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Continuous maps in the Bohr Topology

DIKRAN DIKRANJAN*

ABSTRACT. The Bohr topology of an Abelian group G is the initial
topology on G with respect to the family of all homomorphisms of G
into the circle group. The group G equipped with the Bohr topology
is denoted by G*. It was an open question of van Douwen whether for
any two discrete abelian groups G and H of the same cardinality the
topological spaces G¥* and H# are homeomorphic. A negative solution
to van Douwen’s problem was given independently by Kunen [19] and
by Watson and the author [9, 10]. In both cases infinite dimensional
vector spaces V,, over the finite field Z, were used to show that there
is no homeomorphism between V;* and V;# for p # g and |V,| = |V,].
More precisely, it was shown that every continuous map Vp# — Vq# is
constant on an infinite subset of V}, hence cannot be a homeomorphism.
Motivated by this phenomenon we establish in this paper the “typical”
behavior of a continuous map f : Vi¥ — H# (and discuss without
proofs the more general case f : V;,# — H*#). The specific choice of
p = 2 permits to consider V5 as the set of all finite subsets of an infinite
set B (the base of V). A special attention will be paid to the restriction
of f to the doubletons and the four element subsets of B.
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1. INTRODUCTION

The Bohr compactification of an abelian group G is a compact group bG
that contains G as a dense subgroup such that every homomorphism of G into
a compact group K extends to a continuous homomorphism of the group bG in
K. The Bohr topology of the group G is the topology of G induced by the Bohr
compactification rg : G — bG. This is precisely the initial topology on G with
respect to the family of all homomorphisms of G into the circle group. The
Bohr compactification and the Bohr topology can be defined analogously for
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an arbitrary topological group G. In such a case continuous homomorphisms
defined on G should be considered. Moreover, if G is not abelian, then the
circle group should be replaced by the unitary groups U(n) (where for every
natural n the group U(n) consists of all unitary n x n matrices over the field
C of complex numbers). In general rg need not be injective, the groups with
injective Bohr compactification r¢ are known (according to J. von Neumann
[26]) as mazimally almost periodic, related to the fact that these are precisely
the groups G such that the almost periodic complex valued functions G — C
separate the points of G. Locally compact abelian groups are maximally almost
periodic. For such a group G we denote by GT the group G equipped with the
Bohr topology. In this paper we consider only the special case when G is an
Abelian group equipped with the discrete topology, so following van Douwen
[25] we write G¥ in place of G* for a discrete group G.

By a classical theorem of Glicksberg [14] G and G have the same com-
pact sets for every locally compact abelian group G. This fact was extended
to other compactness-like properties (pseudocompactness, real compactness,
Lindeldf property etc.) in [2], [5], [6], [23] (see also [22] for a related result).
Hernéndez [16] proved that also the Lebesgue covering dimension is preserved
by the passage G — GT. On the other hand, this correspondence strongly
fails to preserve normality — Trigos [24] proved that G# is not normal when
G is an arbitrary discrete uncountable abelian group. Answering a question
of van Douwen [25] Comfort, Herndndez and Trigos ([2, Theorem 3.3]) proved
that for a discrete abelian group G the group G# is real-compact if and only
if |G| is not Ulam-measurable (i.e., when G itself is real-compact). This result
is extended in [2, Theorem 3.8] for locally compact abelian groups, namely a
LCA group G is real-compact, iff G* is real-compact iff G is topologically
complete.

The present, article cannot certainly cover even a small part of the recent
research on Bohr topology (cf. [11, 12, 20]). The main topic here is the con-
tinuity (in the Bohr Topology) of maps between abelian groups motivated by
the following question set by van Douwen [25] (cf. [1, 515. Question 3F.3.]).

Problem 1.1. Let G and H be discrete abelian groups with |G| = |H|. Are
G# and H* homeomorphic as topological spaces?

The answer to this question turned out to be negative, i. e., there are
two groups of the same cardinality with non-homeomorphic Bohr topologies.
Counter-examples, based on different ideas, were given independently and
around the same time in [19, 9]. The groups in the counterexample in [9, 10]
are uncountable (see Theorem 1.2 below). An example in the countable case
was produced by Kunen [19] (see Theorem 5.6).

Throughout the paper x will be a fixed infinite cardinal number. For a
countable abelian group K denote by Gk the direct sum of k many copies of
K (i.e., Gk is the group of functions from k to K with finite support). For
a natural m > 1 denote by Z,, the cyclic group of order m.In the case when
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K = Z,, we write Gy, instead of Gk (i.e., G, will be the direct sum of xk many
copies of Z,).

Theorem 1.2. [10] If k > 2%° = 03, then there is no continuous 1-1 function
from G¥ into G¥.

By means of an elegant inductive argument making use of Ramsey ultrafil-
ters, Kunen [19] established a partition theorem for nets in vector spaces over
finite fields and proved that for distinct primes p and q there is no continuous
1-1 function from Gf into fo for k = w ([19, Th.4.1]). Actually, it was shown

both in [19, 10] that every continuous map GI — G¥ is constant on an infinite
subset of G2 hence cannot be a homeomorphism. The proof in [10] based on
a combinatorial lemma that allows for an easy application of the elementary
convergence properties of the groups G#. We show here that an appropriate
modification of the argument from [10] works with arbitrary target group H
instead of Gf (cf. 4.9 and 5.1 for the counterpart of the combinatorial lemma,
and Lemma 2.1-2.7 for the convergence properties of the groups H#). Namely,
here is the precise counterpart of 1.2:

Theorem 1.3. If k > J3 and there exists a continuous finitely many-to-one
map G;’E — H# | then H contains an infinite Boolean subgroup.

Roughly speaking, the Bohr-continuous 1-1 maps can “measure” the Boolean
subgroups. The basic idea of the proof of this theorem is to follow the behaviour
of a continuous map 7 : G¥ — H# when restricted to the subspace D, of G¥
consisting of 0 and all doubletons (when G is identified with [k]<*). Making
substantial use of the values of m on the four-elements sets of k one proves
that for some infinite Z C k either 7 vanishes on D, or w sends D, injectively
into some Boolean subgroup of H (Theorem 5.3, with proof given in §5.4). The
important point is that the restriction w|p, alone cannot help in detecting non-
homeomorphisms. Indeed, every infinite abelian group G admits a continuous
1-1 map D\g| — G# (actually an embedding, if G is uncountable, cf. Theorem
3.3).

Of course, Theorem 1.3, as well as Kunen’s paper [19] leave many open
questions. For example: is Theorem 1.3 true for Kk = w (i.e., must an abelian
group H necessarily have infinite Boolean subgroups whenever there exists a
continuous 1-1 map (P, Z,)# — H#)? In particular, is G¥ homeomorphic
to Z# for k = w? Actually, it is not known whether G2# admits a continuous
1-1 map into Q# for kK = w.

It will be nice to classify, up to homeomorphism, all spaces G# with G
discrete abelian group of a given cardinality (e.g., G = Z or G = G3). A
possibility for classification was conjectured in [19] (G# and H# are Bohr
homeomorphic iff there exist finite index subgroups G’ < G and H' < H
with G' = H'). Comfort, Herndndez and Trigos-Arrieta [4] showed recently
that this classification program fails by proving that Q# and Z# x (Q/Z)# =
(Z x (Q/Z))* are homeomorphic. Note that by Theorem 1.3 the powers Q* and
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(Z x (Q/Z))" are not homeomorphic when equipped with their Bohr topologies
and k > Jz (cf. Corollary 5.8).

The homeomorphism result of Comfort, Herndndez and Trigos-Arrieta [4]
was obtained in the framework of another question of van Douwen. If H has
finite index in G, then H# is clopen in G#, hence is a retract of G¥#. In
the groups G, every subgroup splits off algebraically, hence it is a topological
direct summand in Gi. This phenomenon led van Douwen [25] to pose also
the following natural question

Proposition 1.4. [25, Question 4.12] Is every (countable) subgroup H of a
group G# a retract of G¥# 2

and its natural generalization

Proposition 1.5. [25, Question 4.13] Is every countable closed subset of G#
a retract of G# ?

A negative answer to Question 1.5 was given by Gladdines [13].

In §5.3 we comment without proofs some further contributions towards the
non-homeomorphism problem obtained in [7]. It turns out that Theorem 1.3
remains true for GZf, where p is an arbitrary prime number and £ > Jap_1 (cf.
Theorem 5.10). In particular, if G# and H# are homeomorphic as topological
spaces and are sufficiently large, then they have similar properties related to
torsion (see Theorem 1.6). Contrary to Kunen’s result in the case of bounded
torsion abelian groups, reasonable non-homeomorphism theorems seem hard
to be realized with countable groups in the case of non-torsion groups. For
example, if G# and H# are Bohr homeomorphic, then H torsion-free does not
yield G has at most finitely many torsion elements (as Q¥ and (Z x (Q/Z))#
are homeomorphic and the torsion subgroup of the latter group is countably
infinite). The following notion is especially meaningful for uncountable groups.
An abelian group H is said to be almost torsion-free if H has finite p-rank for
every prime p (clearly, the torsion part of an almost torsion-free group is count-
able, but there are countable groups that are not almost torsion-free group).
Roughly speaking, the torsion part of a group that is Bohr homeomorphic to
an almost torsion-free group cannot be large:

Theorem 1.6. If G is an abelian group with |t(G)| > 3, then there exist no
continuous finitely many-to-one map 7 : G#* — H#*, with H almost torsion-
free.

Consequently, if G# and H# are homeomorphic and H is almost torsion-
free, then [t(G)| < 3, (cf. Corollary 5.11). Theorem 1.6 immediately follows
from Theorem 5.10.

More applications of our results (including a new proof of Gladdines’ the-
orem), as well as complete proofs of those announced in §5.3 will be given in
[7, 8.

The paper is organized as follows. A detailed description of the topology
of the groups Gﬁ in terms of convergent nets is given in §2. The key notion
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of splitting net is given in §2.2. In §3 many examples of continuous and dis-
continuous maps in the Bohr topology are given. Then we show in §§4, 5 that
every continuous map 7 : G;’E — H# can be “straightened”, i.e., appropriate
restrictions of 7 are among the “typical” sample maps considered in §3.

Notation and terminology. The symbols N and Z are used for the set of
positive integers and the group of integers, respectively. The symbol ¢ stands for
the cardinality of the continuum, so ¢ = 2%, The circle group T is identified
with the quotient group R/Z of the reals R and carries its usual compact
topology. For d,n € N, the fact that d divides n abbreviates to d|n.

We consider here only Abelian groups, so only additive notation is used.
The symbol 0 stands for the neutral element of an Abelian group G. We
write H < G if H is a subgroup of G. If a is an ordinal, we use G* and
P, G to denote the direct product and direct sum of o copies of the group G,
respectively.

Let G be an abelian group. The cyclic subgroup of G generated by b € G is
denoted by (b). For every n € N, we put G[n] = {g € G : ng = 0}.We denote
by t(G) the torsion subgroup of G, by 7(G) the free rank of G' and by r,(G)
(for a prime p) the p-rank of G (this is the dimension of G[p] over the field
Z/pZ).

Let K be a countable abelian group. We use the convention that a finite
function o from some finite set F' of ordinals in & into K \ {0} is to be identified
with the function f from & into K defined by f(a) = 0 when a is not in F
and by f(a) = o(a) otherwise. We set supp f = F. In particular, we keep this
convention and notation for the group G,, = ®4Z,, (in this case one has finite
functions ¢ from some finite set F' C & into {1,2,...,m — 1}).

2. PROPERTIES OF THE BOHR CONVERGENCE IN G7%

It follows directly from the definition of the Bohr topology, that a net 4 — 0
in G# iff the net x(x4) — 0 in T for every character x : G — T. Moreover,
amap f : G*¥ — H# is continuous iff the composition y o f : G# — T is
continuous for every character x : H — T.

Since the image of every homomorphism G,, — T is contained in Z,,, a
typical subbasic open set Us around 0 in G is given by a function ( : K = m
and is defined by U, = {f € G, : f( = 0} where the multiplication is the
inner product as vectors. The characteristic function kK — m of a set A C k,
will be denoted by (4. It has constant value 1 on the support A of (4. Since
every homomorphism G,,, = Z,, is a finite linear combination of characteristic
functions, to check that a net ng converges to 0 in G¥ it suffices to check that
Ca(ng) — 0 for every A C k.

2.1. Convergence in Gf . The group G» is actually [x]<“ equipped with
the operation symmetric difference. This makes the topology of G# extremely
transparent. Here is the description of the nets converging to 0 in G# following
directly from the definition of Bohr topology:
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Lemma 2.1. An arbitrary net {nq: d € D} converges to 0 in Gf if and only
if for any A C &, there is d' € D such that | suppng N A| is even for all d > d'.

In particular, if the net {ng : d € D} converges to 0 in G¥, then |suppng|
is even for all d > d'.

This gives the following immediate corollary for nets of doubletons converg-
ing to 0 from [10]:

Corollary 2.2. For o net S = {(aq,B4) : d € D} of doubletons of k the
following are equivalent:

e S converges to 0 in the Bohr topology of G=;
e for any A C K, there is d' € D such that for alld > d', either (g, B84) C
A or (ag,Bd) NA=2.

® B4 ® B4

[ NP ® Oy

Note 1. Clearly, a net {ng : d € D} of x that converges to 0 in the Bohr
topology of G3 is free, i.e., for every a € k there exists dy € D such that
a & suppng for d > do (just take A to be the complement to the singleton
{a}). Consequently, for every finite set F' C k there exists dg € D such that
FNsuppng =@ for d > dy.

In the sequel we consider doubletons (a, 8) and four-element subsets (quad-
ruples) («, 8,7, 06) of k which will be identified as above with elements of Ga.
In such a case we always assume that a < § < v < §. Taking into account that
the Bohr topology is a group topology and the equalities

(a,B8,7,0) = (o, B) + (7,0) = (&,7) + (B,9)
we get (applying Lemma 2.2):

Lemma 2.3. ([10]) Let (o, 3,7,0) be a net of four-element sets of k.

(1) If a and B are fized and the corresponding net (y,d) converges in the
Bohr topology to 0, then the net (a, 3,7, 06) converges in the Bohr topol-
ogy to (a, B).

(2) If the corresponding nets (o, ) and (B,8) converge in the Bohr topology
to 0, then the net (a, 8,7,9) converges in the Bohr topology to 0.

The following lemma is needed to generate converging quadruples in Gf .

Lemma 2.4. Let Z C k be an infinite set of ordinals.

(a) If v,0 € Z are fized and there are infinitely many elements of Z less
than -y, then there is a net of finite functions (, 8,7,d) where all the
ordinals come from Z and where the corresponding net (o, ) converges
in the Bohr topology to 0.
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(b) For every a partition Z = Z' U Z" into infinite disjoint subsets Z', Z"
there is a net (a, 8,7,0) such that o,y € Z', 3,0 € Z" and the corre-
sponding nets (o, ) and (8,8) converge to 0 in G¥ (and consequently,
(a,8,7,8) = 0). Conversely, if a net (a,,7,86) = 0 with a,y € Z'
and 3,0 € Z", then (a,v) and (8,8) converge to 0.

Proof. (a) Take as index set I the set of all finite families F' = {A4,...,Ap} of
subsets of Z ordered by inclusion. Then choose the a, 8 for a particular index
F in such a way that o < f < v and (a, 8) lies entirely inside or outside each
Ai,iZ 1,...,TL.

(b) This can be arranged as in the proof of (a). Use finite families F of sets
A C Zy ordered by inclusion as the index set I. Then, for any particular F,
choose infinite W' C Z' and W' C Z" so that each of W' and W" lie entirely
inside or outside each A € F. Then choose a < § < v < § so that a,y € W'
and 8,6 € W". O

Although convergent nets we consider here have most often limit 0, we give
for completeness the following general property that permits to isolate the limit
function as a “part of the net” (cf. item (b) below):

Lemma 2.5. Let {ng:d € D} = v be a net in Gz, Then:

(a) for some tail of the net supp v C supp ng;

(b) for some tail of the net v C ng if Gk = Gm;

(c) if suppv # @, then for some tail of the net supp v is an initial segment
of suppng if Gk = G, and k = w.

Proof. (a) Pick A € A = suppv and note that ng()) converges to v(\). This
means that ng(A\) # 0 for every large d € D. So A € supp ng for those d. Since
A is finite, we can find a tail that works for all A\ € A. To prove (b) note that
if Gx = Gy, we have ng(A) = v(A) for every A € A and every sufficiently large
de D.

(c) Now let Kk = w and assume that v # 0 and let oy be the minimal
element of suppr. Let B be the (finite) set of all & < ag. By Observation 1
suppng N B = & for some tail of the net. Thus supp v is an initial segment of
supp ng for some tail of the net. O

An important property of Gf is that for every infinite Z C & the closure
[Z]* contains [Z]>. Indeed, take any pair a < § in Z. Now choose a net
v < § in Z with 8 < « such that (v,d) converges to 0 in Gf. Then the net
(o, B,7,08) = (, B), and (a, B,7,8) € [Z]*, thus (a,B) € [Z]*. Now we prove
it in general.

Lemma 2.6. The following holds in Gf.

(a) [k]F C [K]**+2 for every k.

(b) v € [k])* iff |suppv| < k and has the same parity with k.

In particular, 0 € [k]* iff k is even.
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Proof. (a) It suffices to note that for every fixed z = (ai1,...,a;) € [k]* and
every convergent net of doubletons (u,v) — 0 with ay < u < v one has ¢ =
lim(aq,...,ak,u,v). L o

(b) Let us prove first that 0 € [k]* iff k is even. Assume first that 0 € [x]*
and fix a net in [k]* with ng — 0. Then k must be even, as noted immediately
after Lemma 2.1. The inverse implication follows from (a).

To prove now the first assertion in (b) note that if ng — v with ng € [k]*,
then supp v C supp ng by Lemma 2.5 and mg = ng —v — 0. Let s = | suppv|,
so that my € [k]*~*, hence the first part of the proof implies that k — s is
even. O

Let us resume our observations in the following:
Lemma 2.7. Set [G2]°% = |J77_[k]*"! and [G2]®® = o2 [K]*™. Then:

(a) [G2]°% and [G2]®" are clopen subsets of G ;

(b) [k]=™ is a closed subset of G¥ and for every n the closure of [K]™ is
[K]=™ N [G2]°%, if n is odd, and [k]=" N[G2]¢?, if n is even.

(c) if m: G¥ — H# is a continuous map that vanishes on [Z]* for some
infinite subset Z of K, then m vanishes on [Z]? too.

Proof. (a) and (b) follow from Lemma 2.6.

(c) To see that m vanishes also on [Z]? note that [Z]? is contained in the
closure of [Z]*. Now, by the continuity of 7 we can conclude that 7(a, ) = 0
for every a < fin Z. O

2.2. Splitting of convergent nets. Now we describe the converging nets in
the Bohr topology for arbitrary groups. This was done in [10] for G using
splitting of nets. Now we extend this notion to nets in arbitrary abelian groups
in the following way.

Definition 2.8. Let {ng:d € D} be a net in an abelian group G. We say that
ng splits into a sum of nets {m,(j) :de D}, i=1,2,...,n, if:
1) ng=",mY for every d;
2) the family of subgroups (m((;) :d € D),i=1,2,...,n, is independent
(i.e., their sum is direct).

A relevant case is G = G, or just any group Gg = @, K, where K is
a (countable) abelian group. Now the support supp(z) is defined for every
element z of such a group, so that we usually ensure (and ask) the stronger
condition supp ml(;) N supp mg]) = @ for i # j and every d,e € D instead of
2). Note that this property (all “cross-intersections” are empty) implies the
weaker property “all supports supp mg) in ng are pairwise disjoint for every
fixed d € D”. In the sequel, with only exception of 2.9 and 2.10, we work
in groups of the form Gk and we intend splitting in this stronger sense with
supports.

The next theorem gives the most important property of splitting nets in the

general context.
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Theorem 2.9. Assume ng — 0 and there is a splitting ng = > -, mfii). Then
mfi') — 0 for everyi.
The proof of the theorem follows immediately from the next proposition

proved in [7]:

Proposition 2.10. [7] Let G be an abelian group and let Ho, Hy be subgroups
of G with HoNHy = 0. If forv = 0,1 {hY : d € I} is a net in H, such that
the net {hg + hcli :d € I} converges to 0 in G¥, then also hY converges to 0 in
G* forv=0,1.

Let us consider now some examples. By Lemma 2.9 a non-trivial convergent
net ng — 0 of doubletons in G¥# cannot split. For nets of quadruples in G¥ we
have:

Corollary 2.11. Let Z C k and let Z = Z' U Z" be a partition of Z. Then for
a net (o, 8,7,8) such that a,y € Z' and 8,8 € Z" the following are equivalent:

(a) (a,) and (B,8) converge to 0 in G,

(b) (a,B,7,8) converges to 0 in Gf.

Conversely, if ng = (o, 8,7,0) — 0 is a non-trivial convergent net G#
admitting o splitting ng = mq + 14, then there exists Z C k and a partition
Z =7'UZ" of Z, such that one of the three possibilities holds on a cofinal part
of the net:

(a) (“overlapping” supports)
(a1) ma=(a,7) C Z" and rq = (B,6) C Z";
(az) 14 = (a,7) € Z' and mq = (B,6) C Z";
(b) (“disjoint” supports)
(by) mg=(a,8) CZ' and rq = (v,9) C Z";
(bs) ra = (0, B) C Z' and'ma = (v,0) C Z";
(¢) (“nested” supports)
(c1) mg=(,8) CZ" and rq4 = (B,7) € Z";
(c2) ra=(,0) € Z" and mq = (8,7) C Z".

Proof. The equivalence of (a) and (b) follows from Lemma 2.3 and Theorem
2.9 since (o, 8,7,90) = (a,7) + (8, 9) is a splitting.

To prove the second part let Z' = |J,cp suppma, Z" = Jyep Suppra and
Z=27'UZ". Then Z'NZ" = &. As mgq — 0 and r4 — 0 by Theorem 2.9, we
conclude that both my4 and r4 are doubletons on a tail of the net. Clearly, for
every fized quadruple (a, §,7,0) one of the following six cases must hold,

’

(a1) minsuppmg < minsuppry < maxsupp mg < max supp rq;
) minsupprg < minsupp myg < mMaxsupprg < maxsupp mg;
) maxsupp mg < minsupp rq;
2) maxsupprq < min supp mg;
) minsupp mg < minsupp rq < mMaxsupp rq < maxsupp mg;
(c2) minsupprq < minsupp mg < maxsupp mq < max supp rq.
It is clear that at least one of this six cases holds on a cofinal part of the net.
This ends the proof. [
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According to Lemma 2.5, v C ng holds for some tail of a converging net
{ng :d € D} = v in G¥. This property permits to split the limit function v
as a part of the net. Indeed, mgq = ng — v — 0 and suppmg Nsuppr = & on
a tail of the net. So that ng splits into a sum ng = mg + r4, where rqy = v is
constant. This means that every converging net splits into a constant root r4
(that coincides with the limit of the net ng on a tail of the net), and a moving
part mq, that converges to 0. This splitting is unique (up to taking a tail) in
the following stronger sense: whenever one has a splitting ng = mg +rq — v
where r4 has a constant support, then necessarily 74 = v and mg — 0 is the
moving part of ng.

Example 2.12.
1) Let Kk = w. According to the above lemma,
a) if (a, 8,7) = v is a non-trivial convergent net in G, then v =
on a tail of the net and (5,v) — 0.
b) if (a, 8,7,8) — v is a non-trivial convergent net in G¥, then either
v=0,o0r v = (a,/fB) and (v,d) = 0 on a tail of the net.
2) If kK > w, then 1) need not be true. Indeed, it is easy to arrange for a
net (a, 8,7) — v, where v > w is fixed and (a, 8) — 0.

Definition 2.13. A family {A;}icr of subsets of some set X is called weakly
disjoint, if for every i,j € I the sets A; and A; are either disjoint or coincide.

Clearly, every family of singletons is weakly disjoint. The proof of the fol-
lowing lemma can be found in [10].

Lemma 2.14. Let mg — 0 in GZ. If {suppmg : d € D} is a weakly disjoint
family, then mqg = 0 for some tail of the net.

Proof. Assume that suppmg # @ for cofinally many d € D' C D and choose
for those d the least point pg € suppmgy. Since {suppmg : d € D'} form a
weakly disjoint family, for d # d' either mg4 and mg have disjoint supports, or
pa = pa- Now for P = {pg : d € D'} and for every d € D' (p(ng) = na(pq) is
always # 0, so that cannot converge to 0 in Z,,. Hence the subnet {ny : d € D'}
cannot converge to 0, a contradiction. |

Let ng = Y., m((;) be a splitting net in G#. A component mfj) of ng is
called a strongly moving component of the net, if {supp mg) :d e D} is a
weakly disjoint family. It follows immediately from this lemma and Lemma 2.9
that if ng — 0, then all strongly moving components of the net vanish on some
tail of the net. This fact will be used very often in the sequel. Obviously, it
holds also for any group G of finite exponent m instead of just G,,.

Note 2. Following the proof the above lemma one can prove that it remains
true also when G, is replaced by a direct sum Gg of copies of an arbitrary
abelian group K, but the hypothesis “weakly disjoint” should be streightened
with the following additional request: when the supports of mg and mg are
not disjoint, then the values of my and mg at the minimum element of the
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common support must coincide (accordingly, one must strengthen the definition
of strongly moving component). Indeed, it suffices to note that now the non-
zero value (p(nq) = nq(pq) is constant. In the main applications of the lemma
this stronger restraint is fulfilled.

2.3. Convergence in G¥.. Since G, is a topological group, the convergence
in G¥. is described by the convergent nets ng — 0. Clearly, every convergent
net ng — 0 in GZ, satisfies the obvious necessary condition

(S) (x(ng) =0 on a tail of the net.

Apart from this obvious necessary condition, for m > 2 the convergence in
G cannot be so easily reduced, except some special cases described below, to
simple computations on the supports as in Gf. For a further simplification,
assume that | suppng| =l is constant for some tail of the net.

It is natural to start with nets taken in the subset [k]' of G, equipped with
the induced topology, here we write = € [«]' iff z is the characteristic function
of suppx and |suppz| = I. For nets ng € [k]! condition (S) is equivalent to
m|l. Consequently, a simple modification of the proof of Lemma 2.6 shows
that v € [x] iff |suppv| < I and has the same rest as | modulo m, whenever
v € [k]® for some s. This is why, from now on we shall consider m|! as a blanket
condition.

Assume ng € [k]™. In such a case ng — 0 in G¥ iff the following condition
holds:

(C) for every subset A of k there exists an index do such that either
suppng C A or suppng N A = & for all ng with d > dp.

This describes completely the topology of {0} U []™, since there are no
other non-trivial convergent to 0 nets there. For r = 0,1,...m — 1 set B, =
Uo2 o[6]™™*+7. Then B, are clopen subsets of G, and give a partition of the
subspace [k]<“ of G¥ consisting of all finite characteristic functions (compare
with Lemma, 2.7).

For the future use in this paper, the spaces {0} U [s are sufficient. In
fact, only the cases k = 1,2 will be of primary interest to us. In the sequel we
shall briefly comment another natural case.

The image of a net ng in [] under the multiplication by a constant k has
the obvious property: every ng takes a constant value k on suppng that does
not depend on d. In case k|m, such nets are obtained also from nets ng in
[k]! C Gﬁ/k via the natural embeddings i : Gﬁ/k — G¥, (note that if K < m

then i(ng) is not a characteristic function in G,,). This naturally introduces
the following condition that strengthens (S) under the assumption of m|:

]km

(A) for some tail of the net ng is constant (say, k¥ € Z,,) on supp ng that
does not depend on d.

Let us note that for a net ng in [k]! (without the assumption m|l) (A) along
with (C) implies ng — 0. On the other hand, the conjunction of (S) and (C)
yields ng — 0 for an arbitrary net ng in GZ,.
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Note 3. Now we discuss the relations between (A) and (C) for a net ng — 0
not necessarily in [«]’.

(1). For a converging net ng — 0 (A) does not imply (C) (unlike the case when
ng are characteristic functions). Indeed, take a splitting net (o, 8,7,d) — 0 in
G¥ as in a) of Corollary 2.11 (see also Lemma 2.4). Define ng € G4 as the
finite function with support («, 3,7,d) and constant value 2. Now for every
A C &k the number [ = |suppng N A| is even, so that (4(ngq) = 2l = 0 in Z4.
Hence (S) holds and ng — 0. Let us note now that (C) fails.

(2). Now take a net (a, 3,7,0) = 0 in G¥ so that (C) holds. Define nq to be
the finite function {(a, 1), (8,2), (7,3), (6,2)} in G4. Then ng — 0 in G¥ and
(C) holds, but (A) fails.

(3). When m = p is prime, then (A) implies (C) for nets ng — 0 in G¥ with
[ supp ng| = m.

Now we give several examples of converging nets that do not satisfy (A).
Example 2.15. Here we consider small m.

(1). Let now ng — 0 be a non-trivial convergent a net in G¥ with | supp ng| <
3. Then (C) holds and one of the following occurs:

a) |suppng| = 2 for some tail of the net and ng always takes two values
on supp ng.
b) |suppng| = 3 for some tail of the net and ng is constant on supp ng.

Obviously, every net with these properties converges to 0 in G?f. (For b) note
that only constant characters count in the test of Bohr convergence.) Now
assume that ng — 0 non-trivially. Then on some tail of the net |suppngq| has
a constant value k < 3. If k£ = 2, then taking again constant characters (4 for
the test of Bohr convergence we conclude that ng takes two values on supp ng.
Assume now that £ = 3. Taking the constant character (. for the test of Bohr
convergence we conclude that ng cannot take distinct values (as the sum of
those of them computed at all A € supp ng must be zero).

If ng — 0in Gf without the property (A), then k& = suppng need not be
divisible by 3. Just take a splitting net (a,,v,d) — 0 in Gf as above and
define ny = {(a, 1), (8,1), (7,2), (3, 2)} if the splitting is (o, ) + (3, 0).

(2). Let now m = 4. It is easy to check that a net ng with |suppng| = 4
converges to 0 if one of the following conditions hold:

i) (C) and one of the following:
— ng has a constant value on supp ng;
— ng has values 1,1,3,3;
— ng has values 1,2,2,3;
ii) ng has a constant value 2 on suppng and suppng — 0 in Gf .
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iii) suppng — 0 in Gf and ng = mg + 4 splits (necessarily, with supports
of size 2), and on each one of the supports the functions takes either
values 1, 3, or values 2,2.

3. EXAMPLES OF CONTINUOUS AND DISCONTINUOUS MAPS

We pay special attention to the doubletons in Gf, so for Z C k we denote by
Dy the subspace {0} U[Z]? of G¥. It was proved in [15] that [«]? is a discrete
subset of G¥. By Lemma 2.4 0 belongs to the closure of [£]? in G¥ (see also
[15]) and Dy is a closed set. Hence Dy is not discrete whenever Z is an infinite
subset of k.

Example 3.1. Here we consider two examples of sample maps D,, — Gf that
will play an important role in the sequel. The second is continuous, while the
first one is not.

(a). The map \: D, — Grf defined by
A(0) =0 and Mo, ) = {(e,1),(B,1)} for every a < § in kappa

is not continuous. Indeed, if (ag4,B84) — 0 in Gf , then my = A(ay, B4) does
not converge to 0 in G¥. (Fix a € k and take A = £\ {a} and x = (z.
Then the convergence to 0 in Gf yields (by Lemma 2.2) that a4, 84 € A for all
sufficiently large d € D. Then x(mg) = x(aq,1) +x(B4,1) # 0.) This argument
shows that the restriction of A to Dy is discontinuous whenever Z is an infinite
subset of k. Obviously, 3 can be replaced by any natural number m > 2.

(b). On the other hand, the map p: D,; — Gf defined by

1(0) = 0 and p(a, B) = {(a,1),(8,—1)} for every a < fin &

is continuous. In fact, p is actually a homeomorphic embedding. Since [k]? is
discrete in both Gf and G:,#, it suffices to see that a net (aq, 84) converges to 0
in Gf iff the net p(aq, B4) converges to 0 in Grf. Testing with homomorphisms
X : G3 — Z3 that are constant on their support, one can easily see that the
convergence of u(ag,Bq) implies the convergence of (ag,B34) to 0. Assume
(ag,B4) — 0 in Gf. Let x = (4 : G3 = Z3 be an arbitrary characteristic
function. Then choose dy such that for all d > dy (ag, 84) C A or (g, Bq)NA =
@. This guarantees that x(u(aq,84)) = 0 for all d > dy. Obviously, 3 can be
replaced by any natural number m > 1 (see [19] for prime m). We shall keep
the same notation u : D, — G¥ for the general case.

(c). Now we fix a partition w = Z; U Z, (e.g., odd/even) and define a function
A:D, — G3# as follows: A(0) =0 and

X, B) = {

0 whenever a, 8 have the same parity
Aa,B)  whenever a, 8 have distinct parity.

Since every convergent net (o, 3) — 0 belongs definitely to [Z1]2 U [Z2]?, this
function is continuous, even if it coincides with A on a large part of D,,.
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Our aim is to show that the map p is a “generic model” of a non-zero
continuous map D, — Gf sending 0 to 0 (actually this holds for more general
codomain, see Theorem 4.3 and Definition 4.2).

Example 3.2. Now we discuss continuity of maps defined on quadruples of w.

(a). If Z C w is infinite, then none of the following functions {0} U [x] = G¥
sending 0 to 0 is continuous:

fl(aaﬂafyi(s) = /\(047’7) + )‘(ﬂaé)a gl(a7ﬂ7775) = /’l/(a77) + ,U/(ﬂ,(S),

fQ(OZ, 5;% 6) = /\(O[, ﬂ) + ’\(77 5)7 92(a7 /3777 5) = :U/(aa ﬁ) + :U’(’Ya 6)7

f3(a767’776) = )\(O[,(S) + )‘(/377)7 93(05765776) = u(a,&) + M(ﬂﬁ)
forala< <y <din Z.

To prove that f; is not continuous, fix a partition Z = Z' U Z" into infinite
disjoint subsets Z’, Z" and find a net (a, 8,~, d) such that a,v € Z', 8,6 € Z"
and the corresponding nets (a,v) and (8,8) converge to 0 in G¥, so that
by Lemma 2.3, the net (a, S3,7,d) Bohr-converges to 0 in Gf. This can be
arranged by (b) of Lemma 2.4. Assume f; is continuous at 0. Then fi(a, 8,7, 9)
converges to 0 in G#. By the choice of the sets Z’ and Z" the supports of A\(a, )
and A(8,0) are always disjoint. Hence we can apply Theorem 2.9 to claim that
A(B,0) converges to 0 in Dz». This contradicts (a) of Example 3.2. Analogous
argument works for fo and fs. To finish with, we note that the functions g;, go
and g3 are among the functions fi, fo and f3.

(b). In the notation of (c) of Example 3.1 we extend the function X to [w]? in
the following way: X(a, B,7,6) =
(0 whenever even number of
a, B, v, 6 are even
(a,1) — (8,1) + (7,1) + (6,1) whenever odd number of
a, B, v, & are even and
a, B have the same parity,
(a, 1)+ (B8,1) — (v,1) + (6,1) whenever odd number of
a, B3, 7, & are even and

{ v, § have the same parity.

To see that \ : W — G? is continuous consider a converging net («, 3,7,d) —
v. If v = 0 then the second and the third case cannot occur on any tail of the
net, since in such a case, if say 6 € Zs is the only even cardinal, then for the
character x = (z, the value x(a, 3,7,8) = 1 cannot converge to 0. Therefore,
the value of X at any tail of the net is 0. Hence X(a,ﬂ,fy,&) — 0. Now
assume that v # 0. This is possible only if v = (a, 8) on a tail of the net and
(v,8) — 0. Thus v and & have the same parity on a tail of the net. Therefore,
we have two possibilities for the fixed a, 8. If a, 8 have the same parity, then
X(a, B,7,9) = 0 and we are done. If , 8 have different parity, then X(a, B,7,0)
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is defined to be (@, 1) +(8,1) — (7,1) + (6, 1) according to the third case. Since
(O[, 1)+(/B7 1) = /\(g‘nB) and Sincei& 1)_(’77 1) = _/J'(’YJ 6) — 0 when (77 6~) - 07

we conclude that A(a, 8,7,d) = A(a, 8). This proves the continuity of A.

(¢). A more careful analysis of the above argument shows that one could argue
with a function f defined in an easier way, by noting that the set A of all
quadruples satisfying the condition « = f =y Z dora = = 4§ # v is
closed (clopen) and discrete in [k]* (where “=” is the equivalence relation on
Z corresponding to the partition Z = Z' U Z"). Hence one can define f in an
arbitrary way on A, while can take f to vanish on the complement of A in W.
This idea can be extended to the case of arbitrary even k as follows. Take a
splitting of w in 2k infinite sets Z; and let A be the set of all 2k-tuples in [w]?
that meet each Z; in precisely one element. Then no net in A can converge, so
that again A is closed and discrete and we can define f on [«]?¥ in a similar
way.

Let us note that for all continuous functions f : [£]2F — Gf (with & > 1) we
have considered so far there exists an infinite Z C k such that the restriction
on [Z]?k is constant.

3.1. The spaces D, can be embedded in every group G#. Our observa-
tions from the last examples can be extended to a more general fact:

Proposition 3.3. Let G be an abelian group, let k be an infinite cardinal and
let f: k — G be an arbitrary function. Then the map ps : Dy — G¥ defined
by p15(0) = 0 and ps(a, B) = fa) — f(B) is:
(a) continuous;
(b) an embedding, if the family of cyclic subgroups {{f(a)) : a < k} is
independent.

Proof. (a) Let us see first that us is continuous. Since the only non-trivial
convergent nets in D, have the form (a, 8) — 0, we have to prove that the net

Tap = ps(a, B) = fa) — £(B)
converges to 0 in G# whenever the net (a,3) — 0in D,. Let ( : G — T be a
character and let a, = ((f(a)) for every @ € k. We have to prove that the net
C(zap) =aq —ag — 0
in T when the net (a,8) - 0in D,. Let € > 0, m > 1/e and

n—1 n
A, = R: —— <2< —}),
v({z € —— <2< )

wheren =1,2,...,m and ¢ : R = T = R/Z is the canonical exponential map.
Let

B, ={a< k:a4 € An}.
Then there exists an index dg such that for all members of the net with index
> dy either (a,8) C A, or is disjoint with A,, for n = 1,2,...,m. Since
Un, A, is a cover of T, there exists some n = 1,2,...,m such that both
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Qq, by € A, for all members of the net with index > dy. Then a, — b, belongs
to the e-ball at 0 in T for all («, ) on a tail of the net. Therefore py is
continuous.

(b) Assume that the family of cyclic subgroups {{f(7)) : v < &} is indepen-
dent so that the subgroup H generated by all f(v), v < &, is the direct sum
@D, .{f(7)). We have to prove that if

pus(a,B) = v in G# for some net (o, 8) in G¥,

then
(a, B) is convergent in G¥ and puy(lim(a, 8)) = v.

Clearly, (o, f) — v also in the topological subgroup H # of G#. Moreover, we
can replace H by the bigger group Gx = @, K, where K is a countable abelian
group containing an isomorphic copy of each cyclic group (f(a)) (o < k).
With respect to this group Gk the support of ps(a, 8) coincides with (a, §).
Therefore, by Lemma 2.5 and the hypothesis pf(7y, 8) — v we can conclude that
supp v C (a, ) for a tail of the net. This gives three possibilities depending on
the size of supp v.

Case 1. |suppv| = 2, so that (a, ) coincides with the constant net supp v on
a tail of the net. Then the net (a, 8) trivially converges in D, and we are done.

Case 2. |suppv| =0, so v = 0. This case will be settled below.

Case 8. |suppv| = 1, so suppv is a singleton. Assume without loss of gen-
erality that suppv = {a}. Then the only non-zero value a of v taken at «
may coincide with f(a) or not. If a # f(«), we replace the function f by the
modified function f’ that differs from f only at «, by setting

f(@) = fla) —a.
Then
Nf’(anB) = lu’f(aHB) -v—=0

in G# for our net (a, 3), so Case 2 applies. We are left therefore with the case
a = f(a). Now ps(a, B) — v gives f(B) — 0 for the net (o, 3) in Gf. Since «
is fixed now, we have always 8 > «. This case will be settled below along with
Case 2. To this end we need to define first appropriate characters of Gg.

Fix a symmetric neighbourhood U of 0 in T that contains no subgroups of
T beyond {0}. Then for every non-zero element z € Gg choose a character
Xz : Gk — T such that x,(z) # 0. Then (x.(z)) € U. Let this be witnessed
by the non-zero element n;x,(z), where n, € Z. Let 1, = nyx,. Then for
every x € T,z # 0 the character 7, : Gk — T satisfies +7,(z) ¢ U. Fix now
an arbitrary subset A of k and define a character {4 : H — T as follows:

Ea(f(7) = mp(7)(f (7)) for v € A
and
Ea(f(y) =0foryer\A
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(this is possible since {(f(7)) : v < &} is independent, in particular, f(y) # 0
for every v < k). Now extend £4 to a character £4 : Gk — T. Obviously,

(3.1) EA(f(7) ¢ U for v € A and €4(f (7)) = 0 for 7 ¢ A.

For Case 2 take A arbitrary and note that when a doubleton («, 3) satisfies
|(a, B) N A| = 1, then £4(f(a) — f(B)) € U by (3.1). Therefore, ps(a,3) — 0
yields £4(pys(a, B)) € U, and consequently |(co, 5) N A| # 1, for a tail of the net.
This proves that (a,8) — 0 in D,.

In Case 3 we have f(8) — 0. Take A = k\ {a}, so that always § € A. Now
(3.1) yields that this case cannot occur. O

In the sequel we denote by Dg,)m the subspace {0} U [Z]' of G¥,, where Z

is a subset of k. We abbreviate D(Z";zb to DY™ and DY) to Dy. If n < m and
1<id1 <ip <...< iy <m, then for the set I = {i1,42,...,i,} denote by pr
the projection D™ — D™ defined by p; (a1, s, .. ., am) = (4, Qiys - - -, i, )
for every (a1,az,...,an) € [K]™.

Proposition 3.4. In the above notation:
(a) pr: D™ — DM is continuous for every set I = {i1,i2,...,in}.
(b) For every integer m > 1 the space D,(gm) embeds into the power D1,
In particular, D,(gm) embeds into the group Gf.

Proof. (a) immediately follows from the properties of the Bohr topology dis-
cussed in §2.

(b) Now consider the diagonal map j : DEJ”’ — D=1 of all projections
pr,, where the doubletons I = {ag,ary1} are taken for k = 1,...,m — L.
Continuity of j follows from the continuity of all pr, . If n4 is a net in D,(Qm) such
that pr, (ng) = 0 in Dy for all doubletons I}, = {ag, a1}, E=1,...,m —1,
then ng — 0 in D,(im). Indeed, take a subset A of k. Then for some tail of the
net each pair ag, a1 is either contained in A or disjoint with A. Since the
adjacent pairs I, and Ij,; have a common element (namely, ay1), it follows
that I and Iy are placed similarly w.r.t. A (i.e., either both contained in A,
or both disjoint with A). It is clear now that this holds for all pairs Ij,. This
implies that for the same tail of the net (a1, a2,...,q,) is either contained
in A, or disjoint with A. This proves that ng — 0 in D{™. This proves that
D™ embeds into the power D1 The conclusion follows from the obvious
isomorphism G5! = Gs. U

This proposition shows that D,(f) embeds into D2. It can be shown that Dt(f)
cannot be embedded into D,, ([21]).

Instead of the collection of doubletons I, = {ag, 41}, k=1,....m—1
one can build the embedding in the above proposition using the edges of any
connected graph with m edges on the set of vertices {a1,as,...,an} (e.g., the

collection of doubletons Ji = {ag,am}, k=1,...,m —1).
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Example 3.5.

(a). Let G be an abelian group, let x be an infinite cardinal and let f: k - G
be an arbitrary function. Let 1 < ¢ < j < m be fixed. Then by the above
propositions the map DM 5 G# sending 0 to 0 and (a1, ...,an) = fla;) —
f(a;) is continuous as a composition of the continuous maps py; ;3 and py.

(b). Let now m > 1 and let G be an abelian group. In analogy with item (a)
and Proposition 3.3 consider arbitrary functions fi,..., f;m—1 : & = G. Define

the function pis, 4., : D™ — G# by
uf17~~~,fm—1(0) =0

and
m—1
Bfrrfms (015 - am) = Y filow) — filaita)-
i=1
Then the net py, .. s, ,(a1,...,0y,) converges to 0 in G¥ whenever the net
(a1, ..., ) converges to 0 in D™ . This proves, as above, that the function

Wfy,....fm_1 18 continuous (this follows also from the fact that py,,.. 7. , is a
sum of m —1 functions of the form considered in (a)). Moreover, if the family of
subgroups {(fi(a)) : & < k,i =1,...,m — 1} is independent, then ps, . 5. ,
is an embedding. For m = 2 this is item (b) of Proposition 3.3, for m = 3,
k = w and G = G this was mentioned in [19]). To see that puy, .. . _, is an
embedding under this condition, set H; = (fi(a) : @ < k) and note that by
Proposition 3.3 puy; : D, — H; is an embedding for every i = 1,...,m—1, while
HY ... xH ;f_l embeds into G#. Now the composition of this embedding with
the product of the embeddings yy, defines an embedding j : D™~! < G#. To
conclude we need only to mention that the composition of j with the embedding
D™ < D=1 from Proposition 3.3 gives precisely Bofrofns-

(c). Generalizing the idea used in the previous item one can build more general
functions D™ — G# as linear combinations of the “elementary” functions
from item (a). More precisely, we define a function pp r : DM 5 G# by
choosing first a family F of k = W functions f;; : kK = G for every
1< i< j <m and an arbitrary homomorphism & : G*¥ — G. Now let

/J/h7]:(0) =0 and /J/h,]-‘(Oél, .. ,am) = h( ‘g f”(a,) - fz](a])a .. )
By Proposition 3.3 each function (a1, ..., amn) — fij(a;)— fij(a;) is continuous
as a map D™ — G#*. Consequently, their diagonal map D™ — (G#)k
is continuous. Now the composition with the continuous homomorphism h :
(G*)k = (GF)# — G¥ gives the desired map uy, r.
As far as continuous functions ng) — G* with m > 2 are concerned, the
situation radically changes. Here some groups G are not eligible as a codomain.
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Taking some function f : kK — G2 and choosing an arbitrary even natural m,
one can prove that the function

}\f,m : D,(:Z) — Gz#

defined by Af,, (0) = 0 and Ag (0, ..., am) = Y10, f(as) is continuous (since
As,m extends in an obvious way to a homomorphism G2 — G2 and every
homomorphism is continuous in the Bohr topology). We show later that for
every continuous map

m: D) — H# with 7(0) = 0

and k > Jj there exists an infinite set Z C & and a function f : Z — H|[2] such
that 7 coincides with Ay ,, when restricted to ’D(Z‘l,)2 (Theorem 5.3).

Theorem 3.6. Let G be an infinite abelian group of cardinality k and m > 1
be an integer.
(a) If G contains an infinite direct sum of non-trivial cyclic subgroups (in
particular, when k > w), then ’D,gm) embeds into G#.
(b) There always exists a continuous 1-1 map  : D™ 5 G#.

Proof. (a) It is easy to see that in this case G contains a direct sum H of k
many cyclic subgroups. Hence we can find an embedding of DEJ”) into H#
applying item b) of the previous example. (Just take any function f : k — H
such that f(k) is a base of H.)

(b) The only case when G does not contain an infinite direct sum of non-
trivial cyclic subgroups is when G has finite rank (i.e., 7(G) < oo and sup,, 7,(G)
< o0), so that « is countable. Then G has either an infinite cyclic subgroup
C = Z, or an infinite co-cyclic subgroup C' = Z(p™) for some prime p. In
either case one can easily define a function f : w = C such that py : D, = C'is
injective. For C' = Zset f(n) = n!, for C = Z(p™) set f(n) = p(p~™) € Z(p™).
This settles the case m = 2 (continuity of us follows from Proposition 3.3,
injectivity can be proved in the line of the general argument given below for
m > 2).

Let us see now that the above construction for D, works also for Do(fn) with
m > 2. It remains to build a continuous injective map

e ’DU(Jm) A
and a continuous injective map
mp : D™ = Z(p™®)* for every prime p.

For the function w — Z defined as above by f(n) = nl, let fi; : w - G
be defined by f;; = 0 when j < m and f;;, = f otherwise. Now with H :
Zm(mil)/2 — 7 defined by h,( ~y Ligy - ) = Tim +Tom + .-+ Tm—1m, take
T = Kh,F, ie.,

(N1, M2,y Nm) = (Nl =0y + (2! — ) + .04+ (1! — nagl).
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Continuity of 7 is granted by item (c) of the above example. Let us see that 7
is injective. Assume that w(ni,ne,...,ny) = 7(nf,nsy,...,nl.). Then

(! —nmD) + 2! =) + -0+ (=1 — n!)
=m!=n D+ —n D+.. .+, ! —nlD),
hence
(3:2) nil4ne!+.. . 4np_1!+(m—1nl ! = nil+ns!+. .40l _ 1+ (m—1)ny,!.

Now we are going to use the fact that a representation of a natural number M
as a sum of factorials of the form

(33) M = arky! + asks + ... + amkn!,

withl <k <...<kpand0<a; <k;fori=1,...,mis unique. We shall re-
fer to the natural coefficients a; as digits. Let M be the natural number defined
by the equal sums in (3.2). If n., & {n1,n2,...,Mm—1}, then the uniqueness of
representations (3.3) yield that necessarily n, & {n{,nb,...,n),_,}, since M
has m — 1 digits equal to 1 and one digit equal to m — 1. Moreover, m —1 > 1
yields n,, = nl, and {ny,n2,...,np_1} = {n},ny,...,n.,_;}. Consequently,
(M1, M2,y N1, M) = (N,nh,...,nt_1,nl ). Let us see now that the case
nr, € {n1,na,...,nm_1} cannot occur. Indeed, in that case M has a presenta-
tion with one digit m, the other m —1 digits equal to 1. Since the other presen-
tation must have the same distribution of digits, also n,,, € {n},nb,...,nl,_;}.
Now, assume that n,, = n} and n,, = ng with 1 <4,k < m. Then necessarily
Ny = nj <N, = ng, a contradiction.

Fix an arbitrary prime p. To define the map =, : D™ Z(p™)# set
f(n) = p(p~™) € Z(p>). Then m, = pys, f,... fm_., where fr = (—1)¥f. Then
continuity of 7, follows from item (b) of the above example. Let us prove that
mp is injective. Assume that 7,(n1,ns,...,ny) = mp(n],ns,...,n,,). Then

(p—m! _p—nzl) _ (p—ngl _p—ngl) 4+ (_l)m(p—nm_l! _p—nm!)

= (=T = (pTe —p ) L (=) (p et — )

hence
p—n1! _ 2p—n2! + 2p—n3! o+ (_l)m—12p—nm_1! + (_l)mp—nm!
— p—n’ll _ 2p—n'2! + 2p—ng! 4.+ (_l)m—lzp—n’m_l! + (_l)mp—n’m!‘

This gives
(3.4)
p—n1! +2(p—n'2! +p—n3! 4. ) +p—n'7;! — p—n’l! +2(p—n2! +2p—n'3! 4. ) +p—n’7;’!’
where {n!l ,n!"'} coincides with {n,,n!,} and n!!, = n,, if mis odd, nl}, = n!, if
m is even. Now we use the fact that every rational r has a unique representation
of the form

r=aip t+...+amp ™,
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with 0 < a; < pfor i = 1,...,m. Arguing as before with uniqueness of this
representation we deduce from (3.4) that n; = n}. After canceling p~™' =
p~ ™' we can conclude that ny = n/, etc. O

We do not know whether D, can be embedded into Z# (seemingly the con-
tinuous injection py given above is not an embedding). Of course, a positive
answer to this question will immediately yield that Gf is not homeomorphic
to Z#. This will follow also from the negative answer to the following question

Problem 3.7. There exists no continuous injective map w : D34 — Z#.

The same questions remain for Z (p™)#.

4. STRAIGHTENING OF A CONTINUOUS MAP T : Gf — H# OVER
DOUBLETONS

We shall see that for large k, every continuous map
7: {0} U[K]* = G¥ with 7(0) =0

necessarily sends [Z]* to 0 for some infinite Z C k. This remains true when G
is replaced by G,, for all odd m and more generally, by any abelian group H
with finite 2-rank (Section 5.2).

On the other hand, according to Proposition 3.3 one cannot claim that every
continuous map 7 : Dy — G3# necessarily sends some doubleton to 0. We shall
prove that for every continuous map 7 : D, — GZ, with 7(0) = 0 there exists
a large set Z C k& such that either 7 vanishes on Dz (i.e., m(a,8) = 0 for
all (a, ) € [Z]?), or 7 coincides on Dz with p (up to a composition with a
homeomorphism of G, cf. Theorem 4.3). For more flexible terminology we
introduce the following;:

Definition 4.1. Two maps
mr G- H
are equivalent (we write m ~ 7' to denote this), if there exists a homeomorphism
n: H#* — H# such that 7' =nom.
Clearly, if
7 :G* - H* and 7 ~ 7',
then 7 is 1-1, (resp., continuous, a homeomorphism) iff 7' has the same prop-

erty. Therefore, for the purposes of this paper we can always replace m by ='.
Since every map 7 : G — H is equivalent to a map

7' : G — H with 7'(0) = 0,

we shall consider from now on maps 7 with 7(0) = 0.
We adopt the above notation also for partial maps, in particular for maps

m,7m : Dy — H, where A C k.

As above, it suffices to consider maps 7 with 7(0) = 0.
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4.1. The straightening set of a map = : Gz# — V#. Now assume that the
target group V' has the form V = @, K, where K is either a cyclic group, or
a countable field. For every i < k fix a non-zero element e; of the i-th copy K;
of K, such that e; is a generator of K; when K is cyclic. Then for the base
B = {e; : i < K} define (as before)

up : Dy =V
by us(i,j) = e; —e; for every i < j < k and put up(0) =0.

Definition 4.2. With V and B as above, a subset Z C k is a straightening
set for a continuous map

7:D, > V#
with respect to the base B if m ~ rup for some r € N.

Clearly, up ~ pp: for any two bases B, B' of V. This is why we shall omit
the subscript g when no confusion is possible. Similarly, we shall speak of
straightening set without any specification of a base in the target group V.

We use this terminology also for continuous maps

m:G¥ 5 v
In other words, Z is a straightening set of 7 if = coincides on Dz with ru (up
to a composition with a homeomorphism of V#). Note that when r = 0 then
7 vanishes on [Z]%.
For an infinite cardinal A the J,-function is defined by Jo(\) = X\ and

Jpi1(A) = 222D for every natural n. As usual, we abbreviate J,(w) to 3,
and let 3, = sup, ., 3, [18].

Theorem 4.3. Let V be vector space of dimension k over a countable field K
and let

7:D, > V#
be a continuous map with w(0) = 0.
(a) If k > ¢, then there exists an infinite straightening set of .

(b) If X is an infinite cardinal and k > Jg()\), then there exists a straight-
ening set of w of size > .

Clearly, this theorem implies that:

(a) if k > ¢, then every continuous finite-to-one map = : Gf — G admits
an infinite set S C k on which 7 ~ y;
(b) if X is an infinite cardinal and k > Jg(A) then every continuous finite-
to-one map 7 : G¥ — G¥# admits a set S C & of size > A on which
T~ [
To prove Theorem 4.3 we make use of the Main Lemma. To this end we
need some preliminary discussion in order to motivate Definition 4.4:

a) every function f : kK — k admits a subset S of k of size k such that
f Is is either constant or injective; and
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b) every function f : K = [k]<%, for uncountable k, admits a subset S of
k of size & such that f g is a A-system [18].

We aim to show that this phenomenon extends to functions defined on k-
tuples of a subset S C k (see Lemma 4.9). Let G be a direct sum of copies of
a fixed group K, so that every non-zero element € G determines uniquely a
non-empty finite set supp(x) of indices ¢ such that “z takes non-zero value at
i”. For the sake of completeness set supp(0) = @. Two elements z,y € G are
order isomorphic if the (unique) order isomorphism

@ :suppx — Suppy

“commutes” , in the obvious way, with the finite functions x and y (i-e., y(¢ (7)) =
x(i) for every i € supp ).
Definition 4.4. For an infinite set S C k and positive k € N call o function
f:[S)* = G (with G as above)
standard, if either f is constant, or for A # A' € [S]*
(a) supp f(A) Nsupp f(4') = &, and
(b) there exists an order isomorphism between the finite functions f(A) and
f(AY).

In particular, (b) implies that all supports of f(A) have the same size.

The standard functions present a certain prototype of a “base” for continu-
ous maps Gf — G7 in an appropriate sense (see §4.3). In Claim 4.7 we show
an “independence” property of standard 1-variable functions with respect to
convergence to 0 (if 71 (a) + 72(8) — 0 for every net (a, 8) converging to 0 in
G#, then 71, 2 are linearly dependent on a cofinite subset of k).

Main Theorem. Let A, k and w be as in Theorem 4.3 and V = Gg where
K is a countable group. Then there exists a infinite set S C k (of size > X if
k> Jg(A\) holds), and a standard function T : S — V, such that

(4.5) w(a, ) =1(a) —7(B) for alla < p in S
(i.e., © coincides with p, of [S]%).

Proof of Theorem 4.3. Apply the Main Lemma to get a subset S C & of size
> X and a standard function 7 : S — V such that (4.5) holds. If 7 is constant
we are done as 7 vanishes on [S]?. Assume that 7 is not constant. We show
now that S is a straightening set of .

Since the function 7 is standard and all supports supp 7(«) have size n > 0,
the family M = {7(a)}qes is independent in V. Then, the subspace H = (M)
of V is isomorphic to ®@gK as a vector space. Fix the unique isomorphism

v:H— &K

(of vector spaces over K) that sends 7(a) to the element e, € ®sK of the
canonical base of V for every a € S. Note that V = H & L for some subgroup
L=V/H of V. We can assume without loss of generality that |S| < k. Then

H| =S| <& =1V].
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Therefore, |L| = |V, so that L = V. Obviously, V splits also as

V= (@K) oL, with I'=PK=V.
S

k\S
Hence L = L'. Therefore, there exists an isomorphism
JVE S VHE

extending ¢, i.e., t'(a) = e, for every a € S. This isomorphism is automatically
topological with respect to the Bohr topology. Now the composition 7’ = 1o
coincides with u on [S]?, hence S is a straightening set of . O

Note 4. Let us note that this proof works also for K =2 7. For K = Z, a finite
non-simple cyclic group, i.e., G, = @ Z,y, the following slight modification is
needed. First, we restrict further S so that all elements 7(a), for a € S, have
the same order k. Then the proof proceeds as above with only difference due to
the fact that the group H is now isomorphic to @ g Zy, so the above argument
proves that w ~ r - u, where r = m/k.

According to Example 3.5 there exists a continuous injective map D|g —
G# for every infinite group G.

We shall see later that if H is torsion free with |[H| > Js, then every abelian
group G* homeomorphic to H# must have few involutions, i.e., r2(G) < |G].
More precisely, if k > J3 then every continuous map Gz# — H# into a torsion-
free group has an infinite fiber, so cannot be a homeomorphism (hence, if H is
torsion free and 7 : G¥ — H# is a continuous 1-1 map, then ro(G) < J3).

4.2. e-Straightening sets. The definition of a straightening set is somewhat
too restrictive as far as the codomain is concerned. According to the Main
Lemma, for all codomains Gk one can “straighten” a continuous map

7r:’D,€—>Gﬁ

to get a restriction w|p, of the form p, for some (standard) function 7 :
S — Gg. This suggests the following more flexible notion that works for
all codomains.

Definition 4.5. A subset Z C k is a e-straightening set for a continuous map
7:D, = G*

if there exist an abelian group H that contains G as a subgroup and a function
f:Z = H, such that m = py when restricted to Dz.

Since every function py is continuous by Proposition 3.3, this is the limit we
can push the generality.

Theorem 4.6. Let G be an abelian group and let
7:D, > G*
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be a continuous map with 7(0) = 0. If k > ¢ (resp., k > Jg(\) for some
infinite cardinal )\), then there exists an infinite e-straightening set (resp., e-
straightening set of size > \) of .

To get a proof of this version of the straightening set theorem we only need
to fix a divisible group
H=9(QxQ/Z)

containing G’ and to apply the Main Lemma to the continuous map
n:D, — H #

to get a subset S of k of size > X and a function 7 : S — H such that
(o, f) = 1(a) — 7(B) for all @« < B in S. Thus 7 = p,.

4.3. Proof of the Main Lemma. The proof of the Main Lemma is based
on two essential points. The first one is the following “independence” property
anticipated above (for V' = G5 this is Claim 8 from [10], for a proof of the
present version see [7]).

Claim 4.7. Let x be an infinite cardinal and let V be a group as in the Main
Lemmea.

(i) If 7 : k = V is a standard function and 7(a) — 0 for some net o in &,
then T vanishes.
(i) Ifn: 6>V, 26>V are disjoint standard functions such that

Na,p = 11(a) + m(8) = 0

for every net (a, B) converging to 0 in Gf&, then there exists a cofinite
subset S C k where 5 = —71y.

Note 5. Actually, the following more general result is proved in [7]. Let m > 1
and let V be as above. Assume

k= V,i=1,....m

are disjoint standard functions such that

m
Mo,y = ZTi(ai) — 0 for every net (ay,...,am) = 0 in G¥,

=1

then there exists a cofinite subset S of k such that
m
ZTi(a) =0 for every a € S.
i=1

The second ingredient in the proof of our Main Lemma is a combinatorial
lemma proved in [10] in a simpler version. The following definition is needed
in the combinatorial lemma.
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Definition 4.8. Let V = @, K, where K is a countable group. Two functions
fi:[S) = Voand fo:[S]F2 =V
are disjoint if
supp f1 (A1) Nsupp f2(42) = @
for every A; € [S]Ft and Ay € [S]F2 (with A # Ay in case ky = ky).

Lemma 4.9. (Combinatorial Lemma I) If k > ¢ and 7 is any map from [k]? to
V', then there exists an infinite subset S C k and four pairwise disjoint standard
functions 7;; (i,j =0,1), such that:

(1) the function Too : [S]> = G3 is constant (i.e, Too(cv, B) does not depend

on a,p € [S]);

(2) 110:S = G3 and 101 : S = G3 are one-variable functions;

(3) T11 & [5]2 — Gg,'

(4) 7(a,B) = 100 + T10(@) + 101 (B) + T11(, B) for all a < B in S.

For a sketch of the proof consider the supports of w(a, 8) and apply Erdos-
Rado theorem [18] to the coloring of the set of doubletons («a, 8) with countably
many colors defined by the countably many (up-to order isomorphism) finite
functions from & to the countable group K. Since k > ¢ there exists a homoge-
neous set S; C k of size > w, i.e., the induced coloring of [S1]? is constant (in
one color). This means that all finite functions 7(a, 8) are order isomorphic
when «,8 € S;. In particular, all supports of 7(a, 8) have a fixed size n for
a,B € Sy. If n > 0 for the map [S1]? — [k]™ defined by

(o, B) = supp(n(a, B))

find (applying twice Erd6s-Rado, cf. [10]) an infinite subset Sy of Sy such that
for every a < 8 in S

supp(m(a, B)) = oo0 U a1o(e) U oo1(B) U o11(a, B), (*)
such that
® (o is constant;
e all sets o19(a), @ € S5, are pairwise disjoint, have the same size and
a10(@) Nogy = &5
e all sets 001 (8), B € S2, are pairwise disjoint, have the same size and
oo1(B) N oo = @;
e all sets 011(@, 8), @ < B from S, are pairwise disjoint, have the same
size and o711 (a, 8) N oo = 9;
e if @ # [ in Sy, then 0’10(04) 0001(,8) = &
e if @ < f and o € S, then g19(a’) No11(a, ) = @ and oo1(a’) N
ou(a, f) = 2.
e for any 4,j = 1,2 the positions of the elements of supp o;;(c, ) in the
n-tuple supp 7(a, 3) do not depend on «, 8 (but depend on i, j).
Now just take 7;;(a, B) to be the restriction of 7(a, B) to the set o;;(c, f).
Note that 7oo(a, ) must be constant since its domain ogg is constant. It is
easy to see that the functions 79, 701 and 71 are standard.
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Note 6. If k > Jg()) for an infinite cardinal A, then it is possible to get a set
S C k of size > X in the combinatorial lemma. Indeed, the first application
of Erdos-Rado’s theorem, as above, gives an infinite subset S; C &k of size
> J5()\) where all finite functions 7(«, ) are order isomorphic, in particular
have supports of the same size n. If n > 0, then the second applications of
Erdds-Rado’s theorem to the map [S1]? — [k]™ gives an infinite subset Sy of
S of size > A where (x) holds as above. Now one proceeds as above.

Example 4.10. The function p : Dy — G, is not standard. Its presentation
via the Main Lemma is u(a, 8) = 7(a) — 7(8), where 7(a) = e, is standard.

Proof of Main Lemma. By Lemma 4.9 there exists an uncountable subset
S C k of size > A satisfying 1-4 from the lemma. We shall carry out a
computation of the functions 7;; on S. More precisely, we show that:

T00(7,6) =0,
711(7y,6) = 0 and
T10(7) = —701(7) for all but finitely many v, € S.

In particular 7(vy,d) = 110(y) — 710(9)-

Apply Lemma 2.4 to get a net in which (v,d) converges to 0 in Dg. By
continuity of 7 also the net 7(vy,d) converges to 0 in V#. Now we exploit the
fact that the functions 7;; are standard and pairwise disjoint to prove that all
711(7,6) = 0. This entails that the supports 711(7,d) are all disjoint from all
the other 7;;’s supports (and from each other), hence we can apply Lemma 2.14
to the Bohr-converging net

(46) 7T("Y,5) = Tgo(’}’, (5) + 7'10(")/) + To1 ((S) + T11(’y,(5) =0

in which 711 (,d) splits as a strongly moving component. So we deduce that
711(7,9) = 0 for a tail of the net. By item 3 in Lemma 4.9 all supp 711(7, )
are of the same size k. Hence k =0, i.e., all 711(7,6) = 0.

To show 790 = 0, we note that the net (4.6) splits in 7o9 + m(,,5), Where

m(y,6) = T10(7) + T01(9)
and 799 (y,0) does not depend on 7,4. Thus Theorem 2.9 can be applied to
conclude that 799 = 0. Now Claim 4.7 can be applied. This gives
7'10(0() = —701 (Oé)
for all a from some cofinite subset S’ of S.
When £ > Jg(A\) by Observation 6 one can get a subset S C & of size > A

satisfying 1-4 from the lemma. Then one concludes as above, by using an
appropriate version of Claim 4.7 for |S| > A. m|

5. STRAIGHTENING OVER [k]® AND [k]*

5.1. Straightening of a map over the triples. The following combinatorial
lemma ensures the existence of a splitting analogous to that of Lemma 4.9 based
on analogous splitting of n-tuple valued functions defined on triples.
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Lemma 5.1. If k > 2° and 7 is any map from [k]®> to V, then there is an
infinite set Z of w and 8 pairwise disjoint standard functions

oijk : [Z]7F = G defined for every i, j, k =0,1
such that
m(a, B,7) = o111 (a, 8,7)
+ o110, B) + o101 (@, Y) + 0011(B,7)

+ g100(@) + 0o10(B) + d001 ()
+ J000 -

for every a < B <y in Z.

According to our convention, oggg is a constant function.

In the sequel, for every subset Z C & the set [Z]U[Z]? will be equipped with
the topology induced by Gf. Let H be an abelian group. It can be proved as
before, that for every function f: x — H the map p)s : [Z]U[Z]* — H defined
by

ar~ f(a) and (o, B,7) = f(a) = f(B) + f(7)
is continuous. In particular, when H = @, K, where K is a field or a cyclic
group, then for a base B = {ey : @ < £} the map ' : [Z]U[Z]® = V defined
by
:ul(a) = €a and NI(O‘MB:’Y) =€a — € + €y

is continuous. Now an argument similar to that of the Main Lemma proves
that for every continuous map = : [k] U [k]> = V there exists some infinite Z
and a standard function 7 : S — [V] so that 7 = p!.

(i.e., m(a) = 7(a) and 7(a, B,7) = 7(a) — 7(8) + 7(¥)).

Then, with a final step as in the proof of Theorem 4.3, one can show that © ~ '
when both restricted to [Z]U[Z]?. In case V = G, with m non-prime, one has
to admit also a coefficient r € N, i.e., m ~ ru'. This is the straightening theorem
for triples. We are not going to give rigorous definitions and formulations since
we are not going to use this straightening theorem.

5.2. Straightening over [x]! and vanishing of 7(a, 3,7,5). Suppose
T:G¥ - H*

is continuous for an arbitrary abelian group H. Composing 7 with an appro-
priate translation in the group H, we can assume without loss of generality
that 7(0) = 0. Our plan is to see, that 27(a,3,7,0) =0foralla < B <y < §
in some infinite subset Z of k and consequently, 27 (a, 8) = 0 for all doubletons
(a, B) from Z since [Z]? is contained in the closure of [Z]* by Lemma 2.6 (see
Definition 5.2 and Theorem 5.3 for more precise formulation). In other words,
we show that over an appropriate Z, the restriction of 7 to

DY) = {0}u[2]*
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factorizes through the inclusion H[2] — H and as such a map it is either
constant or equivalent to the inclusion [Z]* < H[2]. This result is much
stronger than what we have seen before on doubletons. Indeed, by passing
to limits it yields that also the restriction of 7 to [Z]? factorizes through the
inclusion H[2] = H and as such a map it is equivalent to the inclusion [Z]? —

HJ[2).

Here is the relevant definition:
Definition 5.2. For a map 7 : D,(:% — H#* with 7(0) = 0 we say that Z C k is
a straightening set of 7 if either ™ vanishes on [Z]*, or m sends [Z]* injectively
into H[2], so that the restriction of w to D(Zg is equivalent to the inclusion

4 )
D(Z,)2 — H[2], i.e.,

(a, B,7,0) =ea+es+ey+es

for some appropriate base {e, : a € Z} of H[2] and alla < B <y < § from Z.

Theorem 5.3. If k > J; and K is a countable abelian group, then every
continuous map

4
T D'(t’% - (EDK)#
K
with 7(0) = 0 admits an infinite straightening set.

A detailed scheme of the proof of this theorem, similar (to a certain extent)
to the proof of Theorem 1.2 from [10], is given in §5.4.

Theorem 5.4. Let G be an abelian group with ro(G) > 13 that admits a
continuous finitely many-to-one map

w:G* - H¥.
Then r2(H) is infinite (i.e., H contains an infinite Boolean subgroup).

Proof. As already noted, we can assume that the continuous map 7 : G - H
satisfies 7(0) = 0. Note that the divisible hull D(H) is a direct sum of countable
groups that are direct summands of the group K = Q x Q/Z. Hence, H is
contained in the group V = @,K. Then we can identify G[2] with G» and
apply Theorem 5.3 to the restriction

7:G2J* - V#
to claim that for some infinite Z in & the values of 7 taken on the subset [Z]*

of G[2] belong to V[2], and consequently to H[2] = V[2] N H. Since m was
supposed to be injective, this proves that ro(H) is infinite. |

This theorem gives as immediate corollary Theorem 1.3 from the introduc-
tion. The next corollary of Theorem 5.3 provides a more precise form of The-
orem 1.2 from the introduction:

Corollary 5.5. Let 7 : GI — G be a continuous map with 7(0) = 0, odd m
and let k > 13 = 2%°. Then w is zero on [Z)* and [Z]* for some infinite set
Z C k.
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This yields that G¥ and G, are not homeomorphic for naturals m and n
with distinct parity. Let us note that Kunen [19] proved Corollary 5.5 for k = w
and arbitrary pair p, q of primes:

Theorem 5.6. [19, Th.4.1] Let p and q be distinct primes and let k € N satisfy
k > p and plk. Then every continuous map

ri DI 5 G
with m(0) = 0 is zero on [Z]* for some infinite set Z C w.

Corollary 5.7. Let 7 : G;# — G¥ be a continuous map with odd m. Then T
is comstant on some subset B of size k of Ga.

Proof. We can assume without loss of generality that w(0) = 0. One can
present G5 as a direct sum Gy = GBKH », where each group H, = Gb.
Assume k > Jz. Since the induced topology of H,, is the same as that of Hj&,
we can claim with Corollary 5.5 that 7 vanishes on an infinite subset B, of
H, for every p < k. Therefore, 7 vanishes on B = J p<r Bo> and obviously

|B| = k. In the general case we can conclude using Kunen’s theorem 5.6. [

It is interesting to note that even if the groups (Q#)* and [Z# x (Q/Z)#]"
are homeomorphic for every x (as Q# and Z# x (Q/Z)# are homeomorphic
[3]), one has

Corollary 5.8. For k > 13 the groups QF and [Z x (Q/Z)]* are not homeo-
morphic in the Bohr topology.

Proof. Note that the group H = QF is torsion-free, while G = [Z x (Q/Z)]®
has r2(G) = 2® > J3. Hence by Theorem 5.4 there exists no continuous 1-1
map G#* — H#. O

Clearly, the above argument works for any pair of abelian groups G and H,
such that H has no infinite Boolean subgroups and G = L x (Q/Z)*, with
k= |G| =|H| 2 2.

These results leave open the question for small &:

Problem 5.9. For which infinite cardinals k does there exist a continuous 1-1
map from Grf to some H# without infinite Boolean subgroups?

It seems natural to conjecture that such a continuous 1-1 map does not
exist for any infinite k (see the stronger Conjecture SST below). The weaker
conjecture that such 1-1 maps do not exist for k = ¢ implies that ¥ and
[Z x (Q/Z)]“ are not homeomorphic in the Bohr topology.

5.3. Straightening over D,gf,),. It is possible to prove a version of Theorem
5.3 with D,gf,),, k > p and p|k, in place of D,(f; and V[p] in place of V[2].
This requires a still larger xk (namely, x > Jr_1) and a careful definition of
straightening set for maps

e 'D,(Jfl), -V
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(see [7]). As above one can deduce from this straightening theorem that there
exists no continuous 1-1 map G# — H# when k is sufficiently large and
rp(H) < 00. More precisely:

Theorem 5.10. [7] Let p be a prime number and let G be an abelian group with
rp(G) > op_1 admitting a continuous finitely many-to-one map G#* — H#.
Then H contains a copy of the group ®,Zy, i.e., rp(H) is infinite.

As a corollary we get the result anticipated in the introduction:

Corollary 5.11. Let G# and H# be homeomorphic and assume that H is
almost torsion-free. Then |t(G)| <3, .

These results give many pairs of groups G and H non-homeomorphic in the
Bohr topology. For example, when H is almost torsion-free with |H| = k >
Jom—1, L is arbitrary with |L| <k, and G = L x (B, Zn,).

Corollary 5.12. Let p be a prime number and let G, H be abelian groups such
that the powers H® and G* are homeomorphic in the Bohr topology for some
infinite cardinal k > Jap_1. Then r,(G) > 0 iff rp(H) > 0.

Corollary 5.13. If k > 1, and H* and G* are homeomorphic in the Bohr
topology, then for every prime p, r,(G) > 0 iff rp(H) > 0. In particular, either
both G, H are torsion-free, or both G, H have non-trivial torsion elements.

Corollary 5.14. If B; and By are unital subrings of Q, then TFAE:
(a) Bl = BQ,‘
) B; = B, as abstract rings;
(¢) By = B, as abstract groups;
) there exists & > 1, such that for the underlying abelian groups By and
B, the powers (B1/Z)" and (B2/Z)* are homeomorphic in the Bohr
topology.

Denote by B the class of abelian groups G such that G# admits a contin-
uous 1-1 map into some torsion-free H#. Call an abelian group G uniformly
almost torsion-free if there exists n € N such that r,(G) < n for every prime
p. It follows from the homeomorphism theorem in [4] that every uniformly
torsion-free group G' admits an embedding G# < H#, where H is torsion-
free. (Just note that there exists n € N such that #(G) is isomorphic to a
subgroup of (Q/Z)™. Thus the divisible hull of G is isomorphic to a subgroup
of Q® x (Q/Z)", with a = r(G). Now (Q/Z)™ is Bohr-embeddable in Q",
thus G is Bohr-embeddable into Q(®) x @".) In other words, the class BF
contains the class UAF of uniformly almost torsion-free groups. The following
conjecture can help to describe better the class B3:

Conjecture SST (Strong Straightening Theorem). For every prime number
p and for every continuous map

7r:G;fé — H#* with 7(0) =0
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there exists an infinite set Z C w such that either m vanishes on Dg’) or
W(D(Zp)) C H[p] and 7|, is equivalent to the inclusion i : D(Zp) — Hlp].
z

It follows from the results in [19] that the Conjecture SST holds true when H
is a bounded torsion group. Let us mention the following corollary of Conjec-
ture SST: if (D, Zp)* admits a continuous finite-to-one map into a group H#,
then (B, Zp)* admits also a topological group embedding into H#. There-
fore, an abelian group G that admits a continuous finite-to-one map G# — H#
into an almost torsion-free group H, is almost torsion-free itself. In partic-
ular, the class 2§ of almost torsion-free groups contains the class BgF, i.e.,
AT C BF C AF. We do not know whether:

(a) there exists an almost torsion-free abelian group G such that G# does
not admit a continuous 1-1 map into some torsion-free H# (i.e., whether
BF £ AF);

(b) there exists a (necessarily almost torsion-free) abelian group G such
that G# admits a continuous 1-1 map into some torsion-free H# and
G is not uniformly almost torsion-free (i.e., whether BF # UAF).

Conjecture SST can help to establish that G;f is not Bohr-homeomorphic
to sz.

5.4. Proof of Theorem 5.3. The proof of Theorem 5.4 is based on the “inde-
pendence” property given in Claim 4.7 and a counterpart of the Combinatorial
Lemma 4.9 for 4-tuples. Here 7 splits into the sum of 16 standard functions
oijr defined on (i + j + k + I)-tuples of ordinals where 4, j, k,! are 0 or 1. So
that ogggo is a constant function, o900, To100, Foo10 and ogge1 are one-variable
functions, etc., while 1111 depends on 4-tuples. For any fixed multi-index ¢5kl
the function o;;r; is standard and these functions are pairwise disjoint. In par-
ticular, all supports of o, have uniform size and the function o1 takes the
same value at the minimum element of the support so that Lemma 2.14 can
be applied. Since the functions oy, have supports of uniform size, it is not
restrictive to assume that Z has type w. For the same reason it suffices to find
just one zero value of the function oy in order to conclude it vanishes on
[ Z]i+j+k+l'

In the sequel we shall take partitions of Z into a union of infinite disjoint
sets Z' and Z" as in Lemma 2.4. Then we find nets (a, 8,7, d) such that one
of the following three possibilities are fulfilled:

(A) a,y€ Z', 8,6 € Z" and the corresponding nets («,~y) and (8, ) con-
verge to 0 in G¥, so that by Lemma 2.3, the net (a,3,7,) Bohr-
converges to 0 in G¥ .

(B) a,6 € Z', B,y € Z" and the corresponding nets («a,d) and (8,) con-
verge to 0 in G¥, so that by Lemma 2.3, the net (a,3,7,) Bohr-
converges to 0 in G¥ .
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(C) a, € Z',~v,6 € Z" and the corresponding nets (a, 3) and (v, §) con-
verge to 0 in Gf, so that by Lemma 2.3, the net (a,,v,d) Bohr-
converges to 0 in G¥ .

This can be arranged by Lemma 2.4. Then, in all three cases, also 7(«, 8,7, d)
converges to 0 in H# by continuity.

For all three types (A)—(C) of nets we have a splitting of 7 as in Definition
2.8:
(6.7) m(e, B,7,9) = o1111(, 8,7, 0) +M(a,8,7,6) +1(a,8,7,6) T K(a,8,7,6) + 0000,

where

M(a,8,y,6) = 01110(, B,7) + 01101(2, B,0) + 01011(, 7Y, 0) + 00111 (8,7, ),
N(,B,7,6) = o1100(a, B) + 00011 (7, 6) + 01001 (e, 8) + do110(3,7)
+ o1010(@,¥) + 00101 (5, 9),
E(a,8,7,6) = o1000(c) + d0010(7) + 00100(B) + Fo001 ().
By Theorem 2.9, w(«a, 3,7, d) — 0 gives:

(a) o1111(a, B,7,0) — 0, consequently we conclude o1111 (e, 3,7,9) = 0 on
a tail of the net (since this is a net with pairwise disjoint supports, cf.
Lemma 2.14).

(b) oo000 = 0 as a constant net converging to 0.

(C) M(a,B,7,8) — 0, N(a,B,7,5) — 0 and k(a,g’,y,(;) — 0.

With (a) and (b) we have
(5.8) 01111 = 0go00 = 0.
Now we consider step by step the consequences of the three limits 0 in (c).
5.4.1. Step 1. m(q,3,,5) = 0 with , 3,7,d as in (A) implies that the net splits,

so that all four 3-variable functions vanish on Z by Lemma 2.14 (cf. Observation
2), i.e.,

(5.9) 01110 = 01101 = 01011 = 0p111 = 0 on Z.

Step 2. Take again a,f3,7,6 as in (A) and note that n(s 5,45 — 0 splits in
sum of four nets:

N(a,B,7,5) = 5(a,8,7,6) T 00110(B,7) + d1010(0, ¥) + 00101 (8, 6),
where

S(a,B,7,8) = o1100(e, B) + 00011 (7,6) + 01001 (2, 9).

Hence 5(4,3,y,5) = 0 by Theorem 2.9 and go110(8, 7), o1010(2, ) and co101 (5, 0)
vanish (being strongly moving components) on a tail of the net by Lemma 2.14
(cf. Observation 2). By uniformity of the o’s this proves

(5.10) 00110 = 01010 = 0p101 = 0 on Z.
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In order to eliminate the remaining 2-variable functions, take a partition of Z
into a union of infinite disjoint sets Z' and Z" and find a net (a, 3,7, d) of type
(B). Then one has a splitting

8(a,8,7,8) = 01100(, B) + 00011 (7,9) + 01001 (02, 0) = 0.
By Theorem 2.9 Ulloo(a,ﬁ) — 0, 0'0011(’7,(5) — 0 and 01001(04,5) — 0. As
before we get

(5.11) 01100 = Opo11 = 01001 = 0.

Step 3. To deal with the 1-variable functions take a partition and a net of type
(A). Then k(4 g,,5 — 0 splits in

E(a,8,7,5) = [01000() + 00010(7)] + [00100(B) + 00001 (0)],

so that 01000((1) +00010(’y) — 0 and U(noo(ﬂ) + 0goo1 ((5) — 0. By Claim 4.7 the
converging net o1goo (@) + ogo10(7y) — 0 gives

(5.12) 0010(7Y) = —01000(7)

for all v from a cofinite subset Z] of Z'. Analogously, the converging net
o0100(83) + 00001 (d) — 0 gives

(5.13) 0001 (8) = —00100(J)-

for all ¢ from a cofinite subset Z;' of Z". Exchanging the roles of Z' and Z"
and taking another net a < 8 < v < §, we get a cofinite subset Z} of Z' such
that (5.13) holds for all § € Z5. Analogously, (5.12) holds for every v € ZJ
from some cofinite subset Z§ of Z". This produces a cofinite subset Z; of Z
where both (5.12) and (5.13) hold. Assuming for simplicity that Z; = Z from
now on, i.e., both (5.12) and (5.13) hold on Z.

Summing up (5.8)—(5.13), we see that we are left with

w(a, B,7,0) = 01000() + 00100(3) — 1000(7) — Fo100(0)-
A further application of Theorem 2.9 with a partition of type (B) gives
01000(@) — 00100(6) — 0 when the net (a,§) converges to 0 in [Z']2. Applying
Claim 4.7 we can find a cofinite subset Zy of Z' where

(514) 0'1000(04) = 0'0100(0() for all o € Zj.

With (5.11)—(5.14) we are left with only one standard function 7 = o990 of
one variable, i.e.,

(5.15) (e, B,7,0) = [r(e) + 7(B)] = [7(7) + 7(9)] for all «, B,7,0 € Zo.

Step 4. To finish the proof take a partition of Zy of type (C). It is easy to
check that one has a splitting as indicated in (5.15). Again by Theorem 2.9 we
conclude that 7(a) +7(38) — 0 when the net (a, ) converges to 0 in [Z']?. By
Claim 4.7 7(a) = —7(a) must hold on a cofinite subset of Z'. Thus 27(a) =0
for cofinitely many o € Z'. This yields that 7 takes values in V[2] on a cofinite
subset of Z'. By (5.7)—(5.15), the values of

(@, $,7,6) = 7(a) + 7(8) + 7(7) + 7(5)
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on [Z']* belong to V[2]. Now since all 7(a) have the same size, they are
either all zero (i.e., 7 vanishes on [Z']*), or all non-zero. In the latter case
|H[2]| > |Z| (since the supports of 7(a) are pairwise disjoint), so that we can
find a “straightening” automorphism ¢ : H[2] — H[2], such that «(7(a)) = eq.
This proves that w|;z)s ~ i : [Z']* < H[2] and finishes the proof of Theorem
5.3.

Acknowledgements. It is a pleasure to thank Steve Watson for the helpful
discussions during all stages of the preparation of [10], Wis Comfort, Salvador
Hernéndez and Javier Trigos-Arrieta for letting me have their much stimulating
preprint [4].

REFERENCES

[1] W. W. Comfort, Problems on topological groups and other homogeneous spaces, Open
problems in topology, North-Holland, Amsterdam, 1990, pp. 313-347. MR 1 078 657

[2] W. W. Comfort, Salvador Herndndez, and F. Javier Trigos-Arrieta, Relating a locally
compact abelian group to its Bohr compactification, Adv. Math. 120 (1996), no. 2, 322—
344. MR 97k:22005

, Epi-reflective properties of the Bohr compactification, Symposium on Categori-

cal Topology (Rondebosch, 1994), Univ. Cape Town, Rondebosch, 1999, pp. 67-74. MR

2000i:54061

, Cross sections and homeomorphism classes of abelian groups equipped with the
Bohr topology, Topology Appl. 115 (2001), no. 2, 215-233. MR 1 847 464

[5] W. W. Comfort and F. Javier Trigos-Arrieta, Remarks on a theorem of Glicksberg,
General topology and applications (Staten Island, NY, 1989), Dekker, New York, 1991,
pp- 25-33. MR 92k:54042

[6] W. W. Comfort, F. Javier Trigos-Arrieta, and Ta Sun Wu, The Bohr compactification,
modulo a metrizable subgroup, Fund. Math. 143 (1993), no. 2, 119-136. MR 94i:22013

[7] Dikran Dikranjan, Can the Bohr topology measure the p-rank of an abelian group?,
Work in progress, 2002.

, A class of abelian groups defined by continuous cross sections in the Bohr
topology, Rocky Mountain J. Math. 32 (2002), 237-270.

[9] Dikran Dikranjan and Stephen Watson, to van Douwen’s problem on Bohr topologies,

1997, Invited talk presented by D. Dikranjan at Topological Dynamics and Spring Topol-

ogy Conference, University of Southwestern Louisiana, Lafayette (Louisiana), April 1997,

abstract available at http://at.yorku.ca/c/a/a/m/49.htm.

Dikran Dikranjan and W. Stephen Watson, A solution to van Douwen’s problem on

Bohr topologies, J. Pure Appl. Algebra 163 (2001), no. 2, 147-158. MR 2002e:20116

[11] Jorge Galindo and Salvador Hernandez, On a theorem of van Douwen, Extracta Math.

13 (1998), no. 1, 115-123. MR 99k:54031

, The concept of boundedness and the Bohr compactification of a MAP abelian

group, Fund. Math. 159 (1999), no. 3, 195-218. MR 2001c:22001

Helma Gladdines, Countable closed sets that are not a retract of G#, Topology Appl.

67 (1995), no. 2, 81-84. MR 96k:54071

Irving Glicksberg, Uniform boundedness for groups, Canad. J. Math. 14 (1962), 269—

276. MR 27 #5856

[10

(12]

[13

[14



272 Dikran Dikranjan

[15] Klaas Pieter Hart and Jan van Mill, Discrete sets and the mazimal totally bounded group
topology, J. Pure Appl. Algebra 70 (1991), no. 1-2, 73-80, Proceedings of the Conference
on Locales and Topological Groups (Curagao, 1989). MR 92¢:20101

[16] Salvador Hernadndez, The dimension of an LCA group in its Bohr topology, Topology
Appl. 86 (1998), no. 1, 63—67, Special issue on topological groups. MR 99e:54027

[17] Per Holm, On the Bohr compactification, Math. Ann. 156 (1964), 34—-46. MR 31 #5927

[18] Thomas Jech, Set theory, Academic Press [Harcourt Brace Jovanovich Publishers], New
York, 1978. MR 80a:03062

[19] Kenneth Kunen, Bohr topologies and partition theorems for vector spaces, Topology
Appl. 90 (1998), no. 1-3, 97-107. MR 2000a:54058

[20] Kenneth Kunen and Walter Rudin, Lacunarity and the Bohr topology, Math. Proc.
Cambridge Philos. Soc. 126 (1999), no. 1, 117-137. MR 2000e:43003

[21] Jan Pelant, Towards a proof that G# is not homeomorphic to G#, Preprint, 1990.

[22] Dieter Remus and F. Javier Trigos-Arrieta, Abelian groups which satisfy Pontryagin
duality need not respect compactness, Proc. Amer. Math. Soc. 117 (1993), no. 4, 1195-
1200. MR 93e:22009

[23] F. Javier Trigos-Arrieta, Continuity, boundedness, connectedness and the Lindeldf prop-
erty for topological groups, J. Pure Appl. Algebra 70 (1991), no. 1-2, 199-210, Pro-
ceedings of the Conference on Locales and Topological Groups (Curagao, 1989). MR
92h:22009

, Bvery uncountable abelian group admits a nonnormal group topology, Proc.
Amer. Math. Soc. 122 (1994), no. 3, 907-909. MR 95a:22002

[25] Eric K. van Douwen, The mazimal totally bounded group topology on G and the biggest
minimal G-space, for abelian groups G, Topology Appl. 34 (1990), no. 1, 69-91. MR
91d:54044

[26] John von Neumann, Almost periodic functions in a group. I, Trans. Amer. Math. Soc.
36 (1934), no. 3, 445-492. MR. 1 501 752

[27] W. Stephen Watson, Applications of set theory to general topology, Ph.D. thesis, Uni-
versity of Toronto, 1982.

(24]

RECEIVED APRIL 2001

DIKRAN DIKRANJAN
Dipartimento di Matematica e Informatica
Universita di Udine
Via della Scienze 206
33100 Udine
Ttaly

E-mail address: dikranja@dimi.uniud.it



