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ABSTRACT. Several (old and new) results on stability of quotients (of
various types) under product, on sequentiality of product of sequential
spaces, on relationships between a topology and the upper Kuratowski
convergence on its closed sets are derived from a general mechanism
of duality that uses the continuous convergence. Coreflectively mod-
ified biduals with respect to the continuous convergence lead to new
reflectors which are of fundamental interest in this quest.
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1. INTRODUCTION

In this paper, I present a general mechanism of continuous duality together
with various applications concerning sequentiality of products of sequential con-
vergences, quotientness of products of quotient maps and relations between a
convergence and the upper Kuratowski convergence on its closed sets (homeo-
morphically Scott convergence on the complete lattice of its open sets). Even
if one is only interested in the corollaries for topologies, this is the framework
of general convergences that enables to develop a unified theory.

A convergence £ on a set X is a relation between points and filters on X
denoted

f?mormélimgf,
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that fulfills'
F<Gand F vz = G — z;

(z) = =;
F—ozand §—2x— FAG >z,

for each x € X, where (z) denotes the principal ultrafilter generated by z.
Every topology can be considered as a convergence and there exists important
naturally defined non topological convergences. If X is a convergence space,
let | X| denote the underlying set. A map f: X — Y between two convergence
spaces is continuous if

f(F — f(z) whenever F — z for every z € |X]|.

I write X > Y if | X| = |Y| and if the identity carried map Idxy : X = Y
is continuous. The category Conv whose objects are the convergence spaces
and with continuous maps as morphisms is a topological category [1] (I refer
to this book for every undefined categorical notion). In other words, for every
sink (fi : X; — |Y])ier there exists the finest convergence on |Y| making
every f; continuous. This convergence is called the final convergence associated
to (fi : X;i = |Y|)ier. Dually, for every source (f; : |X| — Y;)ier there
exists the coarsest convergence on |X| making every f; continuous. I denote
by ?X the final convergence space associated to f : X — |Y| and by (?Y the
initial convergence space associated to f : |[X| — Y. Hence usual categorical
constructions such as products, coproducts, subspaces and so on always exist
in Conv. Moreover, every such construction in the sequel is assumed to be
performed in Conv if no contrary mention is given. In particular, X x Y
denotes the Conv-product of X and Y, that is

M — (z,y)if and only if M > F x G with F — z and G — y.
XxY X Y

Notice that in case X and Y are topological, X x Y coincide with the usual
topological product. Indeed, the category T of topological spaces with contin-
uous maps is a full concretely reflective subcategory of Conv. This means that
for every convergence space X there exists a topological space T X, called topo-
logical reflection of X, such that TX < X and every continuousmap f : X — Y
where Y is a topological space underlies a continuous map from TX to Y. A re-
flective subcategory of Conv is closed under initial constructions (in particular
product) performed in Conv. The map T is called a (concrete)? reflector.

All the considered categories are subcategories of Conv and they are denoted
by bold capitals. If a subcategory is (co)reflective, the associated (co)reflector
will be denoted by the same (non bold) capital letter. For example if J is a
reflective subcategory of Conv, the associated reflector is J : Conv — J.

Lthe subscript £ is omitted when no confusion is possible.

2In this paper, every (co)reflector is concrete in the sense of [1], that is a convergence
and its (co)reflection have the same underlying set. Such (co)reflectors are also called
bi(co)reflectors [36] or rigid (co)reflectors [35].
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In [10], B. J. Day and G. M. Kelly investigated the two following dual ques-
tions:

(1) Characterize topological spaces X for which
dx xf: X xW > X xZ

is quotient for every quotient map f: W — Z.
(2) Characterize the continuous surjections f : X — W between topologi-
cal spaces for which

fxIdy : X xY >WxY

is quotient, for every topological space Y.

Let me give a convergence-theoretic rephrasing of these two problems. By
definition, a map f : X — Y between topological spaces is quotient if it is final
in the full subcategory T of Conv. As T is reflective in Conv, this means that
Y is the topological reflection of the final convergence space f X. In other
words, f : X — Y is quotient if and only if
(1.1) Y > T(7X).

This is meaningful for arbitrary convergences and a continuous surjection f :
X =Y in Conv is called quotient or T-quotient if (1.1) is satisfied®>. As Conv
is cartesian-closed,
FxgX xY)=7X x 7Y,
so that the Day-Kelly questions extended to Conv can be rephrased as follows*:
(1) Characterize convergence (topological) spaces X for which

(1.2) VY € Ob(Conv), X xTY >T(X xY).
(2) Characterize maps f : X — W such
(1.3) VY € Ob(Conv), W xY >T(fX xY).

In order to deal with both (1.2) and (1.3) simultaneously, we have to investigate
conditions (on X and W with the same underlying set) for the following to hold

(1.4) VY € Ob(Conv), W x JY > T(X xY),

where J is a reflector, which can be either T' (first case) or the identity functor
(second case), but which can also be something else. Moreover, I expect the
above scheme to also handle relativizations like the following variant, due to
E. Michael, of the classical Whitehead theorem.

Theorem 1.1. [32, Theorem 4.1] A regular (Hausdorff) topological space is
locally countably compact if and only if the product of its identity with every
quotient map from a sequential topological space is quotient.

30f course the notion coincide with the usual categorical notion of quotient in T if both
X and Y are topological spaces. With the definition (1.1) a map need not be domained and
codomained in T-objects to be Tp-quotient.

Ytake Y = W in (1.2).
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Recall that a topology is sequential if sequentially closed and closed sets coin-
cide. This can be rephrased in convergence-theoretic terms [11]. A convergence
is sequentially based if F — x implies that there exists a sequence (z,)n such
that F > (z,)n and (z,)y — 2. Analogously, a convergence is first-countable
if 7 — x implies that there exists a countably based filter H such that F > H
and ‘H — x. Both categories Seq of sequentially based convergence spaces and
First of first-countable convergence spaces are (concretely) coreflective subcat-
egories of Conv. Obviously, a topological space X is sequential if and only if
X > TSeqX. It is moreover equivalent to

(1.5) X > TFirst X.

This is meaningful for arbitrary convergence spaces and allows to deal with
sequentiality in the general context of Conv.
It turns out (see [17] for details) that spaces X for which

VY € Ob(First), X x TY > T(X x Y),

are those that verify Idx x f is quotient for every quotient map f with sequential
domain. In other words, (1.4) should be coreflectively relativized.

This approach initiated in [17] is systematized. In this paper, given two
(concretely) reflective subcategories L and J of Conv and a (concretely) core-
flective subcategory E, I investigate the general problem

(1.6) VY € Ob(E),W x JY > L(X x Y),

where X and W are two (possibly equal) convergence spaces with the same
underlying set. I obtain general results on (1.6) which turn out to be particu-
larly efficient to derive corollaries on product of quotient maps, when J, L, E
are particularized. Indeed, it is known from the works of D. C. Kent [26], of
H.L Bentley, H. Herrlich and R. Lowen [4] and of S. Dolecki [11] that quotient,
hereditarily quotient, countably biquotient and biquotient maps are J-quotient
maps where J stands for the reflective subcategory (of Conv) T of topologies,
P of pretopologies, P, of paratopologies and S of pseudotopologies respec-
tively. The following gathers most of such corollaries that are obtained in this
paper. In the two following tables, the parenthesis stand for “equivalently”,
while conditions written in italic are supplementary assumptions.
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| for every g | fxgis iff f is
1 quotient A-quotient with
core-compact topological range
2 quotient with A, -quotient with
sequential domain core-contour (First)-compact
topological range
3 hereditarily quotient A-quotient with
quotient T'-core-compact range
4 hereditarily quotient A, -quotient with
with Fréchet domain T-core-countably compact
range
5 countably biquotient A-quotient with
core-bi-k range
6 | countably biquotient with Ay-quotient with
strongly Fréchet domain core-bi-quasi-k range
7 A-quotient quotient A-quotient
(identity) (A-quotient)
8 A-quotient with
quasi-bisequential domain quotient A,-quotient
(identity of (A, -quotient)
metrizable topology)
9 hereditarily biquotient with
quotient finitely generated range
10 biquotient with hereditarily
finitely generated range hereditarily quotient
11 hereditarily quotient countably biquotient
quotient with with
Fréchet domain finitely generated range
12 countably biquotient hereditarily biquotient with
quotient bisequential range
13 countably biquotient (countably countably biquotient
with biquotient) with
strongly Fréchet domain bisequential range
14 biquotient with
bisequential range countably countably biquotient
(identity of biquotient
metrizable topology)
15 biquotient hereditarily
(identity) quotient biquotient
(biquotient)

A-quotient and A, -quotient maps are the quotient maps in the categories of
Antoine convergences and of countably Antoine convergences respectively. In
particular results 1 to 4 and 7 and 8 were proved in [17] while the results 5, 6
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and 9 to 13 seem to be new. Row 14 is [33, Proposition 4.4] and row 15 can be
found in [4] or deduced from [39, Theorem 3].

Given two convergence spaces X and Y, the continuous convergence [X,Y]
is the coarsest convergence space on the set C(X,Y") of continuous functions
from X to Y that makes the evaluation (jointly) continuous. [X,Y] is called the
(continuous) dual of X (with respect to V) and [[X, Y], Y] is called the bidual of
X. Convergences initially determined by their biduals will play a key role in the
study of (1.6). Such convergences have been intensively studied in convergence
theory. Most important examples of this type are the pseudotopologies of
Choquet [7], the c-spaces of Binz and the Antoine convergences [8]. In contrast,
even if coreflectively modified biduals

[EIX,Y].Y],

where E denotes a (concretely) coreflective subcategory of Conv were used
by D. C. Kent and G. Richardson in [28] and by D. C. Kent and R. Fri¢ in
[21] in the study of sequential envelopes®, they seem to be used here for the
first time in the context of general convergences. This approach enabled the
author to solve in [34] a problem of Y. Tanaka of characterizing topologies
whose product with every first-countable topology is sequential. This result
corresponds to the first row of the following table that gathers the corollaries
of the general mechanism in terms of product of sequential spaces. The details
concerning the first row can be found in [34], while the results of rows 2 and 3
are detailed and proved in [17], but they follow from a single general result, just
like row 4 [33, Proposition 4.D.4, Proposition 4.D.5] and rows 5 and 6 which
seem to be new.

| |f0reveer|X><Yis| iff X is |
1| bisequential strongly sequential
(metrizable)
2 Fréchet T-core-countably compact
sequential strongly sequential
3 when X s a topology
sequential core-contour (First)-compact
strongly sequential
4 | bisequential Fréchet strongly Fréchet
(metrizable) | (strongly
5 Fréchet FrUchet) finitely generated
| | for every Y | X xYis | whenever X is |
6 strongly sequential core-bi-quasi-k
Fréchet and strongly sequential

5In [28] and [21], the framework is that of the category E and such modification of the
biduals arise from this particular context.
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T-core-countable-compactness and core-contour(First)-compactness are rel-
ativizations (for convergences) of the classical topological local countable com-
pactness. Analogously, core-bi-quasi-k-ness relativizes the classical topological
notions of bi-quasi-k-ness.

The above results (of both tables) are all corollaries of the same principle,
given in the following Theorem 1.2 and in full generality in Theorem 3.1.

Theorem 1.2. Let L C J denote two (concretely) reflective subcategories of
Conv and let E be a (concretely) coreflective subcategory. The following are
equivalent:

(1) For everyY > JEY
XxJY >L(X xY);

(2) Idx x f is L-quotient for every J-quotient map f with JE-domain;
(3) JE[X,Z] > [X, Z] for every L-object Z;
(4) JE[X,Z] > [X, Z] for every Z in an initially dense subclass of L.

This applies to relationships between a convergence space and its continuous
duals. In particular, given a convergence space X, the upper Kuratowski con-
vergence on its closed sets (equivalently the Scott convergence on the complete
lattice of its open sets) can be identified with the (continuous) dual [X,§] of
X with respect to the Sierpiriski topology $. Since $ is initially dense in T,
Theorem 1.2 can be rephrased as follow in case L=T.

Theorem 1.3. Let J be a reflective subcategory of Conv that contains T and
let E be a coreflective subcategory of Conv. The following are equivalent:

(1) For everyY > JEY
XxJY>T(X xY);

(2) Idx x f is quotient for every J-quotient map f with JE-domain;
(3) JE[X, Z] > [X, Z] for every topological space Z;
(4) JE[X.8] > [X,5].

By use of coreflectively modified biduals I characterize internally the con-
vergences X that verify the properties of Theorem 1.3, for various J and E.

For example the pretopologicity and the paratopologicity of the upper Ku-
ratowski convergence (Scott convergence) are characterized. Such new items of
information might lead to a better understanding of some aspects of the lattice
theory or of consonance.

2. CONVERGENCES

The adherence of a filter F is the union of the limits of all filters that are
finer than F:
adhx F = | J limx G.
GOF
The adherence adhx A of a subset A of X is the adherence of the principal
filter of A. A set V is a X-vicinity of z whenever z ¢ adhx V°. I denote Vx ()
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the set of all the vicinities of z. I depart here from the usual terminology of
convergence theory, where the adherence is called the “closure” and a vicinity
is called a “neighborhood”. I reserve the latter terms for analogous notions
related to those of closed and open sets. A subset A of X is X-closed whenever
for every filter F with A € F, one has limx F C A. A set is X-open if its
complement is X-closed. The closure clx A is the least closed set that includes
A. A set V is a neighborhood of z if and only if z ¢ clx V. The set of all the
neighborhoods is denoted by Nx (z).

2.1. Reflectors and coreflectors. A convergence space X is topological (or
the convergence is a topology) if 7 — z amounts to F > N (z); pretopological
if 7 —» z amounts to F > V(z); pseudotopological if and only if

limx F= () limx,
UEB(F)
where 8(F) denotes the set of all the ultrafilters finer than F.

All these classes are closed for arbitrary suprema in the complete lattice
of convergences. Moreover, the initial convergence of a topology (resp., pre-
topology, pseudotopology) is a topology (resp., pretopology, pseudotopology).
In terms of the category theory, the above classes (together with continuous
maps) are concretely reflective subcategories of the category Conv. The map
J that associates to every convergence space X the finest convergence space
coarser than X from such a class is a contractive and idempotent functor. Such
a (concrete) functor is a reflector. Concrete reflectors are exactly contractive
and idempotent concrete functors. Actually, functors should be defined on mor-
phisms. However, concrete endofunctors (that is functors F' : Conv — Conv
such that |- |o F = |- |) can be characterized objectwise because Conv is a
topological category.

Proposition 2.1. [18] Let (A, |-|) be a topological category (over Set). A map
F : Ob(A) — Ob(A) such that |- |o F = |- | is the restriction of a concrete
functor to the objects of A if and only if F' is order-preserving and

(2.7 T4y > F(F ),
for each A-object A and each Set-morphism f : |A| = Y, if and only if F' is
order-preserving and

(28) FF(B) > 7(FB),
for each A-object B and each Set-morphism f : X — |B].

In the sequel every (co)reflector F' (and more generally every functor if not
specified differently) is supposed to be a concrete endofunctor of Conv, that
is, F' : Conv — F and a convergence space and its (co)reflection have the same
underlying set.

Two families of subsets A and B mesh (A#B) if A(\B # @ foreach A € A
and each B € B. The elements of a class J of filters are called J-filters. A class
J of filters is said to be composable if it contains principal filters and if HG, the
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filter generated by {HG : H € H,G € G}°, is a (possibly degenerate) J-filter
on Y whenever H is a J-filter on X x Y and G a J-filter on X. For example,
the classes of principal filters and of countably based filters are composable,
while that of sequential filters is not.

The map Adhjy given by

(2.9) limAdh;,Xf = ﬂ adhx H
JOH#F

is a (concrete) reflector if J is a composable class of filters.

If J is the class of all filters, then Adhy = S; the class of principal filters,
then Adhy = P. If we take J to be the class of of countably based filters, then
(2.9) defines the paratopological modification P, X of X [11].

Dually, a class E of convergence spaces closed for arbitrary infima and for
final convergences is a (concretely) coreflective subcategory of Conv. The cor-
responding coreflector E associates to each convergence space X the coarsest
E-object finer than X. The map FE is order-preserving, expansive and idempo-
tent. Moreover

(2.10) 7EX) > B(X),

for each map f: X — Y. The latter amounts to E(?Y) > T(EY) The con-
crete coreflectors in the category Conv are characterized (modulo Proposition
2.1) by the above properties.

If J denotes a class of filters, the coreflector Basey on J-based convergences
is defined by

(2.11) limpase,x F = ) limxG.
G<F,GeJ

For example, if J is the class of principal filters Basey is denoted Fin, the
coreflector on countably based convergences is denoted First, while the core-
flector on convergences based in filters generated by sequences is denoted Seq.
The coreflector on discrete convergences, denoted Dis is the coreflector on con-
vergences based in principal ultrafilters. I call a coreflector E finitely productive
whenever

E(X xY)=EX x EY,

for every X and Y. Notice that E(X xY) > EX x EY holds for every
coreflector.

Lemma 2.2. If J is a composable class of filters, then Basey is a finitely
productive coreflector.

Proof. It suffices to show that F x G is a J-filter on X x Y if F is a J-filter on X
and G is a §-filter on Y. Both FxY and X x G are J-filters on X xY, as images
of J-filters under the relations {(z, (z,y)) 12 € X,y €Y} C X x (X xY) and
{{(z,y),y) rz € X,y € Y} C (X xY) xY respectively. Now F x G is the
image of F x Y under the J-filter X x G on the diagonal of (X x Y)2. O

SHG = {y : Jpec(a,y) € H}
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On the other hand, it is known [11] that numerous classes of convergence
spaces (and in particular of topological spaces) Y can be characterized by
inequalities of the type

(2.12) Y > JEY,

where J is a reflector and E is a coreflector. A convergence space fulfilling
(2.12) is called a JE-convergence space. For example, if E = First, then,
by choosing J to be respectively the topologizer, pretopologizer, paratopolo-
gizer, pseudotopologizer and identity, (2.12) characterizes sequential, FrUchet,
strongly Frchhet, bisequential and first-countable convergences; if £ = K, the
compact localizer”, then (2.12) characterizes k, k', strongly k', locally compact
and, once again locally compact convergences respectively.

2.2. Classes of quotient. It is known that almost open, biquotient [26],
countably biquotient [11], hereditarily quotient [26] and quotient maps f :
X — Y can be characterized as continuous surjections that fulfill

(2.13) Y > J(7x),

where J is respectively the identity, pseudotopologizer, paratopologizer, pre-
topologizer and topologizer. A continuous surjection f that fulfills (2.13) is
called J-quotient. A map is a J-quotient map onto a J-object if and only if

(2.14) Y = J(7X).

If J is a reflector and E a coreflector and if X is a JE-convergence space,

then f X is also a JE-convergence space, because of (2.7). Moreover, each
J-quotient image of a JE-convergence is a JE-convergence [11, Theorem 4.2].
Recall the following classical characterization of a quotient map.

Proposition 2.3. A continuous surjection f : X — Y is a quotient map if and
only if for each topological space W, and each map g : Y — W, the continuity
of go f implies the continuity of g.

I need an analogous characterization of a J-quotient map with a JFE-con-

vergence space as domain.

Proposition 2.4. Let J be a reflective subcategory and let E be a coreflective
subcategory of Conv. If f : X = Y is a continuous surjection with X > JEX,
then f is J-quotient if and only if for each convergence space W < JEW
(equivalently W € Ob(J)) and each map g : Y — W, the continuity of (g o f)
implies the continuity of g.
Proof. Assume that f is J-quotient, ie., f : X —» Y > J(?X). Let g :
Y - W < JEW. If go f is continuous, then ¢ (fX) > W. Since Y >
J(FX), one has Y > G (JFX) > F(JEFX) because X > JEX implies
X > JE f X. Since JFE is a concrete functor, ?(JE?X) > JE?(?X) by
Proposition 2.1. Consequently, ?Y > JEW > W and g is continuous.

Tz € limg x F if and only if z € limx F and F contains a compact set.
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Conversely, assume that for each W < JEW andeach g: Y — W, go f
continuous implies g continuous. Taking W = J( f X) and g = Idy,w, the map

gof: X — W < f X is continuous, so that g is also continuous. Consequently,
Y > J(7X). O

In particular, f : X — Y is J-quotient if and only if the continuity of g o f
implies that of g, for every map g : Y — W with W € Ob(J).

2.3. Continuous convergence. The continuous convergence [X, Z] of X (with
respect to a coupling convergence Z) is the coarsest convergence space Y
on the set of continuous maps from X to Z for which the evaluation map
ev: X xY — Z is continuous, that is, the coarsest such that

(2.15) XxY>&2Z.

The reason why continuous convergence appears naturally in many problems
that involve products is the exponential law:

(2.16) X xY,Z]=1Y,[X, Z]],

for every convergence spaces X, Y, Z. Here the equality means the home-
omorphism via the transposition map ' : |[X x Y, Z]| = |[Y,[X, Z]]| de-
fined by {f(y)(z) = f(z,y). Notice that if f : X — Y is continuous then
f*: Y, Z] = [X, Z] defined by f*(h) = ho f is continuous (for every Z).

In the particular case where the coupling convergence space is the Sierpiriski
space $ defined on {0,1} by the $-open sets @, {0} and {0,1}, then the con-
tinuous convergence [X, $] is the upper Kuratowski convergence on the set of
X-closed sets. Indeed, the continuous functions for the Sierpiriski topology are
precisely the characteristic functions® of closed sets. The upper Kuratowski
convergence (homeomorphically the Scott convergence in the lattice of open
sets) plays a crucial role in the study of upper semicontinuity or of closedness
of graphs [5] and also in consonance [16]. In Section 6, I give new results on
the relationships between a convergence space X and [X, §].

3. GENERAL MECHANISM

A subclass D of Ob(C) is initially dense in C if for each C-object W, there
exists an initial source (f; : W — Y;), where ¥; € D°. Dually, A subclass D
of Ob(C) is finally dense in C if for each C-object W, there exists a final sink
(fi : Y; = W), where Y; € D1°.

A convergence space is atomic if its all but one points are isolated.

Let L be a reflective subcategory of Conv. Convergence spaces initially
determined by their biduals have been classically used in convergence theory,
in particular in studies of duality. Classical examples are the c-spaces of Binz

81f A C X, the characteristic function is 14 : X — $ that takes the value 1 on A and 0
on A°.

91n other words, W = \/ F; Y;.

107y other words, W = A 1. Yi.
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[6] and the Antoine (or epitopological) spaces [2]. To deal with such objects,
given a convergence space Z, I define for every X the convergence spaces

(3.17) Epi?X = 7 [[X, 2], Z),

where i : | X| — |[[X, Z], Z]| is the canonical map from X to its bidual with
respect to Z; and

3.18 Epi"X = v Epi”X.

(3.18) Pt Z€eOb(L) Pt

Antoine spaces are characterized by X = Epi$X or X = Epi’ X and the ¢
spaces are characterized by X = Epi"X or X = Epi®X where O denotes
the category of completely regular topological spaces. These two examples are
used in “classical” duality. The new technique of “modified” duality intro-
duced in this paper requires more general objects. Precisely, given a (concrete
endo)functor F' of Conv for which FZ > Z (for every L-object Z), I define for
every X

(3.19) EpiZX = 7 [F[X, 2], 2],
and

3.20 EpiktX = v Epi?X.
(3.20) pip sechny P

Notice that FZ > Z ensures that i(z) : F[X,Z] — Z is continuous for every
T € | X"
Analogously, for every L-object Z,
IRE
fec(x,z)

(_
is a L-object coarser than X, so that LX > \/  f Z. Moreover,
fec(X,2)

(_
(3.21) Lx=\/ \V fz
ZeOb(L) feC(X,2)
If D is an initially dense subclass of L, then,
.L . -Z v,
(3.22) EpipX = Z\e/DEplFX’
and, by definition of initial density,
(_
(3.23) Lx=\/ V 7z
ZeD  feC(X,Z)

Theorem 3.1. Let X > W be two convergence spaces. Let E be a coreflective
subcategory and let LC J be two reflective subcategories of Conv. The following
are equivalent:

U1 am indebted to Mark Nauwelaerts (Antwerp) for pointing out that such a condition
was missing in a preliminary version of this paper.
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(1) For everyY > JEY
(3.24) W x JY > L(X x Y);

(2) (3.24) holds for every Y € Ob(E);

(3) Idx,w x f is L-quotient for every J-quotient map f with JE-domain;

(4) COW x JY,Z) = C(X xY,Z) for every Y € Ob(E) and every Z €
Ob(L);

(5) C(W xJY,Z)=C(X xY,Z) for every Y € Ob(E) and every Z in an
initially dense subclass of L;

(6) JE[X,Z] > [W,Z] for every Z € Ob(L).

(7) JE([X, Z]) > [W, Z] for every convergence space Z in an initially dense
subclass of L;

(8) W > EpikpX.

The condition LC J ensures that JEZ > Z for every L-object Z, so that
Epi}y is well-defined.

Since there is a unique convergence structure on a singleton, this (unique)
convergence is fixed by every reflector and every coreflector. Thus, if W verifies
(3.24) for every E-object Y, it does in particular if YV is a singleton. Conse-
quentely W > LX. Since L is a reflector, C(X,Z) = C(LX, Z) for every
Z € Ob(L), so that C(X,Z) = C(W, Z), because X > W > LX.

Proof. 1 = 2 is easy.

2 — 3: Consider f : X; — Y; > J(FX1) with X; > JEX,. Then J X; >
JE(?X 1) because JE is a concrete functor. Applying 2 with ¥ = E(?Xl)
we get W x JE(fX1) > L(X x Ef X1) > L(Idx.w x J(X x X1)). Since f is
J-quotient, Y; > JE(?Xl) so that W x Y, > L(Idx,w x f(X x X1)). In view
of (2.13), Idx,w x f is L-quotient.

3= 4: X xY > W x JY because X > W, so that C(W x JY,Z) C
C(X xY,Z). Consider g € C(X xY,Z). Let g denote the map g considered
from W x JY to Z. By definition, g =g o (Idxyw X Idyy,]y). The map Idy, ;v
is J-quotient with JE-domain, so that, by 3, Idx w x Idy,jv is L-quotient.
In view of Proposition 2.4, g is continuous because g is continuous. Thus,
C(X xY,Z) C C(W x JY, 2).

4 <= 5 is obvious in view of the definition of initial density.

4 = 6: For each L-object Z,let Y = E([X, Z]). By4,C(XxE[X,Z],Z) C
C(W x JE[X, Z),Z). Since the evaluation ev is continuous from X x E[X, Z]
to Z, it is continuous from W x JE[X, Z] to Z. Hence, JE[X, Z] > [W, Z], by
definition (2.15) of [W, Z].

6 <= 7 follows from the equivalence between 4 and 5.

6 = 8: Assume that W ¥ Epi5zX. Then there exist z € limy F,
Z € Ob(L) and afilter G such that f € lim;g[x, 7 G but f(z) ¢ limz ev(F xG).
Hence f ¢ lim}w, 7 G so that JE[X, Z] % [W, Z].

8 = 1: Let (zo,90) € limpyiz_x,,y(F x G), let Z € Ob(L) and let
f:X xY — Z be a continuous map. In view of (3.21), it suffices to show that
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f(x0,y0) € limz f(F x G). By (2.16), the map !f : Y — [X, Z] is continuous.
Since JE is a concrete functor, {f : JEY — JE[X,Z] is also continuous, so
that 'f(yo) € limypx,77 'f(G). By definition of EpiyX, I conclude that
tf(yo)(zo) € limz ev(F xt £(G)), in other words f(zo,yo) € limz f(FxG). O

In categorical terms, a J-object X for which there exists a J-object on
C(X, Z) verifying (2.16) for each J-object Z is called ezponential in the category
J. F. Schwarz proved the equivalence between exponentiality of a convergence
X in a finally dense reflective subcategory C of Conv and the fact that for
every C-object Z, (equivalently for every Z in an initially dense subclass of
C) the continuous convergence [X, Z] is a C-object. In this particular case
of exponentiality, he proved all the other equivalence stated in Theorem 3.1,
except 1, 2 and 8. However, the equivalence between the commutation of the
reflector on a reflective subcategory C of a cartesian closed category (such
as the category of convergences) with finite product and the C-quotientness
of product maps is well-known from categorists. From a convergence-theoretic
point of view rather than a categorical one, the assumption that an exponential
object in a subcategory J of Conv must be a J-object is not relevant, so that I
call a convergence space quasi-exponential in J if X x JY > J(X xY) for every
convergence space Y. The following is a rephrasing of the equivalent conditions
of [37, Theorem 5.1] which are of interest for my purpose.

Theorem 3.2. Let B be an epireflective subcategory of Conv containing a
finite non-indiscrete space and closed under formation of coproducts in Conv,
D an initially dense subclass of B and X € B. The following are equivalent:

(1) X is exponential in B;

(2) For each Y € Ob(B), [X,Y] € Ob(B);
(3) For eachY € D, [X,Y] € Ob(B);

(4) X x — preserves quotient maps in B.

Schwarz’s theorem corresponds to the case L=J, E=Conv and W = X €
Ob(J) in Theorem 3.1. In this particular case, Theorem 3.1 follows from F.
Schwarz’s work. In particular, he proved that exponential objects in T are core-
compact topologies and recovered the whole circle of results (quotientness of
the product of an identity map with a quotient map, topologicity of the upper
Kuratowski convergence, continuity of the lattice of open sets...) related to
core-compactness exposed in [17](see [37, Theorem 6.5]). Moreover, Theorem
3.2 applies to epireflective subcategory of Conv and not only to concretely
reflective ones. This allows him to derive corollaries on exponential objects in
categories of convergences that verify certain separation axioms. Analogously,
some of the equivalences of Theorem 3.1 could be extended in case L and J
are epireflective rather than concretely reflective. However, this would not be
be relevant in the kind of applications I am looking for, so that I prefer to use
only concrete reflectors, in order to use freely comparison between convergence
spaces, like in (3.24).
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In contrast, to handle relativizations of the circle of results (quotientness
of the product of an identity map with a quotient map with sequential do-
main, convergence theoretic properties related to sequentiality of the upper
Kuratowski convergence...) related to core-compactness (see in the introduc-
tion the results involving T-core countable compactness or core-contour(First)-
compactness [17]), the classical notion of exponentiality is not relevant any-
more, because a coreflective relativization is needed.

By analogy, if J is a reflective and E a coreflective subcategory of Conv, I
call a convergence space J-quasi-exponential relatively to E if it verifies

X xJY > J(X xY)

for every E-object Y. In view of Theorem 3.1, the situation is then rather
different from the classical exponentiality. Indeed, the relativization of J-
exponentiality no longer ensures that the duals [X, Z] are J-objects (but only
that JE[X, Z] > [X, Z], which is by the way another reflective property, but
weaker than belonging to Ob(J)) provided Z is a J-object. However, the anal-
ogy stands in the formulation 3 of Theorem 3.1 in terms of quotient maps. The
introduction of a coreflector E is one direction of generalization of Schwarz’s
theorem. When the two reflectors L and J are no longer the same, Theorem
3.1 generalizes Theorem 3.2 in another direction.

In each case, the missing and significant step to be done is an internal char-
acterization of convergence spaces W verifying one of the equivalent conditions
of Theorem 3.1. In view of 8 in Theorem 3.1, the study of Epin & is a key point.

4. Epik FUNCTORS

Proposition 4.1. Let L be a reflective subcategory of Conv and let F' be a
concrete endofunctor of Conv such that FZ > Z for every L-object Z. Then
EpiZ : Conv — Conv and Epik : Conv — Conv are concrete functors.

Proof. EpilL; is isotone because for each Z, Epifﬂ is isotone. In view of Propo-
sition 2.1, it suffices to prove

7 EpiZX) > Epif(7 X),
for every L-object Z. Let y € limp .\ F and let h € limg», G T
F b

need to show that h(y) € limz ev(F x G), where ev : ?X X [7X,Z] — 7 is
the evaluation. Since f* :[f X, Z] — [X, Z] is continuous, f* : F[ f X, Z] —
F[X,Z] is also continuous because F is a concrete functor, so that f*(h) €
limprx,z) f*(G). On the other hand, there exists £ such that f(£) = F
and z € limggy, x £ for some € f~y. Let ev' : X x [X,Z] = Z denote
the evaluation. From z € limgpi, x £ and f*(h) € limp(x,z f*(G), I deduce
f*(h)(z) € limyz ev' (L x f*(G)). The result follows from the observations that
ev'(L x f*(G)) = ev(f(L) X G) = ev(F x G) and that f*(h)(z) = h(y). O
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However, Epir X is not even always comparable to X. The only observations
of interest are that

(4.25) EpijpX = Epijp(EpigX) > EpipX,
(4.26) Epi”(EpifpX) = EpijpX,
for every convergence space X. In contrast, in case of a coreflector F, the
behavior of Epik is much more convenient. Since i : X — [E[X,Z],Z] is

continuous, X > Epif;X for every Z, so that X > Epi]LEX . On the other hand,
Epié is idempotent because for every Z

(4.27) E[Epi% X, Z] = E[X, Z].
Indeed, X > Epi% X so that [Epik X, Z] > [X, Z] and in view of Theorem 3.1,
E[X,Z] > [EpikX, Z]. Since X > EpikX > LX and since L is a reflector,
C(X,Z) = C(EpikX, Z) for every L-object Z. Hence Epik is idempotent,
contractive and isotone. In view of Proposition 4.1,

Proposition 4.2. Let E be a coreflective subcategory and let L be a reflective
subcategory of Conv. Then Epik is a (concrete) reflector.

Such reflectors will play a key role in the sequel. Indeed, by Theorem 3.1,
Epik X x Y > L(X x Y) for every E-object Y, so that
(4.28) L(X xY) = L(Epik X x Y).

Although I do not have any general decomposition theorem, in all the con-
crete cases I know Epi}y is of the form Epi”CEpik where C stands for a core-

flector; what is not very surprising, In view of (4.25), (4.26) and Proposition
4.1. Hence, the following will be instrumental in applications.

Lemma 4.3. Assume that for two reflective subcategory J and L and a co-
reflective subcategory E of Conv, there exist a reflector R and a (concrete
endo)functor C of Conv such that

(4.29) V WxJY>LXxY) < W > RCEpisX.
Y €Ob(E)

Let f : X =Y be a continuous surjection and let Y = Epif;Y.

Then f x g is L-quotient for every J-quotient map g with JE-domain if and
only if f is Epik-quotient with RC-range.
Proof. Let

FiX Y >EpibfX

such that Y > RCY; hence Y > RCEpiL J X. On the other hand, if g : X; —
Y1 is a J-quotient map with X; > JEX,, then 7X1 > JE?Xl because JFE
is a concrete functor. Consequently, (4.29) applies with W =Y, X = f X and
Y = G X, to the effect that Y x i > Y x J§X1 > L(F X x §X1). Thus
f x g is L-quotient.

Conversely, if f x g is L-quotient for every J-quotient map g with JE-domain,
then, in particular, Y x ¥; > L( f X x Y;) for every E-object Y7 so that ¥ >
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Epif;?X. Thus f is Epik-quotient. On the other hand, Y x JY; > L(?X x Y1)
for every Y7 € Ob(E) (taking g = Idy, jv;) so that Y > RCEpi,LE?X, because
of (4.29). Since f is Epik-quotient onto Y = EpikY, I conclude that Y =
Epik f X, so that Y > RCY. O

4.1. Commutation of the reflector Epié with product.

Theorem 4.4. Let E be a finitely productive coreflector in Conv and let L be
a reflective subcategory of Conv. Then

(4.30) EpikX x EY > Epik(X xY),
for every convergence spaces X and Y.

Proof. Let y € limgy G, = € limEpigxf and h € limg(xxy,z) M. Denote
by ev : (X xY) x [X xY,Z] —» Z the evaluation map. I need to show
that h(z,y) € limz ev((F x G) x M). By the exponential law (2.16) and the
coreflectivity of E, t : E[X xY,Z] — E[Y,[X, Z]] is continuous, so that th €
lim gy, x,2])) tM. Let evy : Y x [Y,[X, Z]] = [X, Z] be the evaluation map.
Since F is a finitely productive coreflector, ev, : EY x E([Y, [X, Z]]) - E[X, Z]
is a continuous map so that ‘h(y) € limpx, 71 H, where H = ev; (G x t M). Since
x € limgp;z x F, one has th(y)(z) € limy eva(F x H) = limyz ev ((F x G) x M),
where evy : X X [X,Z] — Z is the evaluation map. Consequently, h(z,y) €
limy ev((F x G) x M). O

Notice that, by definition of Epié,
(4.31) Epi” > Epip > Epip > L = Epify,
whenever E and B are two coreflectors such that £ > B.

Corollary 4.5. Let E and B be two finitely productive coreflectors of Conv
such that E > B and let L be a reflective subcategory of Conv. Then

(4.32) Epi”E Epis X x EpikY > Epik(X x Y),
for every B-object Y.
Proof. From Theorem 4.4, we have

Epik X x YV > Epih(X xY),

for every B-object Y. Moreover, Epijlgf > Epié because E > B, so that
Epij (EEpi5 X x Y) > Epif(X x V). Hence,

(4.33) EEpi% X x EpikY > Epik(X x Y).
On the other hand, Epi’ commutes with finite products'? so that applying
Epi’ to (4.33) we get (4.32). O

12 Apply (4.30) two times with E=Conv.
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As observed in the above proof,
(4.34) Epi’ X x Epi’Y > Epi’ (X x Y),

so that, by Theorem 3.1, the category Epil is cartesian closed, i.e., every Epi’-
object is exponential (in the category Epi®). Moreover, it is the cartesian closed
topological hull of the category L, provided atomic topologies are L-objects.
Indeed, by [24] (see [23, Theorem 3.9]), the cartesian closed topological hull
B of a subcategory A of Conv is characterized as a cartesian closed category
such that A is finally dense in B and such that {[X, Z] : Z, X A-objects } is
initially dense in B. If atomic topologies are L-object, then L is finally dense in
Conv, hence in Epil. In [37], F. Schwarz call the atomic topologies Fréhlich
spaces and remarks that the class of T1-Frohlich spaces is finally dense in Conv.
Moreover, he proves [37, Proposition 4.4], that an epireflective subcategory of
Conv contains this class if and only if it contains a finite non-indiscrete space.
Notice that for every convergence space X, there exists a family (Y;); of atomic
topological spaces on |X| such that X = AY;. I say that atomic topologies are
concretely finally dense in Conv.
On the other hand,

(4.35) N X, 2] = VIFIXG, Z),

for every convergence space Z, every family (X;); of convergence spaces and
every family of surjective maps f; (see for example [30, Proposition 0.2]). Con-
sequently, {[X, Z]: X, Z € Ob(L)} is obviously initially dense in Epil.

Corollary 4.6. Let L be a reflective subcategory of Conv. The cartesian closed
hull of L is the category Epi®, provided L is finally dense*® in Epil.

Hence, Theorem 3.1 allows to describe both exponential object in reflective
subcategories of Conv and cartesian closed hulls of such subcategories. By
analogy, I call cartesian closed hull relatively to a coprojector E of a finally
dense subcategory C of Conv the smallest category HE containing C such
that f x Idy is HE-quotient for every HE-quotient map f and every E-object
Y. In this context, the cartesian closed hull relatively to E of a reflective
subcategory L of Conv is the category EpiL (see Theorem 4.8). Once again,
the relativization of the classical concept leads to a rather different situation.

The two following theorems summarize the situations (when J=Conv in
(3.24)) concerning the preservation of LE-properties under product on one
hand, and concerning product of quotient maps on the other hand.

Theorem 4.7. Let E be a finitely productive (endo)coreflector of Conv and
let L be a reflective subcategory of Conv. The following are equivalent:

(1) W xY is a LE-convergence space for every Y in a concretely finally
dense subclass of E;
(2) W xY is a LE-convergence space for every E-object Y;

131t suffices that there exists a finite non-indiscrete L-object.
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(3) WxYisa EpiéE—convergence space for every Epil E-convergence
space Y;
(4) W is a Epik E-convergence space.
Proof. 4 — 3: Theorem 4.5 applies with X = EY and Y = EW to the
effect that Epik EW x Epi” EY > Epik(EW x EY) > Epig E(W x Y). Hence,
W x Y > Epik E(W x Y) because W > Epik EW and Y > Epi’EY.

3 = 2 = 1 is obvious.

1 = 4 In view of Theorem 3.1 applied with J=Conv, X = EW, it
suffices to show that W x Y > L(EX x Y) for every E-object Y. Therefore,
consider a family (Y;); such that Y = AY; and W x Y; is a LE-convergence
for every i. Then, W xY; > L(EX xY;) > L(EX x Y) for every i, so that
WxY =W xAY; > LEX xY). Hence W x Y is a LE-convergence. O

Theorem 4.8. Let E be a finitely productive (endo)coreflector of Conv and
let L be a reflective subcategory of Conv. Let f : X1 — Y] be a continuous
surjection. The following are equivalent:
(1) f is Epik-quotient;
(2) fxIdy is L-quotient for every Y in a concretely finally dense subclass
of E;
(3) f xIdy is L-quotient for every E-object Y;
(4) fxgis Epif;-quotient for every Epi” -quotient map g with Epil E-
range'*.
Proof. 4 = 3 = 2 is obvious.

2 = 1 In view of Theorem 3.1 with J=Conv, W =Y; and X = 7X1, it
suffices to show that ¥; x Y > L(?Xl xY)if Y € Ob(E). Consider a family
(W;) in the concretely finally dense subclass of E such that Y = AW;. For
every i, the map f x Idw, is L-quotient so that Y7 x W; > L(?Xl x W;) >
L(FTX, xY). Thus, Vi XY = Y1 x AWi > L(F X, x Y). By Theorem 3.1,
Y, > Epit 7 X1

1= 4: Let g : X, — Y, > Epi’§ X, with Y > Epi’EY,. Hence,
Y, > Epi” EEpi® ¢ X,. Since Epi” > Epik, in view of (4.34), X x Epi"Y >
Epik(X x Y) for every convergence spaces X and Y, so that Epig(X xY) =
Epik(X x Epi”Y’). Moreover, by Theorem 4.5,

(4.36) EpikX x Epi” EEpi"Y > Epik(X x V),
for every X and Y. Consequently, Y7 x Ya > Epif;?Xl x Epil EEpit 7X2 >
Epil(7 X1 x §X), assigning in (4.36) X = £ X, and Y = § X». O

Recall that, for example, atomic topological spaces are concretely finally
dense in Conv while metrizable atomic topological spaces are concretely finally
dense in first countable convergence spaces.

MNotice that since Epik is a reflector while E is a coreflector, the range of a Epik-
quotient map is a Epig‘E—convergence space whenever the domain is a Epif,;E—convergence
space [11, Theorem 4.2].
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Notice that in case E=Conv and L is finally dense in Conv, then, in view
of Corollary 4.6, Theorem 4.8 states that a map is product-stable in L in the
sense of Schwarz [39]'% if and only if it is quotient in the cartesian closed hull
of L [39, Theorem 3].

In view of Theorem 3.1 internal characterizations of convergence spaces W
for which

W xJY >L(X xY),

for every E-object Y (for various instances coreflective subcategory E and
of reflective subcategories L and J of Conv) provides a large collection of
applications. The challenging problem is to provide internal characterizations
of Epi%pX. As said before Epik has a better structural behavior than Epi’p.
Moreover, in view of Theorems 4.7 and 4.8, interesting results would be derived
from internal characterizations of Epik-reflections. Consequently, I begin with
J=Conv.

I primarily study concrete cases in which the category L is simple, that is
there exists a L-object Zy such that {Zg} is initially dense in the category of
L.

Hence, when L is simple, there exists Zy such that for every convergence
space X,

(4.37) ix= "\ ¥z
fEC(X,Zo)

In the next sections, the category L is either the (simple) category T of
topological spaces or the (simple) category P of pretopological spaces. The cor-
responding initially dense convergence spaces Zy are respectively the Sierpinski
topology $ 16 and the pretopology ¥'7. Hence, for every coreflective subcate-
gory E of Conv,

(4.38) 7x= \/ ¥$ and Epi} = Epi};
FEC(X8)
<_

(4.39) Px= \/ ¥ and Epij = Epip.
FeC(X.¥)

5. COREFLECTIVELY MODIFIED ANTOINE CONVERGENCES

I gave in [34] the following characterization of Epi}, in case E = Basey
for a composable class of filters J. In the present case (L=T, Zy = $ and
E = Baseg), I use the following conventions:

T .$
EplBaseg = EplBase3 = 4y,

L5¢hat is, f X Idy is L-quotient for every Y € Ob(L).

16that is, the two point set {0,1} in which V(1) = {0, 1} and V(0) = {{0},{0,1}}.

"The underlying set of ¥ is the three point set {0,1,2} endowed with the following
pretopology: V(0) = {¥}, V(1) = {¥}, V(2) = {{0,1,2}, {1,2}}. See [7, I1.2] for details.
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and,
Epi® = 4; Epifﬂimt =A,.
Indeed, A is the reflector on Antoine convergence spaces (see [7], [30]) and I
call a convergence space X J-Antoine whenever X = A3 X. If J is the class of
countably based filters, I call such a convergence space countably Antoine.
By definition,

adx A = | limx(a), adk% A={z€|X|:limx(z)(|A+# 2}
acA
Let Hadrx denote the filter generated by {adrx H : H € H}, and let Jadrx
denote the class of J-filters H for which H = Had, -

Theorem 5.1. [34, Theorem 2.2] If J is a composable class of filters, then the
reflector Ay : Conv — Ay is given by

lima,x F= ()|  clx(adhx H).
Jadpx SH#F

By Corollary 4.6, the category of Antoine convergences is the cartesian closed
hull of the category of topologies [7]. When J is the class of all filters, Theorem
5.1 provides a characterization of Antoine convergences. The characterization
of Bourdaud [7] can be easily derived from this one (see [17]). In view of
Theorem 4.8, A-quotient maps are exactly the maps introduced by Day and
Kelly in [10] to characterize maps whose product with every identity is quo-
tient. Moreover, Aj-quotient maps allowed to derive in [17] new variants of the
theorem of Day and Kelly. The following is a combination of Theorems 11.7
and 11.3 of [17], but follows from Theorem 5.1 and Theorem 4.8. A filter £ is
X-3-compactoid in a family V if adhx H#)V whenever H is a J-filter such that
HAL.

Theorem 5.2. Let f: X =Y be a continuous surjection. Then the following
are equivalent:

(1) f is Agz-quotient;

(2) If y € limy F, then F is Ag( 7X )-J-compactoid in N?X( y)'8;

3) If H e 3adr?x and y € adhy H, then

F=W) [ elgp x (adhx f7H) # &5

(4) Ify € limy F,Visa ?X open set containing y, and § is a X -3-cover'®
of f~V, there exists a finite subfamily § C § such that the intersection

of all ?X—open sets containing |J f(P) is an element of F;
Peq

181f f is Aj-quotient, it is in particular quotient. In this case N? < ®) = Ny(y) and

Ajz( ?X =Y provided Y is a J-Antoine convergence space.

19Let §C = {S°¢: S € §}. Recall that a family § of subsets of X is a X-J-cover of A C X
whenever (§)c, where § stands for the ideal generated by §, is a J-filter and adh X( JeNA=2
[12].
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(5) fxIdw is quotient for each J-based convergence space ( equivalently for
each convergence space in o concretely finally dense subclass of J-based
convergence spaces’® W ;

(6) f x g is Ay-quotient for every A-quotient map g with ABasey-range.

Of course results deriving from Theorem 4.7 are just another facet of the
same mechanism. The internal characterization of Theorem 5.1 leads in [34] to
a resolution of a problem of Tanaka of characterizing topologies whose product
with every first countable topology is sequential. Hence, the following [34, The-
orem 3.1] follows from Theorem 4.7 (with L=T and E = First) and Theorem
5.1. A, First-convergences, called strongly sequential, are of particular interest
in the study of product of sequential spaces (see [34] for details).

Theorem 5.3. The following are equivalent:

(1) X is strongly sequential;

(2) adhx H C clpirst x (adhpirss x H) for each countably based H such that
H=Hadrx;

(3) X xY is sequential for each first-countable convergence space Y ;

(4) X xY is sequential for each metrizable atomic topological space Y ;

(5) X x Y is strongly sequential for each quasi-bisequential convergence
space Y.

A convergence space X is quasi-bisequential whenever X > AFirst X. Recall
that a topological space X is bisequential if there exists a countably based filter
H#F such that z € limx H whenever z € limx F (see [33]). As indicated in
section 2, this definition can be extended to convergences via X > S First X.
By Theorem 5.1 (see also [7]), AX = SX for each Hausdorfl convergence
space X, so that quasi-bisequentiality and bisequentiality coincide for Hausdorff
convergence spaces.

As examples, I rewrite Theorem 5.2 in case J is the class of all filters, and
in case J is the class of countably based filters.

Corollary 5.4. Let f : X — Y be a continuous surjection. Then the following
are equivalent:

(1) f is A-quotient;
(2) Ify € limy F, then F is A(?X)—compactoid in ./\/7X (y);

(3) Ify €limy F, Visa ?X—open set containing y, and § is a X -cover
of f~V, there exists a finite subfamily § C § such that the intersection

of all ?X—open sets containing |J f(P) is an element of F;
Peq
(4) fxIdw is quotient for each convergence space (equivalently each atomic
Hausdorff topological space) W ;
(5) f x g is quotient for every A-quotient map g.

Corollary 5.5. Let f : X — Y be a continuous surjection. Then the following
are equivalent:

20Ror example for J-based atomic topologies.
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(1) f is A, -quotient;
(2) If y € limy F, then F is countably A, (?X)—compactoz’d in N?X (y);

(3) Ify e limy F,V is a ?X—open set containing y, and § is a countable
X-cover of f~V, there exists a finite subfamily § C § such that the

intersection of all f X-open sets containing |J f(P) is an element of
Peq
F;

(4) f xIdw is quotient for each first-countable convergence space (equiva-
lently each metrizable atomic topological space) W ;

(5) f x g is quotient for every A,-quotient map g with quasi-bisequential
domain.

Corollary 5.4 recovers [10, Theorem 2] and could be deduced from [39, The-
orem 3] and from an internal characterization of Antoine convergences (the one
of G. Bourdaud [7] or from Theorem 5.1). Indeed, Antoine convergences form
the cartesian closed hull of T and a map is product-stable in a subcategory of
Conv if and only if it is quotient in its cartesian closed hull [39, Theorem 3].
In contrast, Corollary 5.52! seems to be of a new type and does not follow from
a general result that involves classical categorical notions.

6. MIXED COMMUTATION OF THE TOPOLOGIZER AND OF ANOTHER
REFLECTOR WITH PRODUCT

In the foregoing section I studied the case L=T and J=Conv in (3.24). In
this section I investigate the case in which L=T, E = Basey and J = Adhg
for two composable classes of filters J and ©. Therefore, I need a new concept
of Qo j-convergence that generalizes the notion of T'-core-compactness used in
[17] to characterize quasi-exponential convergence in T. Let Qo 3 be defined
by z € limg, ,x F if and only if z € limx F and for every V € Nx(z), there
exists a D-filter Cy C F which is X-J-compactoid in V. The map @Qp 3 is
isotone and expansive, but in general not idempotent.

Proposition 6.1. Q9 5 is a concrete endofunctor of Conv. The subcategory
Es,5 of Conv of fized objects for Qo 3 is coreflective.

Proof. By Proposition 2.1 it suffices to prove
F(@0.3%) > Qoa(FX).
Let y € 1im7(Q9,3X) FandletV e N?X(y). Since
f N7 xW) =Ngp(fw)
[17, Lemma 6.5], f~V € N‘f?x(f_y) C Nx(f~y) € Nx(z). Now, there
exists a filter G such that f(G) = F and z € limg,, ;x G for some z € f~y.

Thus, for every U € Nx(z), in particular for f~V, there exists a D-filter
Cy < G which is X-J-compactoid in U. By composability, f(Cy-v ) is a D-filter.

21Corollary 5.5 appeared at first in [17] as a combination of theorems 11.3 and 11.7.
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Moreover it is fX-J-compactoid in V. Indeed, If a J-filter H# f(Cs-v ), then
[ H#Cs-v so that adhx f~H#Sf V, equivalently f(adhx f~H)#V. Since
fladhyx f~H) = adh—, #, I conclude that adh— . H NV #o.

The iteration of Q3 is defined for every ordinal a by Q5 ;X = X ifa =0

and Q% ;X = Q@J(ﬂv Q% ;X) otherwise. For every X, there exists the least
9 <a b

ordinal a such that Q% ;X = Q%J’%IX . I denote by Ep 3X this convergence
space. This is the coarsest convergence space fixed by ()» 3 and finer than X.

Moreover, f (B3 X) > Ep3(f X), because f (@0,3X) > @o3(F X). Thus
E5 3 is a coreflector. O

Let us review the more usual cases for Qg 3%

| D | 3 | property Qo3 | modifier |
principal countably based T-core-countably compact K¢re
all filters T-core-compact Keore
Aw-filters T-core-Lindelof Lcore
countably based | countably based T-core-q Qcore
all filters T-core-pointwise countable type | Firstx., .

For a regular topology the above notions are reduced to more usual ones:

| D | 3 | property Qo3 | coreflector |
principal countably based | locally countably compact K,
all filters locally compact K
Aw-filters locally Lindelof L
countably based | countably based g-topology Firstg,,
all filters pointwise countable type Firstg

Theorem 6.2. Let ® and J be two composable classes of filters.
(6.40) W x AdhpY > T(X xY),
for every J-based convergence space Y if and only if
W > S5Q9p 3A4;X.
Notice that if X > W then
W > 8Qp 343X <= W > SEp ;A;X.

Proof. Assume that W = Qp,343X and that (z,y) € limwxadno v (F X G).
Let H be a (X x Y)-closed set such that H#(F x G). I need to prove that
(z,y) € H, to the effect that W x AdhpY > T(X x Y).Applying S, one gets
the direct part of the theorem. By definition of W, there exists, for every
V € Nx(z), a D-filter Cy < F which is Ay X-J-compactoid in V.

Since ® is a composable class of filters, HCy is a ®-filter and HCy #G.
Hence, y € adhy HCy, so that there exists a J-filter Ly such that y € limy Ly
and Ly #HCy. By composability of §, H ™ Ly is a J-filter such that H Ly #Cy .

22 pw-filters are filters closed for countable intersections.
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By J-compactoidness of Cy, there exists xy € adha,x(H~Ly)(V. Obvi-
ously, (zv,y) € adha,xxy H C H, because T(A3X xY) = T(X xY) for
every Y = BasejY. On the other hand, z € clx({zv : V € Nx(z)}) so that
(z,y) €cdx({zv : V e Nx(2)}) x {y} Celxxy{(zv,y): V € Nx(2)}) C H.
Conversely, assume that W % SQso 3A3X. There exists an ultrafilter U/
such that zo € limwy U \ limg, ;4,x U. Hence, there exists Vo € Nx(zo)
such that for every D-filter H#U, there exists a J-filter Ly#H such that
adhg,x £34(N1Vo = @. Let Y denote the atomic convergence space on |X|
in which zy € limy F if and only if there exists a ®-filter H#U such that
F > Ly A (z0). The convergence space Y is J-based. On the other hand,
(w0, 20) € limw xAdhyy (U x U) but (20, T0) ¢ limr(xxy) (U x U), because if

A={(z,y) 1y # zo,x € limy, x(y)},
then A# (U x U) but (zg,z0) ¢ clxxy A. Indeed, let M x G be a filter on
A that converges to (z,y) in X x Y. If y # =z, then G = (y) because y
is isolated in Y, so that M is a filter on lim4,x (y), because A € M x (y).
Since A3 X has closed limits, hence X-closed limits, (z,y) € A. If y = xo,
then G D Ly for some D-filter H#U. In view of (M x Ly)#A, I conclude
Meaas, #L34. Thus lima,x Mags, Vo = @. Since A3X is ady-regular (see
[17] or Theorem 5.1), lim 4, x Mags, = lima;x M, so that (z,z0) € Vi x {Zo}.
Thus (2o, o) ¢ clxxy A because V{§ is X-closed. O

Theorem 6.2 combined with Theorem 3.1 leads to

Theorem 6.3. Let® and J be two composable classes of filters. The following
are equivalent:

(1) For every convergence space Y > AdhpBaseyY
(6.41) W x AdhpY > T(X x Y);

(2) (6.41) holds for every J-based convergence space Y ;

(3) Idx,w x f is quotient for every Adhs -quotient map f with AdhpBase;-
domain;

(4) AdhpBasez([X, Z]) > [W, Z] for every topological space Z;

(5) AdhoBases[X,§] > [I7,8];

(6) W > SQop zA;X.

Recall [11] that in case of a regular topology, the property SQg, ; means

| D | 3 | property SQm 3 |
principal countably based | locally countablycompact
all filters locally compact
Aw-filters locally Lindelof
countably based | countably based bi-quasi-k
all filters bi-k

For a general convergence, if © is the class of countably based filters, I call
a SQo z-convergence core-bi-quasi-k if § = and core-bi-k if J is the class of
all filters.
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Theorem 6.4. Let f : X — Y be a continuous surjection and let Y be a J-
Antoine convergence space. f X g is quotient for every Adhg-quotient map g
with AdhpBaseg-domain if and only if f is Aj-quotient with a SQ» j-range.

Proof. By Theorem 6.2, Lemma 4.3 applies with L=T, J = Adhg, E = Basej,
R =S and C = Qp3. In view of Theorem 5.1, Epik = A3 and the result
follows. O

Theorem 6.4 applies with © the class of principal filters and J the class of
all filters, to the effect that??

Corollary 6.5. [17, Theorem 11.1] Let f : X — Y be a continuous surjec-
tion and let Y be an Antoine convergence space. f X g is quotient for every
hereditarily quotient map g if and only if f is A-quotient with a T-core-compact
range.

In particular, when f = Idx, Corollary 6.5 refines the classical Whitehead-
Michael theorem [32, Theorem 2.1]. On the other hand, when ® is again
the class of principal filters but J is the class of countably based filters, then
Theorem 6.4 applies to the effect that

Corollary 6.6. [17, Corollary 11.11] Let f : X — Y be a continuous surjection
and let'Y be a countably Antoine convergence space. f X g is quotient for every
hereditarily quotient map g with Fréchet domain if and only if f is A, -quotient
with a T-core-countably compact range.

Once again, taking f = Idx, one gets variants of the Whitehead-Michael
theorem. More precisely, Theorem 6.3 applies with W = X to get specializa-
tions of Corollaries 6.5 and 6.6.

Corollary 6.7. The following are equivalent:

(1) Idx x f is quotient for every hereditarily quotient map f;
(2) X is T-core-compact;

(3) [X, Z] is pretopological for every topological space Z;

(4) [X, 8] is pretopological.

Corollary 6.8. The following are equivalent:

(1) Idx x f is quotient for every hereditarily quotient map f with Fréchet
domain;

(2) X is T-core-countably compact;

(3) PFirst[X, Z] > [X, Z] for every topological space Z;

(4) PFirst[X,$] > [X, §].

When ® is no longer the class of principal filters but the class of countably
based filters, Theorem 6.4 leads to two new results (one in the case J is the
class of all filters, the other in case J is the class of countably based filters) on
product of quotient maps.

BIfY is topological, this is also equivalent to f x g is quotient for every quotient map g.
See [17].
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Corollary 6.9. Let f : X — Y be a continuous surjection and let Y be a
Antoine convergence space. f X g is quotient for every countably biquotient
map g if and only if f is A-quotient with a core-bi-k range.

Corollary 6.10. Let f : X — Y be a continuous surjection and let Y be a
countably Antoine convergence space. f X g is quotient for every countably
biquotient map g with strongly Fréchet domain if and only if f is A, -quotient
with a core-bi-quasi-k range.

Once again, both Corollaries 6.9 and 6.10 can be specialized with f =
Idx to get characterizations of core-bi-k-ness and core-bi-quasi-k-ness in a
“Whitehead-like” formulation. Moreover, Theorem 6.3 applies with W = X to
the effect that:

Corollary 6.11. The following are equivalent:
(1) Idx x f is quotient for every countably biquotient map f;
(2) X is core-bi-k;
(3) [X, Z] is paratopological for every topological space Z;
(4) [X, 8] is paratopological.

Corollary 6.12. The following are equivalent:

(1) Idx x f is quotient for every countably biquotient map f with strongly
Fréchet domain;

(2) X is core-bi-quasi-k;

(3) P, First[X, Z] > [X, Z] for every topological space Z;

(4) P, First[X,$] > [X,$].

In particular, Corollaries 6.7, 6.8, 6.11 and 6.12 provide new results concern-
ing the relationships between a convergence space X and the upper Kuratowski
convergence [X, $] on its closed subsets (homeomorphically Scott convergence
on the lattice of its open subsets).

| [X, §] verifies | iff X is |
X,$]=P[X,$ T-core-compact
[X,$]=T[X,$ (topological) core-compact
[X,8] = P,[X, 98] core-bi-k
PFirst[X,$] > [X,$] | T-core-countably compact
P, First[ X, $] > [X, §] core-bi-quasi-k

Of course, Theorem 6.2 applies also to preservations of T'E-properties, like
sequentiality and leads to the following new result.

Corollary 6.13. If X is strongly sequential and core-bi-quasi-k then X XY is
sequential for every strongly Fréchet convergence space Y.

Proof. If X is strongly sequential and core-bi-quasi-k, then X > A, First X
and X > SQcoreX, so that X > SQcoreA,, First X. Therefore Theorem 6.2
applies with J = ® the class of countably based filters, W = X, X = First X
and Y = First Y, to the effect that X x P, FirstY > T'(First X x FirstY) =
T First(X xY'). Hence X x Y is sequential whenever Y is strongly Fréchet. O
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Notice that Theorem 6.2 does not apply to the converse of Corollary 6.13.
Indeed, if X x Y is sequential for every strongly Fréchet convergence space Y,
then

X x P,Y > T(First X x First P,Y),

for every first-countable Y, but this is not enough to conclude that
X x B,Y > T(First X xY)

for every first-countable Y.

7. THE REFLECTORS Adhy ARE DETERMINED BY COREFLECTIVELY
MODIFIED BIDUALS

7.1. Structural results. Recall that a composable class of filter J contains
principal filters, so that Adhy > P.

Theorem 7.1. Let J be a composable class of filters. Then Epi? = Adhj.

Proof. By [17, Theorem 10.1], Adhz X xY > P(X x Y) for every J-based Y.
On the other hand, if W # AdhjX, there is a filter F with ¢ € limy F and
a J-filter A such that H#F and zo ¢ adhx H. Let Y be the atomic J-based
topological space on |X| defined by Ny (2o) = HA (o). Then W xY # P(X x
Y). Indeed, (z9,x0) € limwyxy (FVH X FVH) but (zg,z9) ¢ adhxxy{(z,z) :
x # xo}. Indeed G > H whenever (zg, o) € limxxy G X G; a contradiction to

o é adhX H.
Consequently, in view of Theorem 3.1 with L=P, E = Base; and J=Conv,
Epi; = Adhy. |

On the other hand, in the particular case of coprojectors E and B on conver-
gence spaces based in composable class of filters (which are finitely productive
by Lemma 2.2), Theorem 4.5 leads to

Corollary 7.2. Let ® and J be two composable classes of filters such that
D CJ. Then

(7.42) SBasepAdhy X x AdhpY > Adhgp (X x Y),
for every J-based convergence space Y.
Moreover, in this particular case, the converse is true.
Proposition 7.3. Let ® and J be two composable classes of filters. If
(7.43) W x AdhpY > P(X xY)
for every J-based convergence space Y, then
W > SBasepAdhjzX.

Proof. Assume that W # SBasepAdhyX. Thus, there exists an ultrafilter &/
such that 2o € limy U \ limpase, Adn, x U. Hence, for every D-filter H that
meshes with U, there exists a J-filter £/, such that Ly #H but 2 ¢ adhx Ly.
Let Y denote the atomic convergence space on |X| in which z¢ € limy F if and
only if there exists a D-filter H#U such that F > L4 A (x). The convergence



Continuous convergence 147

space Y is J-based. On the other hand, (z9,z0) € limwxadhoy (U X U) but
(w0, 20) ¢ limp(x xy)(U xU). Indeed, if (xo, z0) € limxxy (G xG) for G # (x0),
then there exists a D-filter H#U such that G > L. Then zy ¢ limx G because
zo ¢ adhx L. Hence W x AdhpY % P(X xY). O

If © is the class of principal filters and J the class of countably based filters,
Proposition 7.3 can be refined as follows.

Proposition 7.4. If W x PY > P(X x Y), for every atomic Y = First PY,
then W > SFin P, X.

Proof. Consider U as in the proof of Proposition 7.3. for every U € U, consider
the atomic topological space Yy on | X| defined by Ny, (z0) = Ly (o) and
let Z be the convergence space obtained from the disjoint sum of every Yy
by identifying all points zo to a single point co. If Z is endowed with the
corresponding final convergence, then Z is a first countable atomic convergence
space such that PZ = TZ = P First PZ. Notice that Vz(z¢) = UQMEU A (o).

Let Yo = First PZ. Then W x PYy # P(X X Yp). Indeed, consider A =
{(z,z) € | X xYy| : ¢ # xo}. The point (9, x¢) belongs to adhw x py, A because
U X Vy, (z0)#A. However, (29,%0) ¢ adhxxy, A. If G is a countably based filter
such that G > V4(=zp), define a free sequence (z,), > G by z, € G, \ Gny1,
where (G,), denotes a decreasing base of G. By standard arguments, there
exists a subsequence (zn,); and Uy € U such that z,, € |Yy,| for every k.
Hence, limx G C lim( 2y, ) C adhx Ly,. Thus zo ¢ limx G. O

In view of Corollary 7.2, Proposition 7.3 and Theorem 3.1

Theorem 7.5. Let ©® and J be two composable classes of filters such that
D CJ. The following are equivalent

(1) WxAdhpY > Adho(X xY), for every AdhpBasey-convergence space
Y;

(2) W x AdhgY > P(X x Y), for every J-based convergence space Y ;

(3) Idx,w x f is Adhg-quotient for every Adhs-quotient map f with
AdhyBasez-domain;

(4) Idx,w x f is hereditarily quotient for every Adhg-quotient map f with
J-based domain;

(5) AdhpBasez[X, Z] > [W, Z] for every Adhg-object Z;

(6) AdhpBasez[X,¥] > [W,¥];

(7) W > SBasepAdhzX.

The converse of Theorem 4.5 is true in the particular case of Zy = ¥ and
FE = Basegp, B = Basej with ® C J two composable classes of filters, but this is
not true in general. Indeed, if Zy = $§, E is the (finitely productive) coreflective
subcategory of discrete convergence spaces and B=Conv, then Epig0 is the
topologizer and Theorem 4.5 reads as follows:

ADisAX x TY > T(X x Y),
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for every Y. But exponential objects in T are the core-compact topologies (see
[17] for details on T-exponential convergences or for B # Conv). In particular,
Hausdorff core-compact topologies are exactly the locally compact ones. But
Hausdorff topologies verifying X > ADisAX are discrete.

7.2. Categorical comments. By Theorem 7.1 with J the class of all filters,
Epi¥ = S, the pseudotopologizer. Hence, by Corollary 4.6, the category of
pseudotopologies is the cartesian closed hull of the category of pretopologies
[7, Théoreme I1.4.1] (and of course also of the category of paratopologies). On
the other hand, since W x Y > P(X x Y) for every first-countable Y if and
only if W > P, X, the category of paratopologies is the cartesian closed hull of
the category of pretopologies relatively to First.

A pretopology X is an exponential object in the category of pretopologies
if and only if X x PY > P(X x Y) for every convergence space Y. In view of
Theorem 7.5 applied with ® the class of principal filters, the exponential objects
in the category of pretopologies are the pretopological spaces X verifying X >
SFin SX = SFin X. It is easy to see that, as X is pretopological, SFin X =
Fin X is also pretopological. Each point of |X| has a smallest neighborhood,
that is X is finitely generated [29].

Corollary 7.6. [29] Exponential objects in the category P of pretopological
spaces are the finitely generated pretopological spaces.

More generally, I call a convergence space finitely generated if X > S Fin X.
Within pretopologies, there is no difference between exponentiality and expo-
nentiality relatively to First.

On the other hand, in view of Theorem 7.5 applied with ® the class of
countably based filters,

Theorem 7.7. Exponential objects in the category P, of paratopological spaces
are bisequential paratopological spaces.

Once again, exponentiality and exponentiality relatively to First coincide in
paratopologies.

Now we are in position to gather some of the reflectors that can be char-
acterized as a Epié"—reﬂector, for a particular coreflector E and a particular
Zo. Recall that the usual topology R of the real line is initially dense in the
category of completely regular topologies:

(7.44) ox=\ ¥r
fEC(XR)

The reflector Epi® is the reflector on the c-spaces of E. Binz [6]>!. They form
the cartesian closed hull of the category of completely regular topologies [8]. I
denote ¢ this reflector, and ¢,, the reflector Epip;g,-

24 Actually, the c-spaces in the sense of E. Binz are the Hausdorff EpiR-object. See [8] for
details.
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| |Dis|Fin|First|I|
R| O | O Cw c
$| T | T A, | A
¥| P | P P, |S

Each reflector is smaller than the reflectors below in the same column and
than the reflectors on its righthandside in the same row. The second column
follows from (7.44), (4.38) and (4.39). For the third, notice that $, ¥ and R
verify the following separation axiom:

Condition 7.8. If F —» y and (y) —» x then F >z

Therefore, the third column follows from

Lemma 7.9. If Zy is a pretopological space that verifies Condition 7.8 and is
initially dense in a reflective subcategory L of Conv then,

iZo
Epigp, = L.

Proof. By definition Epigfn > L. On the other hand, LX xY > L(X xY) for
every X and for every Y = FinY. so that L > Epigfn. Indeed, if (z9,y0) €
limyxxy F x G, then I need to show that f(zo,y0) € limz, f(F x G) for
every f € C(X xY,Zy). For every y € Y, the map f, : X — Z; defined
by fy(x) = f(z,y) is continuous, so that f,(x¢) € limz, f,(F). On the other
hand, the map fy, : ¥ — Zp defined by f,,(y) = f(zo,y) is continuous,
so that f(zo,yo) € limz, fz,(G). Hence, f(zo,y0) € limz, fa,(y), for every
y € G. By Condition 7.8, f(zo,yo) € limg, f,(F) for every y € G. Since
f(FxG) = yé\ny(]-') and Zj is a pretopology, f(zo,yo) € limz, f(FxG). O

Hence, the most classically used concrete reflectors of convergence theory
can be handled simultaneously, as Epigo—reﬂectors.

7.3. Product of sequential spaces. If in Theorem 7.1, J is the class of count-
ably based filters, then Epi? = P,. Recall that the usual topological notion of
strong FrUchetness can be extended to convergences via X > P, First X. In
this particular context, Theorem 4.7 leads to Theorem 7.10, just like it led to
Theorem 5.3 in the foregoing section.

Theorem 7.10. The following are equivalent:
(1) X is strongly Fréchet;
(2) adhx H C adhgirst x H for each countably based H;
(3) X xY is Fréchet for each first-countable convergence space Y ;
(4) X xY is Fréchet for each metrizable atomic topological space Y ;
(5) X xY is strongly Fréchet for each bisequential convergence space Y .

This last theorem is just an extension to convergences of a combination of
well-known results of E. Michael: [33, Proposition 4.D.4] and [33, Proposition
4.D.5]*, but the interesting point is that both the new Theorem 5.3 and the
classical Theorem 7.10 are facets of the same result Theorem 4.7.

25In [33], E. Michael uses the term countably bisequential for strongly Fréchet.
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In particular, the product of a bisequential convergence space with a strongly
Fréchet convergence space s strongly FrUchet. As Theorem 6.2 for Corollary
6.13, Proposition 7.3 does not apply to the converse. Indeed, by [3, Proposition
6.27, Corollary 6.28], there exists a non bisequential topological space which
product with every strongly FrUchet topological space is strongly FrUchet.

On the other hand, Theorem 7.5 applies with ® the class of principal filters
and J the class of countably based filters to the effect that

Corollary 7.11. Let X be a paratopological space. The following are equiva-
lent:

(1) Idx x f is hereditarily quotient for every hereditarily quotient map f
(equivalently with FrUchet domain);

(2) X xY is FrUchet for every FrUchet convergence space (equivalently
FrUchet atomic topological space) Y ;

(3) X is finitely generated;

(4) [X, Z] is pretopological for every pretopological space Z;

(5) PFirst[X,¥] > [X,¥].

Indeed, SFinX = SFinP,X = SFinP, First X whenever X = P,X.
Hence, if X is paratopological, X x PY > P(X x Y) for every Y is equiv-
alent with X x PY > P(X xY) for every first-countable Y, equivalently for
every Y = First PY, in view of Proposition 7.4. Therefore, the result follows
from Theorem 7.5.

7.4. Product of Adhp-quotient maps.

Theorem 7.12. Let® C J be two composable classes of filters. Let f : X —»Y
be a continuous surjection and let Y be a Adhjy-object. f x g is Adhp-quotient
for every Adhg -quotient map with Adhg Basey-domain if and only if f is Adhy-
quotient with SBasegp -range.

Proof. By Theorem 7.5, Lemma 4.3 applies with L = J = Adhp, E = Basej,
R =S and C = Basep. In view of Theorem 7.1, Epik = Adhj and the result
follows. =

In particular, if ® is the class of principal filters and J is the class of all
(respectively countably based) filters, then

Corollary 7.13. Let f : X — Y be a continuous surjection and let Y be a
pseudotopological (resp. paratopological) space. f X g is hereditarily quotient
for every hereditarily quotient map g (resp. with Fréchet domain) if and only
if f is biquotient (resp. countably biquotient) with finitely generated range.

Dually, Theorem 4.8 applies with ¥ = Fin to the effect that

Corollary 7.14. Let f be a continuous surjection. The following are equivalent

(1) f is a hereditarily quotient map;
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(2) For every F C |Y|,
y € adhy F = f~(y)( )adhx f(F) # @;

(3) For every y, if {Q} is a cover of f~y then {f(Q)} is a cover of y;
(4) f x1dy is hereditarily quotient for every finitely generated convergence

Y;

(5) f x Idy is hereditarily quotient for every finitely generated topological
space Y;

(6) f x g is hereditarily quotient for every biquotient map g with finitely
generated range.

The equivalence between 1, 2 and 3 is observed in [11].
In case E=Conv and Zy = ¥, Theorem 4.8 applies to the effect that

Theorem 7.15. Let f : X — Y be a continuous surjection. The following is
equivalent:

(1) f 4s biquotient;

(2) y € adhy F = f~(y)Nadhx f~(F) # 2;

(3) For every X -cover § of f~ (y) there exists a finite subfamily R C § such

that |J f(R) is a Y -cover of y;
RER
(4) f xIdy is hereditary quotient for every convergence space Y ;

(5) f x Idy is hereditary quotient for every compact Hausdorff topological
space Y;
(6) f x g is biquotient for every biquotient map g.

Proof. The characterization 2 of biquotient maps can be found in [11], while
3 is the original definition given by E. Michael in [31]. 1 <= 4 follows from
Theorem 4.8. 4 < 5 follows from [9, Theorem 6.5]. Obviously 6 implies 4,
while 1 implies 6, because S commutes with the product?S. O

Once again, the equivalence between 1 and 4 can be deduced from [39,
Theorem 3], since the category of pseudotopologies is the cartesian closed hull
of P, with the observation that biquotient maps are the quotient maps in the
category of pseudotopologies (see for example [39, Theorem 2]). In contrast,
the counter-part of Theorem 4.8 in case J is the class of countably based filters
recovers [33, Propositions 4.3 and 4.4] but does not follow from a categorical
result.

Theorem 7.16. Let f be a continuous surjection. The following are equivalent

(1) f is a countably biquotient map;
(2) For every countably based filter F,

y € adhy F = f~(y)()adhx f~(F) # &;

261n fact S commutes with arbitrary product [22] , [13], so that every product of biquotient
maps is biquotient [31].
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(3) For every countable X -cover § of f~(y) there exists a finite subfamily

R C § such that |J f(R) is a Y-cover of y;
ReR
(4) f xIdy is hereditary quotient for every bisequential convergence space

Y;

(5) f x Idy is hereditary quotient for every metrizable atomic topological
space Y;

(6) fxg is countably biquotient for every biquotient map g with bisequential

range.

The characterization 2 of countably biquotient maps can be found in [11]
while 3 is the definition given by E. Michael in [31].

Dually, Theorem 7.12 applied with 2 the class of countably based filters and
J the class of all (respectively countably based filters) leads to Corollary 7.17
(resp. Corollary 7.18).

Corollary 7.17. Let f : X — Y be a continuous surjection and let Y be
a pseudotopological space. f x g is countably biquotient for every countably
biquotient map g if and only if f is biquotient with bisequential range.

Corollary 7.18. Let f : X — Y be a continuous surjection and let Y be a
paratopological space. fxg is countably biquotient for every countably biquotient
map g with strongly Fréchet domain if and only if f is countably biquotient with
bisequential range.

Moreover if Theorem 7.5 is specialized with W = X we obtain a new
“Whitehead-like” result. If X is a paratopological space then S First X =
S First P, X = SFirst P, First X. Hence, X x P,Y > P, (X xY) for every Y
is equivalent with X x P,Y > P(X x Y) for every first-countable Y, so that
the case where ® = J is the class of countably based filters and the case where
% is the class of countably based filters while J is the class of all filters can be
gathered to the effect that:

Corollary 7.19. Let X be a paratopological space. The following are equiva-
lent:

(1) Idx x f is countably biquotient for every countably biguotient map f;

(2) Idx x f is hereditarily quotient for every countably biquotient map f
with strongly Fréchet domain;

(3) [X, Z] is paratopological for every paratopological space Z;

(4) [X,¥] is paratopological;

(5) P, First[X,¥] > [X, ¥];

(6) X is bisequential.
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