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The chainable continua are the spaces
approximated by finite COTS

Jupy A. KENNEDY, RALPH KOPPERMAN* AND RICHARD G. WILSON'

ABSTRACT. We show that the chainable continua (also called snake-
like or arc-like) continua (see [7]), are precisely the Hausdorff reflections
of inverse limits of sequences of finite COTS under maps which are
continuous and are separating: whenever C; D C Y are closed and
disjoint, then f~'[C] and f~'[D] are contained in disjoint open sets.
The finite connected ordered topological spaces (COTS) defined in [4]
have a very simple structure and are used as finite approximations
to intervals of the real line, in digital topology (for computer image
processing) (see [8]).

We also obtain similar characterizations of circle-like continua and gen-
eralized Knaster continua.

2000 AMS Classification: 54D05, 54F15
Keywords: Chainable continuum, (generalized) Knaster continuum, circle-
like continuum, inverse limit, connected ordered topological space (COTS)

1. INTRODUCTION

It is known that every compact Hausdorfl space is the Hausdorff reflection
of an inverse limit of finite Tp-spaces (see [2], or see [5] for a treatment in our
notation). The finite spaces used for reconstructing X in this way are quotients
of X and may indeed be rather complicated spaces. On the other hand, the
connected ordered topological spaces (COTS) defined in [4] have a very simple
structure and are used in digital topology as approximations to intervals of the
real line, (see [8]).

Part of the motivation for the work in [5] is the recently-developed theory
of skew compact spaces; these are Ty spaces (X,7) in which there is a second
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topology 7* such that 7V 7* is compact, and for each z,y € X:
z € cl {y} &y € cl{z},
and
if x € cl;{y} then there are disjoint T,U so that x € T € T and y € U € 7*.

Skew compact spaces behave very much like compact T, spaces; in particular,
limits of inverse systems of skew compact spaces, in which each map is con-
tinuous, not only between the original topologies, but also between the second
topologies, are skew compact. These second topologies are uniquely deter-
mined by the first: the 7*-closed sets are those 7-compact sets C' which are
T-saturated, that is, if cl,{y} N C # & then y € C. All finite T spaces are skew
compact, with the 7*-closed sets precisely the -open sets. As a result, each
map which is continuous between the original topologies of finite Ty spaces, is
also continuous between these second topologies, so limits of inverse systems of
finite Ty spaces and continuous maps are skew compact.

There are many equivalent definitions of a chainable (previously called a
snake-like or arc-like) continuum (see [7]), but the one which interests us here
is the characterization of chainable continua as being precisely the inverse limits
of sequences of unit intervals and continuous maps. Since unit intervals can
be approximated (in the sense of [8]) by COTS, it is natural to ask whether
chainable continua can also be approximated in this way. The aim of this paper
is to answer this question in the affirmative: chainable continua are precisely
the Hausdorff reflections of inverse limits of sequences of finite COTS under
maps which are continuous and separating: whenever C, D C Y are closed and
disjoint, then f~1[C] and f~![D] are contained in disjoint open sets. We also
obtain similar characterizations of circle-like continua and generalized Knaster
continua.

These results lead to alternate digital representations of continua in these
classes. Current methods of computation involving these continua are modifi-
cations of linear methods, and often inadequate because of nonlinearity inher-
ently involved with graphics attempting to illustrate complicated continua. It
is hoped that better algorithms will result from a consideration of this work,
but none are proposed below.

2. APPROXIMATING CHAINABLE CONTINUA WITH COTS

Our aim in this section is to show that every chainable continuum is the
Hausdorff reflection of an inverse limit of finite connected ordered topological
spaces. Below, we let I denote the unit interval. Since a chainable continuum
X is the inverse limit of a sequence of unit intervals X = liin(ﬂn, fn), we begin

by showing that X is homeomorphic to ¥ = li‘in(]ln, gn), where each of the

maps g, is continuous and piecewise linear.
The following lemma is a classical theorem of calculus:
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Lemma 2.1. Let f : T— T be a continuous function. Then given € > 0, there
is a continuous piecewise-linear function g : 1 — 1 such that |f(z) — g(x)| < €
for all z € 1.

Now suppose that f is a piecewise linear continuous function and let N =
{0 = ag,a4,...,an_1,a, = 1} be the points at which f is not differentiable.
Let € > 0 and let {ro,r1,...,7n_1,7n} be distinct real numbers such that
|f(a;) —r;| < efor each i € {0,1,...,n}. By defining g(a;) = r; for each i and
extending linearly on each interval (a;,a;+1) we obtain a continuous piecewise
linear, nowhere locally constant function g : I — I such that |f(z) — g(z)| < €
for each z € I. Thus each continuous function f : I — I can be uniformly ap-
proximated by continuous piecewise-linear nowhere locally constant functions.
The following is now an immediate consequence of Theorem 3 of [1]:

Theorem 2.2. If X = lim(I,, f,) is the inverse limit of a sequence of unit
—

intervals with continuous maps, then there exists a sequence {g, : n € w} of
continuous piecewise-linear nowhere locally constant self-maps of 1 such that
X = IEH(Hna gn)-

We now turn to the problem of representing each chainable continuum as
the Hausdorff reflection of an inverse limit of finite COTS.

By a calculus partition (or simply partition) of I we mean a finite subset S
of T and without loss of generality, we will assume that each partition contains
0 and 1. Given a partition, S = {0 = sq,...,8n = 1}, we define a COTS Cs
by:

Cs = SU{(Sifl,Si) 1< < m}
topologized in such a way that the elements of Cs\ S are open and the minimal
neighbourhood of s; € S is of the form {(s;_1,8;), Si, (8i,8i+1)}- Then the
space Cg will be called the COTS associated with the partition S of I; also,
ps : I = Cs will denote the natural projection.

Lemma 2.3. Suppose f : I — 1 is a piecewise-linear continuous nowhere locally
constant function, and that D, R are partitions of I such that f~*[R] C D, and
D also contains 0,1 and all points at which f is not differentiable. Then there is
a unique continuous map g : Cp — Cr (which we call the (D-R)-approzimation
to f) such that the following diagram commutes:

f

I ——1

PD PR

CD—g’CR

Proof. Define g : Cp — Cg as follows:

(1) if d; € D, then g(d;) is defined to be the unique element (either a
singleton or an open interval) of Cr containing f(d;), and
(2) g[(di=1,d;)] is the unique element of Cgr containing f[(d;—1,d;)].
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To see that g is well defined, we need only show that the image under f of
each interval (d;_1,d;) is contained in a unique element of Cr. But since f is
continuous, f[(d;_1,d;)] is an interval and since D D f 1[R], it can contain no
element of R and so is contained in a unique element of Cr. Of course, for
each singleton or interval pp(z) € Cp, this element has been selected so that
g(pp(x)) = pr(f(x)), in other words, to make the above diagram commute.

Both Cr and Cp are Alexandroff spaces and hence to show that g is continu-
ous at x € Cp, it suffices to show that if V' is the minimal open neighbourhood
of g(x) € Cr and U is the minimal open neighbourhood of x € Cp, then
g[U] C V. If {z} is open in Cp, then U = {z} and there is nothing to prove.
If on the other hand {z} is closed, then there are two cases to consider:

(1) V ={(ri—1,7;)} for some i < k; then z = d; for some j < m. But then
by the continuity of f,

fl(dj—1,d))] NV # @ # fl(dj,dj1)] NV

and hence f[(dj_1,d;)] U f[(dj,djs1)] €V so g[U] C V where U =
{(dj=1,d;),d;,(d;j,d;jt1)} is the minimal open neighbourhood of d;.

(2) V ={(ri=1,7),7i, (ri,miy1)} is the minimal open neighbourhood of 7;
for some ¢ < k; again, x = d; for some j < m and an argument similar
to that of (1) now applies.

O

Suppose next that we are given an inverse sequence {f, : n € w} of continu-
ous piecewise linear nowhere locally constant maps of the unit interval (I,, =1
for each n € w).

s f2 fi Jo

vee— I3 — Iy — I — 1
We use Lemma, 2.3 to define an inverse sequence of COTS and continuous maps:

g3 92 g1 go
e — 03 — 02 — 01 — C()

First let @ denote the finite set of dyadic rationals in I which are expressible
in the form j/2* for some j € Nand let Ny = {0 =do < - - < dpm, = 1} denote
the finite set of points at which f;, is not differentiable. Since fj is one-to-one
on each interval (d;—1,d;), it is a finite-to-one map.

Let Ry = Qo = {0,1} and let Cy = Cg,, the COTS associated with the
partition Ry. Then Ry = Ny U fofl[Rg] U Q; is a finite set (since f~![Ry]
is finite by the previous paragraph), so let C; = Cg, and let gy be the (R;-
Ry)-approximation of fo as constructed in Lemma 2.3. Having defined maps
9o, 91, - - -, gr—2 with COTS domains Cy, Ch,...,Ck_1 approximating the maps
for fis--os fr2, we let Ry = Nj_1 UQg U fr, '[Rk_1], Ck be the COTS as-
sociated with the partition Ry, and gx—1 be the (Rg-Ry—1)-approximation to
fr-1-

In what follows, for simplicity of notation, p, will denote the natural pro-
jection pc, : I, = Cy.
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Theorem 2.4. The following diagram commutes:
f3 f2 f1 fo

I3 I, I Io
y3‘03 92‘02 91‘C1 po‘CO

Proof. This follows directly from the definition of the g5 and Lemma 2.3. O

Our aim now is to establish the relationship between X = ligl(]ln, fn) and
X* = 1im(Cr, g0).
Throughout the rest of the paper, if (Y,, h,) is an inverse sequence, then we

let Ay, denote the map hp,ohy_10---0hy,_1 : Yy, — Y, if m > n, and denote
the identity map on Y, if m = n.

Theorem 2.5. X is the Hausdorff reflection of X*.

Proof. In the proof of Theorem 2.4, [5], the following is shown:Let (X, 7) be
a compact Tr-space and let F a collection of finite sets of open subsets of
X which is directed by C, and whose union, |JF, is a base for 7. Then
(X, ) is the Hausdorff reflection of the inverse limit of the system {(Xp, 7gr) |
F,G € F, F C G}, where X is the partition of X into the nonempty Boolean
combinations of elements of F', equipped with the quotient topology induced
by the natural quotient, and for F' C G, ngF is the natural quotient from Xg
to Xr. We use this in the following proof, and in that of Theorem 3.2 below.

Let us denote by 7, the projection from X to I,,. By the above, it suffices
to show that if we define:

Fr. = {(pk omk) "} [Vk] : Vi is open in Cy}

then
F={Fr:kew}
is directed by C and |J F is a base for X.

That F is directed follows immediately from the definition of F and the fact
that if U, € Fpn, then g;.L[U,] € Fn. So now suppose that U is open in X
and z € U. Then there is some k € w and some open set Uy C Ij such that
z € 7, [Ux] C U. Now, since for each m € w, the partition R, used in the
construction of the COTS C,, is such that R,, D @, it follows that we can
find m > k and an open set V;,, C Cy, such that m,(z) € p;,t[Vin] C fron [Us]
and we are done. O

3. HAUSDORFF REFLECTIONS OF INVERSE LIMITS OF COTS

A (continuous) map f : X — Y is called separating if whenever C,D C Y
are closed and disjoint, then f~![C] and f~1[D] are contained in disjoint open
sets. Of course, every continuous map from a normal space is separating. An
inverse sequence of spaces {Y,, : m € w} and maps {hy, : Y11 = Y, : n € w},
is separating if for each n there is an m > n such that h,,, is a separating



170 J.A. Kennedy, R. Kopperman and R.G. Wilson

map. In this section we show that the Hausdorff reflection of the inverse limit
of a sequence of finite COTS and separating maps is a chainable continuum.

If f: X —>Y and g:Y — Z are continuous and either is separating, then
their composition is easily seen to be separating; thus in a separating inverse
sequence for each n there is an m > n such that if p > m then h,,, is separating.

In an inverse sequence Y,, of finite T spaces, it suffices to check that when-
ever z,y € Y, are closed, distinct points, then for some m > n, h;.l[r] and
h,.} [y] are contained in disjoint open sets: For any subset E of a topological
space, the saturation of E is n(E) = ({T open| E C T}; in a finite space,
this is open, and if E is closed, then n(E) = |J{n(z) | z € E, {z} closed}, so
if F' is another closed set, and n(z) N n(y) = @ whenever z € E,y € F, then
n(E)N n(F) = 2.

Further, there are only a finite number of pairs of distinct closed sets, so
for each n € w, there exists m > n such that for each pair of distinct closed
sets C,D C Yy, h,.L[C] and h,,},[D] are contained in disjoint open sets. Now,
by passing to a subsequence of the inverse spectrum (which will have the same
inverse limit as the original sequence), we can assume that each map h,, is
separating. In the sequel, we assume that we have an inverse sequence of
COTS Y, and separating maps f, : Y41 — Ya.

Theorem 3.1. The Hausdorff reflection of the limit of a separating inverse
sequence of finite Ty spaces and continuous maps is its subspace of closed points.
This subspace is a retract of the limit.
Proof. Denote by F' the set of closed points of 1i<1_n (Xn,9n), let pp, : li<£n X, —
X, be the projection maps, and let x,y € F be distinct. Then
@ = cl(z) Ncl(y)
= (Niew P [Lpm@)]) N (Niew Pm' [llom (¥))])

= Ninew P [cl(pm (@) N l(pm ()],
and so, since li(r_n X, is compact and w is directed,

cl(pn(x)) Ncl(pnly)) = @
for some n € w. By definition of separating inverse sequence, for some m > n,

Imnlcl(pn(z))] and g, [cl(pn ()]

lie in disjoint open sets, T, U, so p,,;}[T], p,,} [U] are disjoint open sets containing
x,y respectively. This shows that the subspace F' is Hausdorff.
Each element of lim X, has in its closure a closed point, since this space is

P
To and (skew)compact (the intersection of a maximal chain of closures of points
is a minimal closed set, thus a closed singleton). But if two closed points were
in the closure of the same point, then this point would be in any open set
containing either, contradicting the existence of disjoint open sets containing
them, established in the last paragraph; therefore, each element of liin X, has

in its closure a unique closed point.
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Thus a map 7 : li<£n X, — F is defined by letting w(x) be the unique element

of cl(z) N F. Tt is continuous: In fact, each closed C' is compact in the skew
compact X and it is then easy to check that

7 C]={z|c(@)NC # &} =n(C),

the saturation of C' (not usually open in this infinite space), is compact. Also
here, if y € 7 1[C] then cl(y) C 7 }[C], so 7 [C] is closed by [6], theorem
3.1.

To complete the proof, it will suffice to show that if f : liin X,—~H, H

Hausdorff, then f factors through w. But for such a map, f|F : F — H, and
for each z € liin Xn, if y € cl(z) N F then

(FIF) om(z) = fy) € H{f(2)} = {f(2)},
so (f|F)om = f. |

With slight changes, the definitions and proof can be adapted to show the
result for arbitrary (nonsequential) inverse limits of separating spectra.

For the next theorem we will require some new notation. For a nonempty
interval z C I, we let M(x) denote its midpoint. Also recall that if z € C,
C a finite COTS, then zT denotes the immediate successor of £ and z~ the
immediate predecessor of z if such exist; thus if x is closed, z1+ and =~ are
(if they exist) the closed points nearest to z.

Finally, if k is a positive integer and C is a COTS with &k open points, then
C' is clearly homeomorphic to one of the following spaces:

Fk)y={i]i=0,...,k} U{(i, L) | i=0,...k—1},
Lk)y={i]i=0,...,k—1}U{(£, 52 |i=0,....k -2} U {(E1, 1]},
R(k)z{%M:l,,k}U{(%,%H )}a

i=1,...,k—1}u{[0, 1
Ok)={ili=1,..,k=1}U{{, &) [i=1,...,k—2}U{0,£), (&=L, 1]},

equipped with the quotient topology from I.

Note that the inverse image under the quotient map p: I — C, of a closed
point x € C is a single point in I and to simplify the notation slightly we
identify this point with . Also adjacent points are identified with points in I
which are % apart from each other.

Theorem 3.2. A space is a chainable continuum if and only if it is the Haus-
dorff reflection of the limit of an inverse sequence of finite COTS and separating
maps.

Proof. The construction discussed in and before Theorem 2.5 and in Theorem
2.4 of [5], in fact yields a separating inverse spectrum. To see this using the
notation there, let 4, B be disjoint closed sets in C,. Then m;'[A], 7, '[B]
are disjoint closed sets in the normal space X, so they are contained in dis-
joint open sets, V, W respectively. For the base | J F, there are basic covers of
7, 1[A] by subsets of V, and of 7, 1[B] by subsets of W. By compactness of X,
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there are finite such covers, T1,...,T; and Uy,...,U; and since F is directed,
there is a single F,, D F, containing each element of both these finite covers.
But then [J]_, 7 [Ti], Ule mm[U;] are disjoint open sets in C,, containing
gbAl, g [B, respectively.

To show the converse, that the Hausdorff reflection of the limit of an inverse
sequence of finite COTS and separating maps, is always a chainable continuum,
we first assume that the maps are onto. Then there are two possibilities: either
for some n, C, has at least two closed points, or there is no such n. In the
second case, for each n, g, (c), is a nonempty closed set, thus contains ¢, where
by abuse of notation, ¢ denotes the unique closed point in each C,, so g, (c) = ¢;
and since each g, is onto, once C,, achieves its maximal cardinality, (which is
at most 3), it is one-to-one on C), \ {c}, and thus a homeomorphism on C,,. So
the Hausdorff reflection of the inverse limit is a singleton. Below, we assume
to the contrary that for some n € w, C, has at least two closed points.

For each m € w, we denote the canonical quotient map from I onto C), by
pm and suppose that C), has k,, open points; then for each m we can assume
that Cp, is one of the COTS F(k.,), L(kn),O(kp) or R(ky,). Now fix n € w
and let A = {z € Cp41 | z and g, (z) are both closed}; then A # &, in fact for
each closed point ¢ € C,, g,,!(c) contains a closed point d, for it is a nonempty
(since g, is onto) closed set in a finite Ty space, and necessarily d € A. If
J C Cpt1 \ A is an interval in the COTS C),41, then by continuity and the
fact that for each closed point z € J, g,(z) is open, g,(27) = gn(2) = gn(z™)
and so for each point w € J, g,(w) is open, implying that g,, is constant on the
connected set .J.

If J is a maximal non-empty (topologically) open interval contained in Cy, 41\
A, then necessarily one of the following occurs:

1) J = (2,y) with z,y € A and gn(z) # gn(y), or

2) J = (z,y) with z,y € A and g,(z) = gn(y), or

3) J is an initial open interval («,z) or a final open interval (y —) of
Cp+1, where again, z,y € A.

Let f, : I,,41 — L, be the piecewise linear continuous map defined as follows:

If case 1) occurs, then (the graph of) f, | p,i,[,y] is the segment joining
(z, gn(z)) to (v, 9.(y)). (Recall that since z and y are closed, they are identified
with the points pj,}[z] and p;}[y] respectively in I,,41.)

If case 2) occurs, then let z; be the midpoint of the open interval p,,},[J] C
I,,+1; note that in this case, since J always contains an odd number of points,
zy is actually an element of C,1;. We define (the graph of) f, | p;}rl[a},y]
to be the union of the segments joining (z,g,(x)) to (M@;}rl[zJ]),w) and
(M (pr31[25]),w) to (y,9a(y)) where w = 3(gn(z) + M (" [gn(2,)]))-

If case 3) occurs and J is an initial open interval (+—,z) in C,41, then we
define (the graph of) f, on the initial interval p, i, (+,z] of I, 41 to be the
segment joining (0,u) to (x,gn(z)), where u = M(p,'[(r;)]) and r; is the
constant value of g, on J. Similarly, if J is a final interval (y, =) of Cy,t1, then
we define (the graph of) f, on the final interval p, 1y, —) of I,41 to be the
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segment joining (y, gn(y)) to (1,v), where v = M(p,,;*[(r;)]). Then:

f3 I fo o I, fi o I fo I,
\ps {Pz \m \Po
Cs Cs C Co

g3 g2 91 Ppo

is certainly a commutative diagram.
Let ¢, : im(Ig, fr) — L, and 7, : Um(Cy, gx) — C,, denote the projec-
— —
tions. We complete the proof in this case by showing that ¢ : im(I,, f,) —
—
lim(C,,, gn), defined by 7, 04, = p, 0 ¢, is a homeomorphism onto its subspace
+—

F of closed points and thus by Theorem 3.1 onto its Hausdorff reflection. The
first of these spaces is a chainable continuum, so the second one is as well.

Since g, is separating and continuous, it is clear that if case 1) occurs, then
y > Tt so the absolute value of the slope of f,, on the interval [z,y] is

L 9n(y) — gn(@) | /(y —2) < (1/kn)/2(1/kns1) = Ent1/2kn.

If cases 2) or 3) occur, then it is straightforward to check that the absolute
value of the slope of any segment defining the graph of f, is again at most
kny1/2ky,.

Observe that in a COTS, if two distinct points are in the closure of any
point, then the latter point is unique and must be open. We use this to define
a measure of distance (which need not be a metric), by:

d (’U ’LU) _ knl‘ﬁn(”) - ¢n('w)| if open and p, o ¢n(v)apn o ¢n(w) € Cl(x)
e 2 if no such z exists.

Thus if dy,+1 (v, w) <1 or equivalently, if for some open z,
Pn+1 © Gnt1(V), Prt1 © Ppgr (w) € cl(z)
then | ¢n+1(v) — ppt1(w) |< 1/kpt1. In this case we have that
dn (v, w) = Ky [¢n(v) — pn(w)]
= kn |fn(fnt1(v)) = fr(fnia(w))]
(Bnv1/2kn)kn|dni1(v) — drya(w)]

= %dn—i-l (U7 ’UJ),

IA

so in particular:
(3.1) dp(v,w) < %dnﬂ(v,w)

If for each j there is some open z; in C; such that p;(¢;(v)),p;(¢;(w)) € cl(z;)
then applying induction to the inequality (3.1), we obtain for each n,m € w,
dp(v,w) < dpypm(v,w)/2™ < 1/2™, s0 each ¢, (v) = ¢, (w) and hence v = w.
In the sequel, we denote liin(llj, f;) by X and IEII(C]‘,g]‘) by Y. Now suppose
that for some v,w € X, ¥(v) = ¥(w); then p;(¢;(v)) = p;(¢;(w)) for each
J € w and hence, for each j, there is some open point z; in C; such that
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pi(¢;(v)),p;(¢;(w)) € cl(z;). Hence by the previous paragraph, we must have
that v = w, so v is one-to-one.
Next, we show that for each v € X = lim(I}, f;), ¢(v) is closed. For suppose
“—

to the contrary that there is some ¢t € cl(¢(v)) \ {¢(v)}, then for each j,
t; € cl(pj$;(v)) and for some ng, t; # p;¢;(v), for each j > ng. As a result, for
each j > ng, t; € cl(p;j¢;(v)) and p;¢;(v) is open; also for j < ng, t;,p;¢;(v) €
cl(z;), where z; is an open point among t;~,t;,t;*. Now let w, = p;'(t,);
then w = (Wy)new € X and ¢(w) = t, so for each j € w, there is an open z;
such that p;¢;(w) = t;,p;¢;(v) € cl(z;), so v = w, hence Y(v) = Y(w) =t,
contradicting our hypothesis.

We now show that 1 maps onto the closed points of ¥ = liin(Cn, gn). If

y € Y is closed, it follows that for all z € Y distinct from y, there is some n € w
such that m,(2) & cl[m,(y)]- We consider the set

A= 0{(pn 0 ¢n) " el(ma(y))] : n € W} C X.

Note first that A is the intersection of a nested sequence of closed subsets of
the compact Tr-space X and hence A # @. We now claim that if a € A,
then 1 (a) = y. To prove our claim, note that a € (p, o ¢,,) ![cl(m,(y))] for
each n € w and hence (p,, o ¢,,)(a) = (m, 0 ¥)(a) € cl[m,(y)] for each n. Thus
1 (a) = y and we are done.

Notice also that since p,, and ¢,, are continuous, the composition of ¢ with
each projection 7, is continuous. Thus 1 is a continuous one-to-one and onto
map between two compact Hausdorff spaces and hence is a homeomorphism.
This ends proof of the special case in which the bonding maps are onto.

Consider now an inverse sequence (Cp,gn) in which the bonding maps g,
are not assumed to be surjective. For each n € w, let D, = (,,>,, 9mn[Cm],
with the subspace topology, and let h,, = g,|Dp+1. Clearly, the bonding maps
hy, of the sequence (D, hy,) are continuous. Furthermore, since gp,,[Cr] is a
connected subset of Cp,, it is an interval in C),, and hence D,, is a COTS. We
will show that the bonding maps h,, are surjective. To this end, suppose that
x € Dy \ hy[Dpy1], then = & g,[Dy41] and so for some m >n + 1,

T ¢ ﬂgngm(n—i-l)[cm] = gmn[cm] 2 Dy,

a contradiction. Certainly 1i<£n(Dn,hn) C liin(Cn,gn), but if x € li{Ln(Cn,gn),

then for each m > n, Tn = gmn(@m) 50 Tn € ()5, Imn[Cm]; in a similar

way we have that z,, € ﬂp>m 9pm[Cp] and 50 T, = gmn|Dm(zm) = hm(2m),

proving that z € lim(D,,, hy,). Thus lim(C,,, g,) = lim(D,, h,,), and the latter
— — —

is a chainable continuum if the sequence is separating. O

4. CIRCLE-LIKE AND OTHER CONTINUA

Another well-known family of metric continua defined by means of inverse
sequences is mentioned in the title of this section. Recall from [3] that a circle-
like (or circularly chainable continuum) is an inverse limit of circles (copies of
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S1). The methods of the previous two sections extend (mutatis mutandis) to
this type of continua.

We define a digital circle Sc to be the quotient space of a finite COTS C
with an odd number of elements in which the first and last element in the
ordering are identified. The graph of a function f between digital circles S¢
and Sp can be represented as a graph in the subset C' x D of the digital plane
(see [4]) in which the left and right edges as well as the top and the bottom
are identified. Similarly, the graph of a continuous function f : S* — S! can
be represented as a graph in the unit square 12 in which again, the left and
right edges and the top and bottom are identified. Somewhat laboriously, it
can now be verified that the results of Sections 1 and 2 hold in this new setting
and hence we have proved:

Theorem 4.1. A topological space X is a circle-like continuum if and only
if it is the Hausdorff reflection of an inverse sequence of digital circles and
separating bonding maps.

The term Knaster continuum has been used in a number of papers (see for
example [9]) to denote a continuum which is an inverse limit of unit intervals
under certain types of tent maps (which are necessarily open). We define a
generalized Knaster continuum to be an inverse limit of unit intervals with
open bonding maps.

In order to deal with generalized Knaster continua, note that a (piecewise
linear) continuous map from T to T is open if and only if:

1) Whenever z is a local maximum, then f(x) = 1 and if z is a local
minimum, then f(z) = 0 and since the end-points (that is to say, the
non-cutpoints) are local maxima or minima, f maps end-points to end-
points, f[{0,1}] C {0,1}.

2) f is strictly monotone between successive local maxima and minima.

In order to extend Theorem 3.2 to generalized Knaster continua, we need to
characterize those functions g between COTS which give rise (in the way they
are defined in Theorem 3.2) to a function f : I — I satisfying conditions 1) and
2) and inversely, which arise from open maps f in the construction described
in the proof of Theorem 2.5. Note first that if f : T — T is open, then the map
g constructed in Theorem 2.5 will satisfy the following conditions:

i) If g : C — D has alocal maximum at z, then g(z) is the largest element
of D and if g has a local minimum at z, then g(z) is the smallest element
of D and since again, the end-points are local maxima or minima, g
maps the end-points of C' to the end-points of D.

ii) g is monotone (but not necessarily strictly monotone) on each interval
which contains no local maximum or minimum.

Such maps do not have to be open and it is easy to see that open maps between
COTS need not satisfy 1) and #) (for example, a constant map whose range is
open). We call a continuous function g between finite COTS C and D which
satisfies conditions ) and #) a digital Knaster map.
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Now suppose that g : C — D is a digital Knaster map and consider the
piecewise linear map f constructed from g as in Theorem 3.2. It is clear that
f will be monotone (but not necessarily strictly monotone) on each subinterval
of [0,1] which contains no local extremum of f. Furthermore, if the greatest
element 1 € D is closed, then each interval J C g~![1] contains some closed
point z and so f(z) = 1. A similar argument applies if the least element
0 € D is closed. If on the other hand the greatest element r of D is open,
say r = (1 — 1/n, 1], then each maximal subinterval contained in g~![r] has
open endpoints and f will assume the value 1 — 1/2n at the midpoint of the
corresponding (Euclidean) interval. Again, a similar argument holds in case
the least element of D is open. Thus in all cases, the map f constructed from
g is monotone between successive maxima and minima and the value of f at
each local minimum is either 0 (if the least element of D is closed) or 1/2n (if
the least element of D is open) and correspondingly, at each maximum is either
1or1—1/2n. Let T be the range of f; then f : I — T satisfies the following
two conditions:

a) If T = [I,r], then whenever z is a local maximum, f(z) =r and if z is
a local minimum, then f(z) =1 and f[{0,1}] C {l,r}.
b) f is monotone between successive local maxima and minima.
Since such maps can clearly be uniformly approximated by maps satisfying
condition a) and

b’) f is strictly monotone between successive local maxima and minima,

it follows from Theorem 3 of [1], that the inverse sequence constructed in Theo-
rem 3.2 has as its limit a generalized Knaster continuum. Thus we have proved:

Theorem 4.2. A topological space X is a generalized Knaster continuum if
and only if it is the Hausdorff reflection of an inverse sequence of COTS whose
bonding functions are separating digital Knaster maps.

We do not know whether Theorems 3.2—4.2 hold if the sequences are not
required to be separating.
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