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Topological normal forms of high degree for the
simplest bifurcations
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ABSTRACT. This paper is devoted to study the topological normal
forms of families of maps on R which, under nondegeneracy conditions
of high degree, also present the simplest bifurcations.
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1. INTRODUCTION
Let us consider uniparametric families of maps

f:RXR_)Ra f(xap’):fll(x)
and

g:RxR=R, gy,v)=g.(y),

where p,v € R are the parameters and z,y € R the variables in the state space
under consideration.

f and g are called locally topologically equivalent near the origin, if there
exists a map

(@, 1) ~» (hy (@), p(1)),

defined in a small neighborhood of (z, ) = (0,0) in the direct product R x R
and such that

(i) p : R — R is a homeomorphism defined in a small neighborhood of
u =0, with p(0) = 0;

(ii) hy : R — R is a parameter-dependent homeomorphism defined in a
small neighborhood U, of = 0, with h(0) = 0 and mapping orbits
of the first system in U, onto orbits of the second one in h,(U,),
preserving the direction of time.
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Roughly speaking, if there is a qualitative change in the behavior of the maps
of f when pg € R is crossed, one says that ug is a bifurcation value or that a
bifurcation occurs at pg. More rigourously, it can be said that the appearance
of a topologically non-conjugate system under variation of the parameter is
called a bifurcation.

A bifurcation diagram of the family is a stratification of its parameter space
induced by the topological conjugacy, together with representative phase por-
traits for each system.

Sometimes, for bifurcations of a family f, near a fixed point of a map be-
longing to the family, it is possible to construct a simple polynomial family

(L.1) 9(y,v), yERvER

which presents at the map corresponding to the parameter value v = 0 the fixed
point y = 0, satisfying the same bifurcation conditions. With same bifurcation
conditions we mean to present the same eigenvalue (of unit modulus) at the
fixed point and some other conditions that will have the form of inequalities
(equalities)

Di(g) #0  (Di(g9) =0),

where D; are some algebraic functions of partial derivatives of g, evaluated
on (y,v) = (0,0). The inequalities (equalities) D; which only involve partial
derivatives with respect to the state variable y are called nondegeneracy condi-
tions (degeneracy conditions), while those involving parameters are known as
transversality conditions.

A family of the form (1.1) is said to be a topological normal form for a
bifurcation if any family f with the same bifurcation conditions is locally topo-
logically equivalent to it, near the corresponding fixed point.

In [12] or [13], it is shown that under some nondegeneracy conditions on
f and f? up to the third order, the standard bifurcations for families of one
dimensional maps (saddle node, transcritical, pitchfork, flip) appear.

In [4], we can see that similar results are obtained if those nonzero conditions
are fulfilled by partial derivatives of order greater than three. However, in spite
of it proves that the same number of fixed points (or period-2 points in the flip
case) appears and with identical type of stability, the task of finding a home-
omorphism providing the topological equivalence between any family verifying
certain bifurcation conditions and the corresponding simpler polinomial family
is very complicated. Even in the simplest cases that appear in [13], a complete
proof remains unpublished (see [1], [8]). The main difficulty is to encounter
the analytic expression of the homeomorphism which provides the equivalence,
instead of the presence of higher order terms in the Taylor expansion of the
original map.

The theory of normal forms, which began with Poincaré and was developed
by Arnold, is a mathematical technique which allows to reduce the expression of
the equation that defines a dynamical system (e.g., see [6], [2]). The interest of
such (polynomial) topological normal forms is that their bifurcation diagrams,
which can be often easily obtained, have a universal meaning.
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Here, our goal is to show how one can reduce the expression defining a family
of discrete dynamical systems, which verifies certain bifurcation conditions of
higher degree, to a topologically equivalent simpler form.

A fixed point p € R of f € Diff(R™) is hyperbolic if the linearization
D f(p) has no eigenvalues of unit modulus. From Hartman-Grobman’s theorem
it follows (see [6] or [9]) that to study local bifurcations of fixed points in
parametric families f,, (), it suffices to consider those parameters g for which
the corresponding map has a non-hyperbolic fixed point pg. In one dimensional
families, an eigenvalue equals 1 or -1 are the only two possibilities. We deal
with each one in Sections 2 and 3, respectively.

2. AN EIGENVALUE EQUAL TO 1

Fold Bifurcation. A uniparametric family
f:RxR—->R

undergoes a fold bifurcation if the family possesses a unique curve of fixed
points in the & — p plane passing through the bifurcation point that locally lies
on one side of p = 0.

In [4], one can see nondegeneracy conditions of higher order to the appear-
ance of this bifurcation. Concretely, the following result is given.

Theorem 2.1. Suppose that a one-parameter family
f:RxR—=R

of C?™ maps has at po = 0 the fized point zo = 0 and let f,(0,0) = 1.
Assume that the following conditions are satisfied:

(F1) o f2(0,0) = f122(0,0) = -+ = fz2.-1(0,0) =0,
o £,2(0,0) #0

(F2) fu(070) 7é 0

Then the family undergoes a fold bifurcation.

Remark 2.2. The case n = 2 can be found in the majority of the literature
about bifurcation theory (e.g., see [6], [12], [2] or [7])

For each n € N\{0}, one observes that
(2.2) T+ s1p 4 502",

where s1,s2 € {—1,1}, are the simplest families verifying the statement of
theorem 2.1. As we have said in the introduction, the task of proving the
(topological) equivalence between (2.2) and any family satisfying the hypothesis
of theorem 2.1, giving the pertinent parameter-dependent homeomorphism, is
unexpectedly complicated. We approach to it in the following sense. The
Taylor expansion of a smooth f with the above properties is

£@,1) =+ 1,000+ s Fon (0,008 + O+l + 2"+,
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Making the rescaling

x = U
|ﬁfw2" (07 0) o
and introducing the new parameter
. .
~| it ©0 " 1,00l

we obtain the form
n~ 1+ s+ s 4+ O + Inllv] + 7>,

where
s1 = sign(f,(0,0)) and s, = sign(f,2»(0,0)).
In fact, it is the family (2.2), but with some higher order terms.

Transcritical Bifurcation. A uniparametric family
fRxR—->R

undergoes a transcritical bifurcation if the family possesses two curves of fixed
points in the z — p plane passing through the origin and existing on both sides
of 4 = 0, changing the stability of the fixed points.

As in the preceding case, in [4], we have the following result about nonde-
generacy conditions of higher order.

Theorem 2.3. Suppose that a one-parameter family
F:RxR—->R

of C?>"*+! maps has at the map corresponding to the parameter value pg = 0 the
fized point zo = 0 and let f,(0,0) =1, f,(0,0) =0.
Assume that the following conditions are satisfied:
(Tl) i fzz(0,0):fmwm(0,0)::f$2n—1(0,0):0,
o £,20(0,0) #0
(T2) fzp(oao) 7é 0

Then the family undergoes a transcritical bifurcation.
Remark 2.4. The case n =2 can be seen in [6], [12] or [2].

In this situation the question is if any family satisfying the hypothesis of
this last theorem is (locally) topologically equivalent to

(2.3) T + 51 px + 52277,

where 51,82 € {—1,1}.
On one hand, the Taylor expansion of a smooth f with the above properties
is
1

@+ S0, 0)2p + g vy fon (0,002 + Ol + 2 + a7+ [1).
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Making the rescaling

T = L 1
2n—1
ﬁfﬂ" (07 0)
and introducing the new parameter
v= |f:cu(070)|:u

we obtain the form
1~ 0+ siwn + son”" + O(In|v? + 0 |v| + " + ),

where
s1 = sign(fz,(0,0)) and s> = sign(f,2~(0,0)).
On the other hand, in spite of it, it would be nicer to prove that, after the trun-

cation of the higher order terms in the last equation, a topologically equivalent
family remains.

Pitchfork Bifurcation. A uniparametric family
F RxR—->R

undergoes a pitchfork bifurcation if the family possesses two curves of fixed

points in the z — p plane passing through the bifurcation point; one curve

exists on both sides of y = 0 and the other lies locally on one side of y = 0.
For this bifurcation, we have:

Theorem 2.5. Suppose that a one-parameter family
F:RxR—->R

of C?>"*2 maps has at the map corresponding to the parameter value pg = 0 the
fized point zo = 0 and let f,(0,0) =1, f,(0,0) =0.
Assume that the following conditions are satisfied:
(Pl) L4 fzz(O;O):fmxm(an)::fw2"(070):0:
o foans1(0,0)#0
(P2) fzu(0,0) #0
Then the family undergoes a pitchfork bifurcation.

Proof. See [4]. O

Remark 2.6. Asin the two preceding cases, the case n = 3 can be encountered
in the literature (e.g., see [12]).

It is evident that the simplest families which verify the conditions of theorem
2.5 are

(2.4) T+ s1px + sox®n L

where 51,82 € {—1,1}.
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In particular, the Taylor expansion of a smooth f with the above properties
is

z+ fzu‘(070)$u+ ,fz2"+1 (0’0)$2n+1

1
(2n+1)
+ O(lzlp?® + 2 [u] + |22+ + %)
Making the rescaling
n

1
2n

mfz2n+l (0, 0)
and introducing the new parameter

v =|fzu(0,0)|p
we obtain the form
1~ 0+ s1n + s+ O(Inlv?® +n?fv] + 97" + %),
where
s1 = sign(fz,(0,0)) and so = sign(fy2n+1(0,0)).

Topological equivalence with the simplest form (2.4), however, is not proved
yet.

3. AN EIGENVALUE EQUAL TO -1
Flip or Period Doubling Bifurcation. A uniparametric family
F:RxR—->R

undergoes a flip bifurcation if the family possesses two curves in the x — u plane
passing through the bifurcation point; one curve of fixed points exists on both
sides of ;4 = 0 and the other one, of periodic points of period two, lies locally
on one side of p = 0.

Once more, we have conditions of higher order required for a family to
undergo a flip or period-doubling bifurcation.

Theorem 3.1. Suppose that a one-parameter family
F:RxR—->R

of C?™+1 maps has at po = 0 the fized point xo = 0 and let f,(0,0) = —1.
Assume that the following conditions are satisfied:
(PD1) & (f*)222(0,0) = (f*)44(0,0) = - = (?),2-(0,0) =0,
hd (f2)z2"+1 (03 0) # 0
(PD2) f2,(0,0) #0
Then the family undergoes a flip or period-doubling bifurcation.

Proof. See [4]. O
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Since f(0,0) # 1, the Implicit Function Theorem guaranties the existence
and uniqueness of a curve, z(u), for sufficiently small |u|, consisting on fixed
points. Therefore, one can perform a coordinate shift, placing this fixed points
at the origin of the state space and so, it can be assumed, without loss of
generality, that z = 0 is a fixed point of each map f, of the family for sufficiently
small |u| .

This being the case, it seems appropriated to say that the simplest family
verifying the conditions of theorem 3.1 is one of the form

(3.5) —(1+ s1w)n + son®

where s1,s2 € {—1,1}.
From the conventional normal form theory, we know that the family can be
written, after a suitable shift of coordinates, as follows (see [2] or [10])

(3.6) )\(M).’L‘ + a3(u):c3 + -+ azny1 (/L).’L‘2n+1 + (9(31,277,4-3)7

where A(0) = —1 and the first a;(0) # 0 depends directly on the nondegeneracy
conditions in the formulation of theorem 3.1. In fact, we have that

1 1, _ —_1 9
and if (f2);42(0,0) = 0, what means that a3(0) = 0, then
b 1 1l _ =1l

To the appearance of a (standard) flip bifurcation, a3z(0) # 0 is assumed.
Further degeneracy can be introduced by taking

(37) as (0) = a5(0) =" =4a9]—-1 (0) = 0, but azi+1 (0) 75 0,

which we will call generalized flip singularity of type l. A model that presents
one of these generalized flip singularities can be seen in [3].

In this case, we have been able to go further, and some of the higher order
terms in (3.6) have been eliminated, giving a simpler topologically equivalent
form of the family.

First of all, we work on the particular value I = 1 and then we summarize
the results for a general I. To begin with, let us consider the equation (3.6).
As this only involves some odd terms, the transformation needs to involve
these odd order terms only. In order to obtain the appropriate pattern of
the nonlinear transformation, we start from the 3rd order terms. Making the
nonlinear transformation

(3.8) y =1z +c32°,

where ¢3 = c3(p) is to be determined suitably, and supposing that upon ap-
plying this transformation the equation of (3.6) in the new coordinates can be
expressed as

(3.9) Ay +bay® + -
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when we balance the 3rd order terms, we have
as + Mes = bs + Aes.

So, evaluating this equation on g = 0, one has b3(0) = a3(0) # 0 for any choice
of ¢3(0), what means that the 3rd order terms can not be eliminated.

Now, proceeding in the same manner with the 5th order terms, if we perform
the change

(3.10) y =z + czx® + cs52°
we obtain, balancing the 5th order terms,
as + 3)\261303 + )\505 = b5 + 3bszcs + Acs,

what proves that b5(0) = a5(0) and the 5th order terms can not be eliminated
for any choice of ¢3 and cs.

Working on the 7th order terms, if we make the nonlinear transformation
(3.11) y =2+ 3z’ + esz® + era’,
for these terms we have
(3.12) ar+3Xascz+3Xa3cs+5  csaz+A ¢r = by +5e3bs +3c3bs +3csbs +Aer.
Then, after evaluating on u = 0, we choose

_ —a7(0)

2a3(0)
what, applying the Implicit Function Theorem to the equation (3.12), allows
us to make by (p) = 0 for sufficiently small |u|.

In general, if one performs the change

c3=0 and ¢5(0)

(3.13) y=x+csz’ +crx’ -+ 02k+1x2k+1,

balancing the (2k+1)th terms and evaluating in g = 0, one obtains by induction
an equation of the form

(2k — 4)az(0)c2k—1(0) = b2k+1(0) — azk41(0) + P(---), k> 2,

where P(---) represents a summation of terms which are function of the known
coefficients

C3(0),C5(0), . ,CQk_3(0) and a3(0),a5(0), . ,agk_l(O).

Obviously, this last equation allows us to make bag11(0) = 0 with an appro-
priate choice of ¢or—1(0), for all k& > 2. Using again the Implicit Function
Theorem, we have bag41 () = 0 for sufficiently small |p.

In general, for a singularity of type [, i.e.,

(314) a3(0) = a5(0) == azl_l(O) = 0, but azi+1 (0) 75 0,
the same procedure yields
(315) b3(0) = b5(0) == bzl_l(O) = 0, but b21+1 (0) = a21+1(0) 75 0

for any choice of the coefficients c3,cs, . . ., copy1.
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On the other hand, for k£ > [, making the nonlinear transformation
(3.16) y=z+csz +csx® + e’ -+ 02k+1$2k+1, k>1,
and balancing the (2k + 1)th order terms, we have, after evaluating on u = 0,

(3.17) (2k — 4l)azi+1(0)c2p41-21(0) = bag41(0) — azg+1(0) + P(---),

what means that every term of order 2k+1 greater than 2/+1 can be eliminated,
except in the case k = 2[. In such a case, we choose cy;41 = 0 for simplicity.
Unfortunately, this procedure does not apply in the cases corresponding to
an eigenvalue equals 1.
Thus, we have proved the following result.

Theorem 3.2. Assume that the conventional normal form of an analytic fam-
ily with the singularity of the presence of a fixed point with an eigenvalue equals
-1 is given by (3.6).

Suppose that the following degeneracy conditions are verified:

(318) a3(0) = a5(0) =---= a2171(0) = 0, but a21+1(0) 75 0.
Then, its normal form can be written as
(3.19) Aw)z + az(p)z® + -+ + aza (W21 + agrpr (),

up to any order.

Remark 3.3. As in the other cases, the topological equivalence of any family
satisfying the hypothesis of theorem 3.1 and the simplest family (3.5) is an
open problem yet.
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