.

(P4) For any n and 0 € Z", let Ky be the least interval including all intervals
Ky, a € Z*°, such that a|, = 6. Then, for any a € Z*°, K, =
Nzt Kqj,-

(P5) If w(z, f) is an infinite w-limit set of f, then w(x, f) C {0,1}°°, where
{0, 1}°° denotes the set of infinite sequences («;)52; with «; € {0, 1} for
all i € N.

(P2) gives us information on the positions of {Ky}aeze in [0,1] while (P3)
gives us information on the dynamics of the family of intervals { Ky }qeze. On
the other hand, since f has an interval of absolute maxima, (P1) gives us that
Ky is non—degenerate. Let [zg, yo] = Ko. By (P2) it is straightforward to prove
that

(2.9) FPUR(Ko) C Koy
for all n,k € N. Then (P3) gives us that
(2.10) FETR) (KoY < Ko < f2 00 (k)

for n,k € N. We claim that zg,y9 € UR(f). In order to see this fix |Ko| >
e > 0 small enough and consider the open interval (zg — €,z9 + €). By (P4)
Koy,_1+(1) C (v0—¢,m0+¢) if 2n—1 > m and Kyj,, 1) (v0—¢,70+¢€) = @ for
all n € N. By (2.9) and (2.10), f2" 7 (142k) (10) € Koly,_1+1) C (w0 — €, 70 + €)
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if 2n — 1 > m for all k € N. This gives us zy € UR(f) (similarly it can be
proved that yo € UR(f)). Let

zo(f) == {n € N: " (x9) < Ko}
and
yo(f) = {n e N: ¥ (y) > Ko}
Consider the antitriangular map F(z,y) = (y, f(z)). Then, it is clear that
F?(z,y) = (f(z), f(y))- By [5, Proposition 3.5], (z9,y0) € UR(F) if and only

if zo(f) Nyo(f) is infinite. However, by (2.10), zo(f) Nyo(f) = @. Therefore
(z0,y0) ¢ UR(F) while (z9,yo) € UR(f)xUR(f). This concludes the proof. [

We are not able to say anything about the inclusions (f)-(g) of Theorem
2.2, but we are able to give an example of an antitriangular map F such that
QF) L Qgo f) xQf og) (compare with (a)—(f)). To this end, we prove the

following lemma.

Lemma 2.4. Let F(z,y) = (f(y), f(x)) be an antitriangular map with f €
C(I,I). Then xz € Q(f™) if and only if (x,z) € Q(F™) for any integer n > 1.

Proof. First assume that € Q(f") and let V C I? be an open neighborhood
of (z,z). Let U C I be an open set such that (z,z) € U x U C V. Since
x € Q(f™), there is a positive integer m such that (f™)™(U)NU # @&. Hence
according to (1.4) and (1.5) we have

Fr(U xU)N (U xU) # @,

which gives us (z,z) € Q(F™). On the other hand, let (z,z) € Q(F™). Let

U C I be an open set such that z € U. Since (z,z) € Q(F™), there is an
m € N such that (F")™(U xU)N (U xU) # @. Then f"*(U)NU # & and
x € Q(f"). O

Lemma 2.4 allows us to show that in general
(2.11) QF) Z Qgo f) x Qfog).
To see this, let f be a continuous interval map such that Q(f) \ Q(f?) # &
(see [7]) and define F(z,y) = (f(y), [(z)) (in this case go f = fog = J2).

Let © € Q(f) \ Q(f?). By Lemma 2.4 we clearly obtain that z € Q(f) implies
(z,2) € Q(F), while (z,z) ¢ Q(f2) x Q(f2) = Qgo f) x Q(f og). Additionally,
we obtain that (z,z) € Q(F) \ Q(F?).

In [7] it is shown that in the case of continuous interval maps every succession
of equalities and strict inclusions is possible in the chain

(212)  Q(f) 22 29(F) 20(%) 2.2 207 2 .

According to Lemma 2.4, the same happens in the case of antitriangular maps
for the chain of inclusions

Q(F) 2Q(F) 2QFF) 2QFF) 2 .. 20F) 2QF* ) 2 .
It suffices to take F'(x,y) = (f(y), f(x)) where f holds (2.12).
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Again concerning the non-wandering set, (2.11) gives us that it can happen

g o f) & m(Q(F)) and Q(f o g) & ma(Q(F)),

where 7; represents the canonical projection, ¢ = 1,2. Notice that it is straight-
forward to see that

m(A(F)) = Alg o f) and my(A(F)) = A(f © g)
for A(-) € {P(-), AP(), UR(),R(-), C(-), w(-), CR(-)}.

Finally, we are able to prove that equalities are possible in Theorem 2.2 under
some particular assumptions. We will see this in the next section.

3. CHAIN OF INCLUSIONS

3.1. General properties about the chain of inclusions. Let f: 1 — I be
continuous. Then [6] provides that C(f) C w(f) and the inclusions from (1.1)
and (1.2) can be rewritten as follows:

(3.13)  P(f) CAP(f) CUR(f) CR(f) € C(f) Cw(f) CQf) C CR(f).
Moreover the above inclusions can be strict.

Proposition 3.1. There exists a continuous map fo: 1 — I such that

P(fo) # AP(fo) # UR(fo) # R(fo)
# C(fo) # w(fo) # Qfo) # CR(fo)-

Proof. In [14, Theorem 4.6] we can find an interval map fsuch that
P(f) # AP(f) # UR(f) = R(/) # C(f) # w(f) # Q) # CR()).

Then we define a new continuous map by
f( z), if z € [0,
fo(z) = affine in [1, 2]
f(8z —2), 1fa; € [3,

1

3)

?

31,

where f : I — [ is a continuous map with positive topological entropy (see

[1] for definition). Then UR(f) # R(f) (see [14, Theorem 4.19]) and by an
standard argument (see e.g. [7]) fo holds the statement. O

Here we investigate if (3.13) and Proposition 3.1 are true in the setting of
antitriangular maps. From definitions it is clear that

(3.14) C(F) € Q(P),
but we are unable to say nothing about the inclusion
(3.15) C(F) Cw(F).

For instance, this inclusion does not work for triangular maps, that is, two—
dimensional maps with the form T'(z,y) = (f(z), g(z,y)) (see [10]).
Clearly, C(F) = R(F) C w(F). However, it is not known if w(F) is closed.

This would give us w(F) — w(F), which would prove (3.15).
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It is well known that C(f) = R(f) = P(f) in the case of interval maps
(see [6]). However this is false for triangular maps ([10]). Now in the case of
antitriangular maps we obtain the following result.

Theorem 3.2. Let F(x,y) = (9(y), f(z)) be an antitriangular map. Then
C(F)=P(F).

Proof. Since P(F) C R(F), it is obvious that P(F) C R(F'). In order to prove
the converse inclusion, we use [6] and Theorem 2.2 to write

R(F) CR(go f) xR(feog) =P(ge f) x P(fog) =P(F),
which ends the proof. O

In order to prove more results, we need some additional hypothesis on f. A
continuous interval map f : I — I is called a piecewise monotone map when
there are 0 = a1 < az < ... < a, = 1 such that flj, 4, ] is either decreasing or
increasing for 1 <4 < n. Then we can prove the following result.

Proposition 3.3. Let F(z,y) = (g(y), f(xz)) be an antitriangular map such
that f and g are piecewise monotone maps. Then

w(F) CC(F) =w(F).
Proof. If f, g are piecewise monotone maps then go f and fog are also piecewise

monotone maps. According to [4, Proposition 22, Chapter IV], P(go f) =
w(go f) and P(f og) = w(f o g). By Theorem 2.2 and [6]

w(F) C w(gof)xw(fog)=Plgof)xP(foyg)=
= R(gof) xR(fog)=R(F) = C(F).
On the other hand, since P(F') C w(F'), by Theorem 3.2 we obtain
C(F) = PE) CwlF) Cwlgof) xw(fog)
— Plgof) x P(fog) = P(F) = O(F).

0

For antitriangular maps it is possible to find an interesting periodic structure,
similar to the Sarkovskii’s ordering (see [13]). It is known that Per(g o f) =
Per(f o g) and either Per(F) = p or Per(F) = p U {2}, with

p=2(Per(go f)\{1}) U{k € Per(go f) : k odd, k > 1},
where 24 = {2a:a € A}, for A C N (see [2]). Then we say that F' has type

less, equal or bigger than 2°° if the related one-dimensional map g o f has the
corresponding type. Then the following result makes sense.

Theorem 3.4. Let F(x,y) = (g(y), f(z)) be an antitriangular map such that
Per(F) C {2" : n € NU{0}}. Assume that P(F) is a closed set. If A(-),B(:) €
{P(-), AP(-), UR(:),R(-), C(-), ("), (), CR(:)} it holds

(a) A(F) = B(F).

(b) A(F) = A(go f) x A(f og). Moreover Q(F?) = Q(F).
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Proof. 1f P(F) is closed, according to Theorem 2.2 we find P(F) = P(go f) x
P(fog) =P(gof)xP(fog) =P(F),soP(gof)and P(fog) are closed, hence
P(gof)=A(gof), P(fog) = A(fog), where A(.) represents one of the others
seven sets ([14, Theorem 4.11]). Therefore

CR(F) = CR(go f) x CR(f o g) =P(go f) x P(f o g) = P(F).

Now (1.1), (1.2) and Theorem 2.2 end the proof. O

3.2. An example of strict inclusions. Now we study if Proposition 3.1 holds
in the case of antitriangular maps. To this end, first we prove the following
lemma.

Lemma 3.5. Let F(z,y) = (y,f(z)) be an antitriangular map defined on
I?. Letx € I. Then z € A(f) if and only if (z,z) € A(F) where A() €
{P(-),AP(-),UR(:),R("),C(),w(-), (), CR(")}.

), C

Proof. The cases P(-), AP(-), C(-), CR(:) hold by Theorem 2.2 and UR(-), R(-),
w(-) follow easily from definitions. So, we prove the case §2(-). First assume
that z € Q(f) and let V' C I? be an open neighborhood of (x,z). Let U C I be
an open set such that (z,z) € U x U C V. Since z € Q(f), there is a positive
integer n such that f*(U)NU # &. Then

(
), w

FMUxU)N(UxU) = (f"(U)x frUNN U xU) £

which provides (z,z) € Q(F). Second, assume that (z,z) € Q(F) andlet U C I
be an open neighborhood of z. Since (x,z) € Q(F), there is a positive integer
m such that F™(U xU)N (U x U) # &. We have two possibilities: (1) m = 2n
for n € Nand (2) m =2n+ 1 for n € N. If (1) happens, then

FUxU)N (U xU) = (fYU) x frONNU xU) #@
and f*(U)NU # @. If (2) happens, then
FHU U < U)N (U x U) = (F*(U) x f*TH(U)) N (U x V) # 2,

and f*(U)NU # @ and f"*(U)NU # @. In both cases z € Q(f), which ends
the proof. O

From Lemma, 3.5 the following result follows.
Theorem 3.6. There is an antitriangular map Fy such that

P(Fy) # AP(Fp) # UR(F) # R(Fp)
# C(Fp) # w(Fo) # QFo) # CR(F).

Proof. Just define Fy(x,y) = (y, fo(z)), fo given by Proposition 3.1 and apply
Lemma 3.5. U
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