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Generalized closed sets: a unified approach
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ABSTRACT. We investigate various classes of generalized closed
sets of a topological space in a unified way by studying the notion
of gr-closed sets. New characterizations of some existing classes of
generalized closed sets and topological spaces are given. A new class of
generalized closed sets, the Ta-closed sets, and a new class of topological
spaces, Bgs-spaces, are introduced.
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1. INTRODUCTION

In General Topology, the notion of a closed set is fundamental. In 1970,
Levine [15] introduced the concept of generalized closed sets in a topological
space by comparing the closure of a subset with its open supersets. Recall
that a subset A of a topological space X is generalized closed (briefly, g-closed)
if clA C U whenever A C U and U is open. Note that this definition uses
both the “closure operator” and “openness” of the superset. By considering
other generalized closure operators or classes of generalized open sets, various
notions analogous to Levine’s g-closed sets have been studied, refer to [7] for
more detail.

The study of generalized closed sets has produced some new separation ax-
ioms which are between Ty and T, such as T%, Tys and Tg. Some of these
have been found to be useful in computer science and digital topology, see [14]
for example. Recent work by Cao, Ganster and Reilly shows that generalized
closed sets can also be used to characterize certain classes of topological spaces
and their variations, for example the class of extremally disconnected spaces
and the class of submaximal spaces, see [5] and [6]. For convenience, we define
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eleven classes of generalized closed sets in Definitions 1 and 4 below, although
they can be found from most of the references in this paper.

Definition 1.1. Let X be a topological space. A subset A of X is called:
(i) a-closed if cl(int(clA)) C A;
(ii) semi-closed if int(clA) C A;
(iii) preclosed if cl(intA) C A;
(iv) B-closed if int(cl(intA)) C A.

Definition 1.2. Let X be a topological space. A subset A of X is called:
(i) a-open if X N\ A is a-closed, or equivalently, if A C int(cl(intA));
(ii) semi-open if X \ A is semi-closed, or equivalently, if A C cl(intA);
(iii) preopen if X \ A is preclosed, or equivalently, if A C int(clA);
(iv) B-open if X \ A is B-closed, or equivalently, if A C cl(int(clA)).

Recall that the collection of all a-open subsets of X is a topology on X,
called the a-topology [18], which is finer than the original one. We denote X
with its a-topology by X,. A set A C X is a-open if and only if A is semi-open
and preopen [19]. Some authors use the term semi-preopen (semi-preclosed)
for B-open (B-closed).

Definition 1.3. Let X be a topological space, and suppose A C X :

(i) the a-closure of A, denoted by cl, A, is the smallest a-closed set con-
taining A;
(ii) the semi-closure of A, denoted by cl;A, is the smallest semi-closed set
containing A;
(iii) the preclosure of A, denoted by cl, A, is the smallest preclosed set con-
taining A;
(iv) the B-closure of A, denoted by clgA, is the smallest B3-closed set con-
taining A.

It is well-known that clo, 4 = AU cl(int(clA)), cl;A = AU int(clA), clp,A =
AUcl(intA) and clgA = A Uint(cl(intA)).

Definition 1.4. Let X be a topological space. A subset A of X is called:

(i) generalized closed (briefly, g-closed) [15] if clA C U whenever A C U
and U is open;

(ii) semi-generalized closed (briefly, sg-closed) [3] if clsA C U whenever
A CU and U is semi-open;

(iii) generalized semi-closed (briefly, gs-closed) [2] if clsA C U whenever
A CU and U is open;

(iv) generalized a-closed (briefly, ga-closed) [8] if cl, A C U whenever A C
U and U is a-open, or equivalently, if A is g-closed with respect to the
a-topology;

(v) a-generalized closed (briefly, ag-closed) [16] if cl,A C U whenever
ACU and U is open;

(vi) gp-closed [17] if cl,A C U whenever A C U and U is open;
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(vii) gsp-closed [9] if clgA C U whenever A CU and U is open.

A subset A of X is g-open [15] (sg-open [3]) if X \ A is g-closed (sg-closed).
Other classes of generalized open sets can be defined in a similar manner.
The known relationships between the types of generalized closed sets listed in
Definitions 1 and 4 are summarised in Figure 1.

closed
/
a-closed
S\
semi-closed ga-closed g-closed
sg-closed preclosed ag-closed
[B-closed gs-closed gp-closed
gsp-closed
FIGURE 1

We will address two general questions. Each generalization in Definition 1.4
involves a closure operation and a notion of “openness”. Specifically, each
definition involves either cl, cl,, cls, clp, or clg of A together with U being
either open, a-open, or semi-open. The first question, which arises from these
definitions, is: do any new classes of generalized closed sets exist if we consider
every possible pairing of the five closure operations mentioned above with the
notions of openness in Definition 1.27 In order to study each possible pairing in
a unified way, we will introduce the term gr-closed, where g represents a closure
operation, and r represents a notion of generalized openness. Surprisingly, in
most cases, we obtain new characterizations of existing classes. These cases
provide new insights into the nature of generalized closed sets.

As noted above, Figure 1 summarises the known relationships between classes
of generalized closed sets. In general, none of the implications represented in
the diagram are reversible. The second question we will consider is: are the
implications represented in the diagram the only implications which apply in
general? As a consequence of answering these two questions, we will derive
new relationships between different types of gr-closed sets which characterize
certain topological spaces.

We will require the following classes of topological spaces.
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Definition 1.5. Let X be a topological space. X 1is:

(1) Tys [16] if every gs-closed subset of X is sg-closed; or equivalently, if
for each x € X, {z} is either closed or preopen [5];

(ii) Ty [15] if every g-closed subset of X is closed; or equivalently, if for
each © € X, {z} is either closed or open [12];
) semi-T} [3] if every singleton is either semi-open or semi-closed in X ;
) nodec [20] if every nowhere dense set of X is closed;
) nodeg if every nowhere dense set of X is g-closed;
(vi) extremally disconnected [5] if the closure of each open set of X is open;
i) g-submaximal [6] if every dense subset of X is g-open;
) sg-submaximal [5] if every dense subset of X is sg-open;

) strongly irresolvable [6] if no open subspace is the union of two disjoint
dense subsets in the subspace.

No separation axioms are assumed unless explicitly stated.

2. A UNIFIED APPROACH: gr-CLOSED SETS

In the following we shall denote closed (resp. semi-closed, preclosed) by 7-
closed (resp. s-closed, p-closed), and clA by cl, A for A C X, whenever it is
convenient to do so. Similarly we denote open (resp. semi-open, preopen) by
T-open (resp. s-open, p-open). Let P = {7, a,s,p, 5}

Definition 2.1. Let X be a topological space and q,r € P. A subset A C X is
called gr-closed if cl;A C U whenever A CU and U is r-open.

Remark 2.2. Note that each type of generalized closed set in Definition 1.4 is
defined to be gr-closed for some g, € P. A set A is g-closed if it is 77-closed,
ag-closed if it is a7-closed, gs-closed if it is s7-closed, gp-closed if it is p7-
closed, gsp-closed if it is B7-closed, ga-closed if it is aa-closed, and sg-closed
if it is ss-closed.

The proof of the following lemma is straightforward.

Lemma 2.3. If X is a topological space, A C X, and q € P, then « € cljA if
and only if for each g-open set G, withx € G, GN A # &.

The following lemma gives two useful decompositions of a topological space.

Lemma 2.4. Let X be a topological space.

(1) [13] Every singleton of X is either preopen or nowhere dense.
(ii) Fwvery singleton of X is either open or preclosed.

Proof. (ii) If {z} is not open, then int{x} = @. Thus cl(int{z}) = @, and
hence {z} is preclosed. O
Theorem 2.5. Let X be a topological space. If q,r € P, then every qr-closed

subset of X is q-closed if and only if each singleton of X is either g-open or
r-closed.
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Proof. Suppose that every gr-closed set of X is g-closed. If z € X and {z} is
not r-closed, then X \ {z} is not r-open. Thus, the only r-open set containing
X ~{z} is X, which implies that X \ {z} is ¢gr-closed. By hypothesis, X \ {z}
is g-closed. Therefore, {z} is g-open.

Conversely, suppose that each singleton of X is either g-open or r-closed.
Let A be gr-closed and z € cljA. If {z} is g-open, then by Lemma 2.3, z € A.
If {z} is r-closed and z ¢ A, then A C X \ {z}. Since A is gr-closed, we
have z € cl;A C X ~\ {z} which is a contradiction. Hence, A = cl;A and A is
g-closed. O

Corollary 2.6. Let X be a topological space, and let A C X be a subset. If
r € {p, B} then A is:

(i) 7r-closed if and only if it is closed;

(il) ar-closed if and only if it is a-closed;

(iii) sr-closed if and only if it is semi-closed.
Furthermore, if r € {a,s,p, B} then A is:

(iv) pr-closed if and only if it is preclosed;

(v) Br-closed if and only if it is S-closed.

Theorem 2.7. Let X be a topological space. Then a subset A of X is qa-closed
if and only if A is gs-closed, for any q € P.

Proof. By definition, every gs-closed set is ga-closed. To show the converse,
let A C X be ga-closed and A C U where U is semi-open. Suppose that there
exists a point « € cljA N U. Then A C U C X \ {z}. We consider the cases
int(cl{z}) = @ and int(cl{z}) # @ separately.

If int(cl{z}) = @ then {z} is a-closed and therefore X \ {z} is a-open.
Since A is ga-closed, we have z € cl;A C X \ {z}, which is a contradiction.
If int(cl{z}) # @ then z € int(cl{z}). Since U is semi-open, we have clU =
cl(intU). Therefore, we obtain the following:

clgA C clA C clU = cl(intU) C cl(int(X \ {z}) = X \int(cl{z}),
which gives a contradiction. O

We have shown that for each ¢, € P, the property gr-closed is equivalent
to a known type of generalized closed set, except when ¢ = 7 and r = « (or
equivalently r = s). The class of Ta-closed sets is in fact new, as we now
establish. By definition, each closed set is Ta-closed and each Ta-closed set is
both g-closed and ga-closed.

Theorem 2.8. Let X be a topological space. Then the following statements
are equivalent:
(i) every Ta-closed subset of X is closed;
ii) every Ta-closed subset of X is a-closed;
ii) every Ta-closed subset of X is semi-closed;
v) every ga-closed subset of X is semi-closed;
v) X is a semi-Ty space.

(
@
(i

(
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The proof of this theorem is similar to that of Theorem 2.5 so we omit it.

Theorem 2.9. Let X be a topological space. Then every g-closed subset of X
is Ta-closed if and only if X is a Tys-space.

Proof. Suppose that every g-closed subset of X is 7a-closed. Suppose that
there exists a non-closed singleton {#} C X. Then X \ {2} is not open. Thus
X N {z} is g-closed. By hypothesis, X \ {z} is Ta-closed. We claim that {z}
is preopen. If not, then int(cl{z}) = &. So {z} is semi-closed and X \ {z} is
semi-open. From the above argument, cl(X \ {z}) = X ~ {z}. Thus, X \ {z}
is closed and {z} is open. This is impossible.

Conversely, let A C X be g-closed and let U be semi-open with A C U.
Suppose that there is a point € clANU. Then ACU C X ~{z}. If {2} is
closed, then X \ {z} is open. So z € clA C X ~\ {z}. This is a contradiction. If
{z} is preopen, then z € int(cl{z}). Since U is semi-open, then U C cl(intU).
Therefore, we have the following A C U C cl(intU) C X \int(cl{z}). It follows
that clA Nint(cl{z}) = @. This again leads to a contradiction. O

Theorem 2.10. Let X be a topological space. Then the following statements
are equivalent:
(i) X is nodec;
(ii) each a-closed subset of X is closed;
(iii) each ga-closed subset of X is Ta-closed;
(iv) each a-closed subset of X is Ta-closed.

Proof. (i) = (ii). Let A C X be a-closed. Then A = cl(int(clA)) U N, where
N = A~ cl(int(clA))) is a nowhere dense subset of X. Thus, A is closed.

(if) = (i). Every nowhere dense subset of X is a-closed, thus closed.

(i) = (iii). If X is a nodec space, then 7 = . Thus, for any subset A C X,
we have clA = cly A. This implies that every ga-closed subset is Ta-closed.

(iii) = (iv) is obvious.

(iv) = (i). Suppose that each a-closed subset of X is Tra-closed. Let A C X
be a nowhere dense set. We shall show that A is closed. If not, there exists a
point z € clA~\ A. Since clA is also nowhere dense, {z} must be nowhere dense
as well. Thus, both A and {z} are a-closed. By hypothesis, A is Ta-closed
such that A C X \ {z}. Since X \ {z} is a-open, we have z € clA C X \ {z}.
This is a contradiction, which implies that A is closed. O

From Theorems 2.8, 2.9 and 2.10, we see that in a general topological space
Ta-closed sets are not equivalent to closed sets, g-closed sets, ga-closed sets,
semi-closed or a-closed sets.

3. RELATIONSHIPS

We now consider the completeness of Figure 1. We will introduce a new
relationship not present in Figure 1, and establish that no other relationships
exist in the general case. It follows from Theorem 2.7 that every ga-closed set
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is sg-closed. This implication cannot be reversed in general by the following
theorem.

Theorem 3.1. Let X be a topological space. FEach sg-closed subset of X is
ga-closed if and only if X is extremally disconnected.

Proof. Suppose that X is extremally disconnected. Let A C X be sg-closed
and let U be an a-open set containing A. Then cl;A C U, i.e. int(cld) C U.
Since int(clA) is closed, we have cl,4 = AU cl(int(cl4)) = AU int(cl4) C U.
Hence, A is ga-closed.

To prove the converse, let every sg-closed subset of X be ga-closed. Let
A C X be regular open. By definition, A = int(clA). Then A is semiclosed
and so ga-closed. It follows that clA = cl(int(cl4)) = clo A C A. Therefore, A
is closed and X is extremally disconnected. O

Next we establish that no further relationships exist in general. First we
confirm that in general none of the implications in Figure 1 can be reversed.
With the exception of two cases, it has been shown that the reverse impli-
cations occur only if the space has a specific property [5], [6], [7], [4], [10].
Theorem 3.2 below addresses one of the remaining cases. The other generates
a new topological property.

Theorem 3.2. Let X be a topological space. Then X is nodeg if and only if
every ag-closed subset of X is g-closed.

Proof. Suppose that each ag-closed subset of X is g-closed. Since each nowhere
dense set is a-closed, then it is g-closed.

Conversely, suppose that each nowhere dense subset of X is g-closed. Let
A C X be an ag-closed subset with A C U, where U is open. By assumption,
cloA = AUcl(int(cl4)) C U. Note that N = A~ cl(int(clA)) is nowhere dense,
and hence g-closed by assumption. Now cIN C U since N C U. Moreover,
X ~ cl(int(cld)) is open and N = AN (X \ cl(int(clA))), so we have clA N
(X N cl(int(clA)) C cIN C U. It follows readily that cl4 \ cl,A C U and so
clA C U. Therefore, A is g-closed. |

As promised we define a new class of topological spaces.

Definition 3.3. A space X to be Bgs if every gsp-closed subset of X is gs-
closed.

It is shown in [4] that X is a Bgs-space if and only if every S-closed sub-
set of X is gs-closed. The following implications follow from definitions and
characterizations of g-submaximality of X, in [6].

X, is g-submaximal — X is Bgs — X is sg-submaximal

Note that if X is a Tys-space, the lefthand arrow is reversible; and if X is
extremally disconnected, then the righthand arrow is reversible. We shall show
that neither of these two arrows is reversible in general. In fact, we observe
that the space X defined in Example 3.5 of [5] is sg-submaximal, but not Sgs.
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In the following, we shall provide two examples of finite spaces to distinguish
these three classes of spaces.

Example 3.4. Let X = {a,b,c,d}, and let 7 = {¢, X, {a}, {c,d},{a,c,d}}.

Then X is sg-submaximal, but it is not a Bgs-space, since {a,c} is S-closed
but not gs-closed.

Example 3.5. Let X = {a,b,c,d, e} and let
B= {{b}> {d}> {a7 b}7 {d> e}a {b, ¢, d, e}}

be a base for a topology on X. Then X is a fgs-space, but X, is not g-
submaximal since {a, b, ¢, d} is dense in X, but not g-open in X,.

No further relationships exist in general by [5], [6], [7], [4], Theorems 2.8,
2.9, 2.10, 3.1, 3.2, and the following two theorems.

Theorem 3.6. Let X be a topological space. Then the following statements
are equivalent:

(i) X is a Tys-space;

(il) every g-closed subset of X is ga-closed;
(iii) every ag-closed subset of X is sg-closed;
(iv) every g-closed subset of X is -closed;

(v) every g-closed subset of X is p-closed;
(vi) every g-closed subset of X is sg-closed;
(viil) every ag-closed subset of X is B-closed;

(viii) every gs-closed subset of X is B-closed.

The proof of the preceding theorem is similar to that of Theorem 2.9 and of
Theorem 3.6 of [7].

Theorem 3.7. Let X be a topological space. Then:

(i) X is extremally disconnected if and only if every semi-closed subset of
X is ag-closed;
(il) X is extremally disconnected if and only if every sg-closed subset of X
is ag-closed;
(iii) X is nodeg and extremally disconnected if and only if every semi-closed
subset of X is g-closed;
(iv) X is T% if and only if every ga-closed subset of X is semi-closed;

Proof. (i) and (ii) Similar to the proof of [7, Theorem 4.2].

(iii) By Theorem 2.3 of [5], X is extremally disconnected if and only if every
semi-closed set of X is a-closed. Moreover, by a similar argument to that of
Theorem 3.2 (i), X is nodeg if and only if every a-closed set is g-closed. These
facts combined with (i) complete the proof.

(iv) Similar to the proof of Theorem 2.5. O

Thus we have a new diagram, Figure 2 below, showing all relationships
between the classes of generalized closed sets under discussion. None of the
implications shown in Figure 2 can be reversed in general topological spaces.
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closed

7 0< 7 li
semi-closed ga-closed g-closed
(aa-closed)  (77-closed)

4
sg-closed preclosed ag-closed
(ss- Closedg/ \(on' closed)
[B-closed gs -closed gp—closed
(st-closed)  (pr-closed)

gsp-closed

(BT-closed)

FIGURE 2

4. SUMMARY

The above results are summarised in the following table. Each cell gives
the type of generalized closed set which is gr-closed, where ¢ is given by the
left-hand (zeroth) column and r is given by the top (zeroth) row.

T o} s p B
g-closed Ta-closed | Ta-closed | closed closed
ag-closed | ga-closed | ga-closed | a-closed a-closed

gs-closed | sg-closed | sg-closed | semi-closed | semi-closed

gp-closed | preclosed | preclosed | preclosed preclosed

gsp-closed | B-closed | B-closed | B-closed [B-closed
TABLE 1

V| ® Q9

The table highlights some general relationships between certain groups of
generalized closed sets. For example column 2 implies column 1'. In fact each
column in Table 1 implies each of the preceding columns. Each of these impli-
cations, apart from columns 3 and 4, follow immediately from the definitions,
since the types of generalized closed sets in any particular column involve the

1Each type of generalized closed set listed in column 2 implies the type of generalized
closed set listed in the same row of column 1.
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same notion of closure, and these notions of closure increase in strength from
left to right. Similarly each row implies each subsequent row, apart from rows
3 and 4.

In most cases the converse relationships, between rows or columns, are equiv-
alent to the spaces having certain properties. If X is a topological space, then
the following are equivalent:

(i) X is extremally disconnected;
(i) row 5 implies row 4 ([5], [4]);
(iii) row 3 implies row 2 (Theorem 3.1 and [5], [7]).

Row 4 implies row 3 if and only if the space is sg-submaximal, except for
columns 4 and 5. This case has been considered in [1] where it is shown that X is
strongly irresolvable if and only if every preclosed set is semi-closed. Therefore,
as a direct consequence of Theorem 3.3 of [6], we have the following:

Theorem 4.1. A topological space X is strongly irresolvable if and only if X
is both sg-submazimal and semi—T%.

Row 2 implies row 1 if and only if the space is nodec (Theorem 2.10) except
for the first column. In this case row 1 implies row 2 if and only if the space is
nodeg (Theorem 3.2), which is a property strictly weaker than nodec.

A topological space X is Ty if and only if column 1 implies column 2 ([4],
[16] and Theorem 3.2). We notice that columns 2 and 3, and columns 4 and
5 are identical. Finally, column 3 implies column 4 if and only if the space is
semi—T%, except for rows 4 and 5.
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