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A curious example involving ordered
compactifications

THOMAS A. RICHMOND

ABSTRACT. For a certain product X x Y where X is a compact, con-
nected, totally ordered space, we find that the semilattice K,(X x Y)
of ordered compactifications of X x Y is isomorphic to a collection
of Galois connections and to a collection of functions F which deter-
mines a quasi-uniformity on an extended set X U {£oo}, from which
the topology and order on X is easily recovered. It is well-known that
each ordered compactification of an ordered space X x Y corresponds
to a totally bounded quasi-uniformity on X x Y compatible with the
topology and order on X X Y, and thus K,(X X Y) may be viewed
as a collection of quasi-uniformities on X x Y. By the results here,
these quasi-uniformities on X x Y determine a quasi-uniformity on the
related space X U {£o0}.
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1. INTRODUCTION.

An ordered space is a triple (X, 7, <) where (X, 7) is a topological space and
< is a partial order on X. All ordered spaces considered here will have a convez
topology (7 has a base of <-convex sets) and will satisfy the T5-ordered property
(the graph of < is closed in (X, 7)2). An ordered compactification of (X, ,<) is
a compact Tr-ordered space (X', 7', <) such that (X, 7) is (homeomorphic to)
a dense subset of (X’,7') and <' extends the order < on X. An ordered space
has an ordered compactification if and only if it is completely regular ordered,
as defined in [11]. The collection K,(X) of all ordered compactifications of
a completely regular ordered space X may be ordered by taking X' > X" if
and only if there exists a continuous increasing function f : X' — X" with
f(x) =z for all z € X. K,(X) is a complete upper semilattice with largest
element (,X, the Stone-Cech ordered- or Nachbin- compactification.
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A quasi-uniformity U is said to be compatible with an ordered space (X, 7, <)
if U is the graph of the partial order < and the topology from the uniformity
UUU ' is 7. There is a one-to-one correspondence (via completion) between
the elements of the set Q(X) of compatible totally bounded quasi-uniformities
on (X,7,<) and the ordered compactifications of (X,7,<). Details of this
correspondence as well as other basic information on quasi-uniformities may
be found in [4]. As posets, (K,(X), <) = (Q(X), Q).

For a particular example X x Y below, we will find that the poset K,(X x
Y) = O(X x Y) is also isomorphic to a poset of Galois connections and to a
collection F of functions on an extended space X U {£oo}. Furthermore, the
collection F is shown to be an “F-poset” on X U {00}, thereby determining
a quasi-uniformity on X U{+oo} which, after a simple quotient identifying the
introduced points +o0o with the extreme points of X, gives the original topology
and order on X. This gives an example of a set of quasi-uniformities Q(X x Y)
on one set determining a quasi-uniformity (determined by the F-poset F) on
another set X U {£o00}. This example was announced, without proofs, in [10].

In all that follows, we assume that X and Y are totally ordered spaces, and
that X x Y has the product topology and the product order (a,b) < (c,d) if
and only if @ < ¢ and b < d. In general 3, X X B,Y < f,(X xY). In [5] it was
shown that for totally ordered spaces X and Y, 8,X x 8,Y # B,(X xY) if
and only if 8,X \ X contains a point which is the limit of a monotone sequence
in X and Y contains a strictly monotone, oppositely directed sequence, or the
dual condition (obtained by interchanging the roles of X and Y') holds.

In [9], the part of the semilattice K,(X x Y) consisting of those ordered
compactifications of X x Y below 3,X x ,Y was described. In case 8,X x
BoY = B,(X xY), we have a description of the entire semilattice K,(X xY).

2. THE EXAMPLE VIA GALOIS CONNECTIONS.

Let X be a compact, connected, totally ordered space. We will denote the
least and greatest elements of X, respectively, by 0 and 1. Let Y = [0,w;) U
{w1 + 1} be the set of ordinals less than the first uncountable ordinal, together
with an isolated top point w; + 1, and give Y the usual topology and order.
From the results of [5], we have

Bo(X X Y) = BoX x Y = X x [0,w1] U {wy + 1}

The results of [9] allow us to completely describe K,(X x Y), and we shall
do so here. The points of X x {w; + 1} prevent any identification of points of
Bo(X xY)\ (X xY), so all ordered compactifications of X xY are topologically
equivalent to 8,(X xY'). That is, all smaller ordered compactifications of X xY
are obtained from S3,(X x Y) by adding order to 5,(X x Y) in a way to get
a closed order relation on 8,(X x Y) which introduces no new order on the
original space X xY . The latter condition implies that any added order must be
between points of the segment X x {w:} and points of the segment X x {wy +1}.
We may add order by making a point z of X x {w;} greater than a point f(z)
of X x {w1 + 1} (and by transitivity,  must also be greater than a decreasing
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segment [«, f(z)] of X x {w; + 1}. Dually, order may be added by making a
point a of X x {wy + 1} less than each point of an increasing segment [g(a), —]
of X x {wi}. Figure 1 suggests the possible additional order.

e wi+1 —00 e f(.’lf) < [Nee]
W1 \. \ e OO0
T g9(a)

E—

FIGURE 1. Additional order on X x [0,w;] U {w; + 1}.

Thus, any ordered compactification of X x Y determines a pair of functions
f and g where, for z € X x {w1}, f(z) is the greatest element of X x {w; + 1}
which is less than z, with f(z) = —oo if x is not greater than any points
of X x {wy + 1}; and for z € X x {w; + 1}, g(x) is the least element of
X x {w1} which is greater than z, with g(z) = oo if # is not less than any
elements of X x {w;}. Now f and g may be considered to be functions on
X U {£o0}, where too are topologically isolated fixed points of f and g, with
—0 <z < oo Vz € X. One may show that f and g are increasing functions,
f is continuous from the right, g continuous from the left, and f and g satisfy
the inequality

f(@) <g(f(z)) <z < flg(a)) <glz) VreX.

In particular, note that f is strictly below the diagonal on X; the function
f can have no fixed points in X. Consider the copies of = and zT of z in
X x {w1} and X x {w; + 1}, respectively. We already have = < z*, and
if  were a fixed point of f, this would imply z= > z*, and thus z— = z¥,
that is, z~ and z* should be identified in the ordered compactification. This
is impossible, however, as zt € X x Y and 27 € B,(X xY) \ (X x Y).

Now any element of K,(X xY') determines a pair of functions (f, g) as above,
and conversely any such pair of functions determines an ordered compactifica-
tion of X x Y.

The definition and proposition below may be found in [3]. (A symmetric
but contravariant form of the definition appears in the literature as well; we
use the covariant form of [3].)

Definition 2.1. Suppose (P, <) and (Q,<') are partially ordered sets. If
f:P— Q@ and g : Q — P are functions such that for all p € P and all q € Q,

p<ygle = f»)<'q
then the quadruple (P, f, g, Q) is called a Galois connection.
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Proposition 2.2 (See [3]). Let (P, <) and (Q,<') be partially ordered sets and
f:P—=Q and g: Q — P be functions. Then the following are equivalent:

(1) (P, f,9,Q) is a Galois connection.

(2) f is increasing, and g(q) = max{z € P: f(z) <' q} for each ¢ € Q.

(3) f and g are increasing, © <' f(g(x)) for all z € Q and g(f(z)) < z for
all x € P.

With P = Q = X U {%oc}, we see that each ordered compactification of
X x Y corresponds to a Galois connection (P, f, g, @), and, by (2) above, the
second function g is in fact determined by the first function f. For our space
X x Y, it follows that K,(X x Y) is isomorphic to the collection of functions

F={f: XU{too} » X U{zxoo} | f is increasing, continuous
from the right, strictly below the diagonal on X, with o0
as fixed points}.
The order on F is the dual pointwise order on functions: r < s if and only if
r(z) > s(z) V.

3. THE EXAMPLE VIA F-POSETS.

Given a poset (D, <), certain families of functions on D may serve as the
“lower edges” of entourages of a basis for a quasi-uniformity on D. Ralph Kum-
metz [7] has fruitfully investigated some such families. The definitions and
results below are from [7].

Definition 3.1. If (D, <) is a poset, a directed family F of functions on D is
an F-poset on D if

(a) each f € F is increasing,

(b) each f € F is below the diagonal Ap, and

(c) VfeF dg € F with f <gogy.
An F-poset F is approrimating if sup F = Ap.

Proposition 3.2. If F is an F-poset on D and for f € F, Uy = {(,y) €
D xD:y> f(z)}, then {Uys : f € F} is a basis for a quasi-uniformity Ur on
D.

For our example X x Y, we have seen that K,(X xY) = F where F is as
described at the end of the previous section. We will now show that F is an
F-poset on X U {£o0}.

First observe that F is a directed family, for f,g € F = fV g € F. Indeed,
as it is the dual pointwise order on F which makes it isomorphic to K,(X xY),
this shows that the complete V-semilattice K,(X x Y) is a lattice. However,
K,(X xY) fails to be a complete lattice: Let (z))er be an increasing net in X
converging to the greatest element 1, and for each X € I, let K be the ordered
compactification of X x Y determined by the function fy defined by

-0 ifz<l
f)\(.'L‘)Z ZX ife=1
o0 if =00
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Now \/{fx : A € I} has 1 as a fixed point, so \/{fx : A € I} ¢ F. Consequently,
the subset {K}rer of Ko(X x Y) has no infimum.

We have already noted that each f € F is strictly below the diagonal on X,
and therefore is below the diagonal on X U {£o0}. To prove that F satisfies
the third defining condition of an F-poset, we will need a definition and two
lemmas.

Definition 3.3. A function f on a poset D is finitely separated from the identity
if and only if there exists a finite subset M of D such that Vx € D, Im; € M
with f(z) <m; <.

Lemma 3.4. With F as defined at the end of the previous section, each f € F
is finitely separated from the identity.

Proof. As 0o are fixed points of f € F, the choice of m; such that f(+oo0) <
m; < £o0o is determined, so it suffices to show that f € F is finitely sepa-
rated from the identity on X. Suppose f € F is given. Let m; be the least
element 0 of X. Suppose m; is defined. If {y € X|f(y) > m;} = o, then
{mi,...m;} finitely separates f from the identity. Otherwise, define m;; =
inf{y € X|f(y) > m;} Since f is continuous from the right, f(m;11) > m;.
Since f is below the diagonal, m; 1 > f(m;y1) > m;. We will now show that
this process must terminate after finitely many steps. Assume the procedure
does not terminate. Then we get a strictly increasing sequence {m;}$°, in a
compact totally ordered space. This sequence must have a limit m = inf{upper
bounds of {m;}2,}. Now Vi € N, m;y; = inf{z|f(z) > m;} < m implies
Jz = z(i) € X such that z < m and f(z) > m;. For this z, we have
m; < f(z) < £ < m. This last inequality yields f(z) < f(m), and thus
m; < f(m) < m Vi. Now f(m) is an upper bound of {m;}{2, smaller than m,
a contradiction. |

In the setting of totally ordered spaces, f finitely separated from the identity
is equivalent to the existence of a step function with finite range between f and
the identity. With the m;’s as defined in Lemma 3.4,

| max{m;/m; <z} ifzxeX
8($)_{$ if 1 =400
is a step function with finite range, continuous from the right with f(z) <
s(z) < z. Note that the last inequality may not be strict on X, so s itself
may not be an element of 7. We will alter s to get a function r € F with the
properties of s.

Lemma 3.5. For each f € F, there exists a step function r € F with a finite
range R such that 7= (y) is not a singleton Vy € R\ {oo}, f(z) < r(z) <
z Ve € X U{xtoo}, and r(z) <z Vz € X.

Proof. As a compact connected totally ordered space, X is order dense, that
is, Va,b € X with a < b, there exists ¢ € X with a < ¢ < b. In particular, each
a € X \ {0} is accessible form the left in the sense that there is a net in X of
points below a which converges to a.
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We will construct the required function r as a modification of s above. As
before, we take *oo as fixed points of r and concentrate on the definition of
r on X. Recall that m; = the least element of X. Since mo = inf{y|f(y) >
m1} = inf{y|f(y) # —oc}, continuity from the right implies f(z) = —oo for
all z < my. Now f(m2) < ma and order density implies that we may choose
kg, lo € X with

mp < f(mz) < kg <ly < ma.
Since f is continuous from the right and strictly below the diagonal on X,
the definition of m; implies m;—1 < f(m;) < m;. Since f(m2) < ko and f
is continuous from the right, In, € X with ms < na < m3 and f(n2) < ka.
(Otherwise, f(n2) > k2 Yny € (ma, m3) = f(ma) > k2, a contradiction.)
r(z) will be a piecewise defined function, defined inductively.

Define
r(x)z{ —oo if <y
ko if z € [lz,’I’LQ)

Having defined k;_1,l;—1,n;—1 with ki1 <l;_1 <m;_1 < mn;j_1 < my, pick

ki, l;,n; with
f(m,) Vi1 <k; <l <m; <n; <mip

and with f(n;) < k;. [Since m; is accessible from the left, such a k; and [; exist.
If f(n;) > k;Vn; € (m;,m;y1), then continuity of f from the right would imply
f(m;) > k;, contrary to f(m;) < k;. Thus, such an n; also exists.] Now define

_ m;_1 ifxé€ [’I’Li_l,li)
r(m)_{ ki if z € [li,n) fori=3,...,2—1

and (with m, being the last of the m;s) define

_f om, ifx€n,,l]
r(m)_{ oo if 2 = oo.

We will verify that r satisfies the required conditions. The range of r is
R = {—00, k2, ma,k3,m3,...,k,_1,m,,00}, and f~1(y) is not a singleton for
any y € R{oo}. Clearly r is continuous from the right. It remains to show
fl@)<r(z)<zforzelX.

If z € («,13), then f(z) = —c0 = r(z) < =.

If z € [l;,n;), we have r(z) = k;. Now [; < z < n; implies

fl) < f@) < f(ng) <ki=r(z) <l; <=,
and this shows the desired inequalities.

If z € [ni_1,l;), then r(z) = m;—; < n;_; < z. To see that f(z) <
r(z) = m;_1, suppose not. Then f(z) > m;_1, so xz € {y|f(y) > m;_1} so
m; = inf{y|f(y) > m;_1} <z, contrary to = < l; < m;. O

Now we are ready to verify that F, the collection of functions isomorphic to
K,(X xY), satisfies the final condition required of an F-poset.

Proposition 3.6. For any f € F, there exists g € F with f < go g, and thus
F is an F-poset.
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Proof. Without loss of generality, we may assume f is a step function with finite
range, with the inverse image of any singleton in X never being a singleton.
(For any f € F, we have seen there exists such a step function r with f < r.
Now r < gog implies f < gog). Suppose the elements of the range of f, listed

in increasing order, are mg = —oo,m1,...,m,,00. Define a; (i = 0,1,...,2)
by f~1(m;) = [ai,ai+1). In particular, note that f(a;) = m;. Furthermore, we
may assume f is such that a; < m;y1 Vi =0,1,..., 2z since for each index at

which this fails, we have m; < m;;11 < a; < a;jy1, and we may replace m;q
with a value m}, , strictly between a; and a;y; (raising the height of that step).
Now m; = f(a1) < a1, so there exist y;,w; € X with m; < y1 < wy < a1
Define

[ mo=—00 ifz€ (+,u1)
9(x) _{ my if ¢ €[y1,a1)

Clearly g(z) < z on this section of the domain of g. Observe that f(z) <
gog(z):
z € (<, 1) = 9(9(x)) = g(mo) = mo = —00 = f(x)

T € [y1,a1) = g(g9(z)) = g(m1) = mo = f().
Now mgy = f(az) < aa, so there exist y, wy € X with

a1 Vme <y <ws <das.

Define

wo={ 7 EIehn
Clearly g(z) < z.
z € [a1,y2) = g(9(z)) = g(z1) = m1 = f(z)
T € [y2,a2) = g(g(x)) = g(m2) = 21 > M1 = f(x).
Now suppose we have defined y;, w; with
a;—1 Vm; <y; <w; <ag,

and have defined g for © € (+,a;). Suppose i < z. Since m;r1 = f(ait1) <
@it1, Wiv1, wir1 € X with

m; < a; Vmitr < Yip1 < Wit < Qg1
Define
mit1  if € [yit1,ai41))
As above, we may show f(z) < g o g(z) < x. Define

| w, if z€ayl]
g(m)_{oo if z = oo.

g(m) _ { w; if z e [az-,y,-+1)

For z € (ay,1], clearly g(z) < z, and g(g(z)) = g(w,) = m, = f(z). With g as
defined, g € F and f < gog. |
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Having shown that F = K,(X xY) is an F-poset on X U {00}, F is a
basis for a quasi-uniformity Ur on X U {£oc}. We will now investigate the
associated order (U and topology T(UrUUZ") on X U{£oco}. We note again
that the topology in question is the topology from the associated uniformity.
For brevity, we will denote this topology by 7.

If F were an approximating F-poset on X U{+o0}, then U would consist
of the diagonal of X U {£o0} and everything above it; that is, ((Uz would be
the graph of the order on X U{+o00}. However, F fails to be approximating at
exactly one point, namely the smallest element 0 of X. If a € X \ {0}, then a
is accessible from below by a net (zx)aer in X. Now for any A € I, define

T ifx>a
fx(w)z{ —0 ifzrx<a
Now fy € F VX € I and sup{fi(a)} = sup{zr} = a. It follows that sup{f(a) :
f € F} =id(a) Va € X \ {0}. The equality holds for a = oo as well. Thus,
if sup F is not the identity on X U {£o0}, equality can only fail at a = 0. As
each f € F is strictly below the diagonal on X, we have f(0) = —co Vf € F,
so sup{f(0) : f € F} = —oo #id(0). Thus, (Ur, when restricted to X, gives
the graph of the order on X except at the least element 0 of X. Instead of
eliminating the introduced points +oo by considering the restriction of (Uzx
to X, if we eliminate the introduced points oo by identifying —oo with 0
and identifying oo with 1, the natural ordered quotient (see [8]) would have
the identified point {—o00,0} as least element and {1,000} as greatest element.
Thus, the order introduced by the quasi-uniformity Ur gives, after this ordered
quotient identifying the extreme points of X with the newly introduced extreme
points —oo and oo, the original order on X.

Turning our attention to the topology 77, we will find a similar situation. We
note briefly that Kummetz has shown (2.9 of [7]) that if F is an F-poset with
each f € F finitely separated from the diagonal—as our F is by Lemma 3.4—
then 7 is totally bounded. The topology of a compact T, space arises from a
unique uniformity consisting of the neighborhoods of the diagonal. The neigh-
borhoods of the diagonal of the compact totally ordered space X must touch
the diagonal at the maximum and minimum points, yet the functions of F are
all strictly below the diagonal at 0 and 1. As the functions of F serve as the
“lower edges” of the basic entourages of U, it follows that restriction of the
topology 77 on X U {£oo} to X does not agree with the original topology 7
on X. However, on any compact subset [zx,yx] of X where 0 < z) < yx < 1,
each neighborhood V' of the diagonal does contain the restriction f|,, ,,; of
some f € F. (To see this, find a finite collection {N; x N; : i = 1,...,m}
of open squares whose union is contained in V', and construct a step function
below the diagonal and just above the bottom edges of the squares.) Thus, the
restriction of 77 to any subset W of X \ {0,1} agrees with the restriction of
the original topology 7 to W. The problem at the endpoints 0 and 1 shows
that the restriction of 7 to X is not the appropriate topology on X. However,
the quotient identifying {—o0,0} and {1, 00} gives the correct topology T on
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X. Essentially, the problem that each f € F was strictly below the diagonal
at 0 and 1 is solved by identifying these endpoints, respectively, with the fixed-
points —oo and oo, allowing the associated function on the quotient to touch
the diagonal at the extreme points {—o00,0} and {1, 00} of the quotient space.

For our example X XY, we have seen that ((K,(XxY),<) =~ (F,>) ~ (Q,C
), where Q is the collection of compatible totally bounded quasi-uniformities
on X x Y. Since F determined a quasi-uniformity on X U {foo}, we have
an example of a collection O of quasi-uniformities on one set determining a
quasi-uniformity on another set.
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