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Finite approximation of stably compact spaces
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ABSTRACT. Finite approximation of spaces by inverse sequences of
graphs (in the category of so-called topological graphs) was introduced
by Smyth in [21, 20], and developed further in [22, 25, 27, 29]. The
idea was subsequently taken up by Kopperman and Wilson, who de-
veloped their own purely topological approach using inverse spectra of
finite Tp-spaces in the category of stably compact spaces [12]. Both
approaches are, however, restricted to the approximation of (compact)
Hausdorff spaces and therefore cannot accommodate, for example, the
upper space and (multi-) function space constructions. We present a
new method of finite approximation of stably compact spaces using
finite stably compact graphs, which when the topology is discrete are
simply finite directed graphs. As an extended example, illustrating the
problems involved, we study (ordered spaces and) arcs.
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1. INTRODUCTION

It is a standard technique in some areas of topology to consider a space as the
limit of an inverse sequence of simpler, or at least more well-understood spaces.
An alternative approach, developed by Smyth in [20, 21], is that of considering
a topological space as the limit of an inverse sequence of undirected graphs,
which are the structures considered in digital topology and tolerance geometry.
(Approximation of spaces by graphs had been used in an informal fashion by
Bandt and co-workers in the study of fractals; see [3].) In digital topology,
undirected graphs are considered as computationally tractable approzimations
of Euclidean space, and the inverse limit construction is a formal bridge between
a space and its approximations.

*This work has been supported by the EPSRC project “Digital Topology and Geometry:
an Axiomatic Approach with Applications to GIS and Spatial Reasoning.”
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Smyth showed that a space is compact metric if and only if it can be ap-
proximated by an inverse sequence of finite undirected

graphs. This “approximation” requires some explanation. The inverse limit
construction must take place within a category in which both spaces and
graphs are objects. Topological graphs were introduced for this purpose, and in
[20, 27] these are topological spaces together with closed tolerance (i.e. reflexive
and symmetric) relations. The morphisms are continuous, relation-preserving
maps, and the resultant category has limits of inverse sequences. Approxima-
tion of a space by an inverse sequence of finite graphs then means that the
space is the quotient of the inverse limit topology by the inverse limit relation.
A fair amount can be done within this framework, see [22, 25, 27, 29, 24].

The idea was subsequently taken up by Kopperman and Wilson, who de-
veloped a purely topological approach [12]. They consider inverse sequences
of finite Typ-spaces, which, like graphs, are structures that are fundamental in
digital topology. In this framework, a space is said to be approximated by
an inverse sequence if it is the Th-reflection of the limit, and every compact
metric space can be approximated thus. (In fact, they showed that every com-
pact Hausdorff space can be approximated by an inverse spectrum of finite
To-spaces.) All this takes place within the category of stably compact spaces,
stable compactness being the right notion of compactness for non-Hausdorff
spaces.

Both approaches are, however, restricted to the approximation of compact
Hausdorff spaces, and so cannot accommodate, for example, the upper space
and (subsequent) multi-function space constructions, because these in general
yield non-Hausdorff spaces even from Hausdorff spaces. Indeed, consideration
of multi-functions is particularly compelling in the context of approximation
by inverse sequences. Let X and Y be limits of inverse sequences, and let
p: X — X; and ¢ : Y — Y; be projection mappings. How can we represent a
mapping f : X — Y by a mapping from X; to Y; when there is quite possibly
no such map that makes the diagram commute?

X

Y

We argued in [25] (see also [24]) that it is appropriate to represent f by the
relation (p x q)(graph(f)) in that f is then the limit of its representations. We
will return to this point in Section 4.

Unlike compact Hausdorff spaces, stably compact spaces are closed under
the constructions mentioned above, but it is difficult to see how stably compact
spaces in general can admit a purely topological approximation along the lines
of [12]. One would presumably want to consider the Ty-reflection rather than
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the Ty-reflection of the limit. The limit of an inverse sequence of Ty-spaces
is, however, already Tp, and it is well-known that only the spectral spaces can
be constructed in this manner. It appears that the only remaining option is
to consider inverse sequences of finite spaces that are not necessarily Ty (i-e.
finite preorders) and then to consider the Tp-reflection of the limit, but it is
not difficult to show that this gives the limit of the Ty-reflections of the spaces
in the sequence (i.e. Ty-reflections preserve inverse limits), and so again only
the spectral spaces can be constructed in this way.

Graph-theoretic approximation can, however, be generalized to accommo-
date approximation of stably compact spaces, and this is the subject of this
work. We consider approximation by directed graphs (instead of undirected
graphs as for the Hausdorff case), and we will show that a space is stably com-
pact if and only if it can be approximated by an inverse sequence of directed
graphs.

The approximation of continua by connected finite graphs was studied in
some detail in [27, 29, 22]. We believe that this study can fruitfully be gen-
eralized to the stably compact case, and in Section 3 we provide a partial
illustration of this theme by considering the case of arcs.

Apart from a discussion of general linearly ordered spaces in Section 3 (to
provide the background for the study of arcs), and a general quotienting result
in the concluding section, we confine attention to compact spaces in this paper.
For Hausdorff spaces, we know that approximation by (no longer finite) graphs
is not confined to the compact case: see [29] for locally compact spaces, and
[23] for Polish spaces. For non-Hausdorff spaces, however, we so far understand
only the stably compact case. The main approximation result (namely, that
finite directed graphs suffice) is set out in Section 4, and Section 5 investigates
how the approximations carry over for various basic constructions on stably
compact spaces.

2. PRELIMINARIES

2.1. Notation and terminology. A relation R on a topological space X is
closed if it is closed with respect to the product topology. That (z,y) € R is
often written as zRy. R°P denotes the relation {(z,y) | (y,z) € R}. For any
C C X, R(C) denotes the set {z | Ic € C. cRz}. The set C is called R-saturated
if C = R(C). The R-saturated topology is the collection of all R-saturated open
sets. In the case that R is a pre-order, R-saturated sets (R°P-saturated sets)
are called upper (lower) sets, and the R-saturated topology (R°P-saturated
topology) is called the upper (lower) topology.

The specialization pre-order on a space X is denoted Cx, i.e. x Cx y if
every neighbourhood of z is also a neighbourhood of y. When we speak of
upper (lower) sets in a topological space we mean w.r.t. this order. Also, in
this case, the upper set Cx (C) is denoted up(C) and the lower set (Cx)°P(C)
is denoted down(C).
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2.2. Stably compact spaces. A compact ordered space is a compact Haus-
dorff space together with a closed partial order [13]. The corresponding stably
compact topology is the upper topology. A stably compact space is any topolog-
ical space that can be constructed thus.

Let X be a stably compact space. The cocompact topology is the collection
of the complements of the compact upper subsets of X, and the resultant space
is denoted X °P, which is sometimes called the dual of X. Sets that are compact
(open) with respect to the cocompact topology are called op-compact (op-open).
The patch topology is the coarsest topology that refines both the original and
the cocompact topologies, and the resultant space, which is called the patch
space, is denoted patch(X). Sets that are compact (open) with respect to the
patch topology are called patch-compact (patch-open).

The equivalence of stably compact and compact ordered spaces is given by
that (patch(X),Cx) is a compact ordered space for which X is the correspond-
ing stably compact space. Moreover, (patch(X), (CEx)°?) is a compact ordered
space for which X°P is the corresponding stably compact space. Therefore
X = (X°P)°P | patch(X) = patch(X°P) and Cxor= (Cx)°P.

The compact upper subsets of X are precisely the compact lower subsets
of X°P, and are also precisely the patch-compact upper sets. If C is patch-
compact then up(C) is compact and down(C) is op-compact.

Nachbin’s (very useful) separation result for compact ordered spaces in the
context of stably compact spaces is:

Lemma 2.1 (Nachbin [13]). Let C,D be patch-compact sets such that up(C)
and D are disjoint. Then there exist disjoint open U and op-open V' that contain
C, D respectively.

Some care has to be taken over the above “equivalence” of compact ordered
and stably compact spaces when it comes to the morphisms. A continuous map
f : X = Y between stably compact spaces is perfect if it is also continuous with
respect to the cocompact topologies. Equivalently, f is perfect if it is continuous
with respect to the patch topologies and is order-preserving with respect to the
specialization orders. Although we consider the category of stably compact
spaces and continuous maps, it is the category of stably compact spaces and
perfect maps that is equivalent to the category of compact ordered spaces and
continuous, order-preserving maps.

We have not been able to find the following result in the literature:

Lemma 2.2. For any stably compact space X, all three of X, X°P and patch(X)
are 2nd-countable if and only if any one of them is.

Proof. Let X have a countable basis B, which may be assumed to be closed
under finite unions. Say that the compact-upper hull of a set is the smallest
compact upper set that contains it. Then the collection of complements of the
compact-upper hulls of the elements of B is a basis of X°P: if C' is compact
upper and z ¢ C then, by Nachbin’s result, there is a compact-upper D and a
UeBwithz ¢ DDUDC. Then X is 2nd-countable iff X°? is, and if both
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are then so is patch(X). Now let B be a countable basis of patch(X), again
closed under finite unions. For any U € B, the set {z | up(z) C U} is open in
X, and this gives a countable basis of X: if V is open in X and x € V then
there is some U € B such that up(z) CU C V. O

2.3. Inverse sequences. The limit of an inverse sequence is, strictly speaking,
a categorical notion (see any basic textbook on category theory). The limit is
an object in a limiting cone, and we speak of the limit because any two limits
are isomorphic. Conversely, if X is the limit of some inverse sequence in some
category, with projections p;, and if h : ¥ — X is an isomorphism, then Y
is equally well the limit, with projections p; o h. This is all deliberately over-
concise, as we will avoid categorical language here, although it is vital to at
least check that “limits” are indeed categorical limits when the structures under
consideration (in this work, stably compact graphs) are non-standard.

The main reason why we don’t need to consider category theory explicitly
is that the limit of an inverse sequence

)(1 (_fl X2 <_f2

(an inverse sequence will often be denoted as (X;, f;)) in the category of topo-
logical spaces has a very concrete and standard description (see e.g. [4]): it
is the set X, = {(z1,22,...) | Vi. z; € X;, fiy1(®iy1) = z;} of all threads
of the sequence, together with the topology that has as a basis the collection
{p;"(U) | U open in X;, i =1,2,...}, where

pi: Xy = Xi, (21,22,...) — x4, i=1,2,...

are the projections.

It is a classical result (see [4]) that the limit of an inverse sequence of com-
pact Hausdorff spaces is compact Hausdorff. The limit of an inverse sequence
of compact but not necessarily Hausdorff spaces is not necessarily compact,
however (see [4, Ex.1.9.7(b)] for a counterexample). This is hardly surprising
as classical compactness is a very weak property in the non-Hausdorff setting;:
for example, any arbitrarily pathological space is trivially compact so long as
its specialization order has a bottom element. One possibly interesting excep-
tion is that the limit of an inverse sequence of any finite spaces is compact,
because the limit topology is refined by the limit topology for the discrete
topologies on the spaces. At any rate, the following result is further evidence,
if it were needed, that stable compactness is the right notion of compactness
for non-Hausdorff spaces. The result generalizes the above-mentioned classical
result because the Hausdorff stably compact spaces are precisely the compact
Hausdorff spaces.

Proposition 2.3. The limit of an inverse sequence of stably compact spaces
and perfect bonding maps is stably compact, and each projection on the limit is
perfect.
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The result was proved in [28] (see also [12]) via consideration of the in-
verse sequence patch(X1) <% patch(X5) <2 ...; each bonding map is patch-
continuous because perfect. The limit of this sequence is a compact Hausdorff
space, on which the limit relation (see later) (\(p; x p;) "*(Cx;) is a closed par-
tial order. Thus we have a compact ordered space, and the corresponding stably
compact space turns out to be the limit of original sequence. Moreover, the
projections are perfect because they are patch-continuous and order-preserving.

The dual of an inverse sequence ® = (X, f;) of stably compact spaces and
perfect bonding maps is
7 = ((Xi), fi)

Proposition 2.4. The limit of ®°P is the dual of the limit of ®.

Proof. We need to show that B? = {p; " (U) | U open in (X;)°P, i =1,2,...}
is a basis of (X,)°?. Each element of B°P is op-open because the projections
p; are perfect. Let C be compact upper in X, and let y ¢ C. For each z € C
there is some basic open set in X, that contains  but not y. It is simple to
prove that the basis of X, is closed under finite unions, so there is some basic
open set p; 1(U) that contains C' but not y. Then up(p;(C)) and p;(y) are
disjoint, so by Nachbin’s separation result there exists some op-open V that
contains p;(y) and is disjoint from p;(C). Then y € p; * (V') € B°?, and p; * (V)
is disjoint from C. O

The final result here concerns products. Consider any category that has
finite products, and let & = (X, f;) and ¥ = (Y}, g;) be inverse sequences in
this category. Their product is the inverse sequence

®x ¥ =(X; xY; fi X gi)

The following is a very straightforward categorical result, and the proof is
omitted.

Proposition 2.5. Let X, Y,, be the respective limits of ®, ¥, with p;, q; the
projections. Then X, x Y, is the limit of ® x ¥, with p; X q; the projections.

3. ORDERED SPACES AND ARCS

3.1. Introduction. Topological graphs. In this section our aim is to study,
as a sort of extended example, the approximation of stably compact arcs by
finite “arcs”. The material illustrates one of the main themes of the paper,
namely that for the (finite) approximation of stably compact spaces, finite
topological spaces (or pre-orders) do not suffice: one has to consider relations
that are not necessarily pre-orders.

By a topological graph we understand a structure (X, R), where X is a topo-
logical space and R is a binary relation on X. Of course, such a structure
can be expected to be useful only when R interacts with the topology of X
in a significant way. In particular, we have (generalizing the compact ordered
spaces):
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Definition 3.1. A Hausdorff graph is a structure (X, R), where X is a Haus-
dorff space and R is a closed reflexive relation on X.

An ordinary graph may be considered as an example of a Hausdorff graph by
taking the discrete topology on the vertex set; on the other side any Hausdorff
space provides an example by taking R as the identity.

An arbitrary topological graph (X, R) is said to be connected if there is no
partition of X into R-disjoint open sets. (Two subsets A, B are R-disjoint if
there is no selection (z,y) from the two sets with zRy.) The sub-topological
graph on any X' C X is defined in the obvious way, as is then a cut-point of a
connected topological graph. These obviously agree with the usual definitions,
in the examples given.

The term Hausdorff ordered space shall refer to a Hausdorff graph (X, R)
in which R is a partial order; similarly for Hausdorff pre-ordered spaces. The
following observation generalizes a statement made about compact ordered
spaces in the preceding section:

Proposition 3.2. Let (X, R) be a Hausdorff pre-ordered space. Then the spe-
cialization order of the upper topology coincides with R.

Proof. Suppose that zRy. Then, trivially, every open upper set containing x
contains y. Again, suppose that —~zRy. Then (since R is closed) {z | —zRy} is
an open upper set containing x but not y. O

In the remainder of this section, we shall typically be concerned with struc-
tures having two distinct orders as well as a topology. The overall linear order
(of a “line”) will always be denoted <. The topology T will usually be the or-
der topology derived from <. The second order, denoted C, is closed w.r.t. 7.
(C is typically a partial order, but may more generally be a pre-order, or may
indeed be generalized to a reflexive relation.) The upper and lower topologies
are considered w.r.t. C, 7.

3.2. Linearly ordered spaces. Arcs. Our goal in this section is an analysis
of (stably compact) arcs and their approximation by finite structures. We
approach this via a discussion of lines in general.

We begin with a totally ordered set (X, <) endowed with its order topology:
that is, the topology having as subbase the collection of sets (rays) of the form
(z,—), (x,¢), where (z,—) is {y | y < z}. (A ray is a subset of X that is
either <-saturated or <°P-saturated. A ray S is delimited if it has an end-point,
that is, a point = such that S is one of the four sets {y | z < y}, {y | z < y}
etc.) Distinct points z,y are adjacent if there is no point z such that z < z < y
or y < z < x. Suppose that {U,V'} is a partition of X into open rays. Then it
is easy to see that either the rays U,V are both delimited, or neither is. The
space X is said to be complete if (in any such partition) only the case that U,V
are both delimited can occur. An equivalent condition (for completeness) is
that every <-directed set that is bounded above has a least upper bound. (Of
course there is a further equivalent condition in terms of <°P-directed sets.)
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The order topology of (X, <) is evidently Hausdorff. Even if the space is
complete, however, it fails to be connected if there is any pair of adjacent
vertices in X. Our procedure will be to create a line out of X by introducing
a (partial) second ordering C having the property that, if (and only if) two
points are adjacent in the ordering <, they are comparable in the ordering C.
In this way the space X is endowed with a “fence” structure (see 3.8, 3.12 for
precise definitions).

Example 3.3. Khalimsky space. Let X be a (not necessarily proper) interval
of the integers, Z, in their usual ordering. Obviously, the order topology 7 is
discrete. Now we let C be a “zig-zag” ordering of X: z,y are comparable w.r.t.
C iff |z —y| <1 (from which it follows, for example, that if n,n+1,n+2 € X
andn C n+1, then n+1 Jn+2). Then (X, 7T, ) is a Hausdorff ordered space;
its upper topology is what is usually called the (one-dimensional) Khalimsky
topology.

Example 3.4. Smyth interval. [11] Let I be the usual unit interval. For each
dyadic rational r € I, introduce two elements r—, T, so that »~ immediately
precedes r, and r* immediately succeeds r in the (total) ordering. (In the
case of 0,1, we introduce 0t and 17, but omit 0~ and 17.) Let 7 be the
order topology of the resulting totally ordered set X. It is easily checked that
(X, T) is compact and totally disconnected (a Stone space). Now we let z C y
hold (for distinct z,y) just in case x is a dyadic, r, and y is r~ or r*. The
stably compact space, say sI, of the compact ordered space (X, 7T,C) may be
considered as a spectral compactification (or “spectralization”) of I; see [19].
More significant in the present context, however, is that s/ is the inverse limit
of finite Khalimsky spaces [22].

Abstracting from the preceding examples, let (X, <) be a complete ordered
set with order topology 7. Let R be a reflexive relation on X such that (for
distinct z,y) xRy holds only if z is adjacent to y (w.r.t. <).

Proposition 3.5. With X, <, T, R as above, we have: (X, T, R) is connected
if and only if every pair x,y of adjacent elements is related by R (that is,
(z,y) € RUR?P).

In seeking to characterize “lines”, and arcs in particular, we have to consider
connectivity, and especially cut-points. We define these for our topological
ordered spaces, and other topological relational structures; but it is of interest
to determine when these concepts can be characterized purely topologically.
For connectedness this is extremely simple:

Proposition 3.6. Let (X, R) be a topological graph. The following are equiv-
alent:

(1) (X, R) is connected;

(2) X is connected in the R-saturated topology;

(3) X is connected in the R°P-saturated topology.
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Proof. Let {U,V'} be a partition of X into open sets. Then U,V are R-disjoint
if and only if both R(U) C U and R(V) C V. Thus (1) = (2), and (1) = (3) is
proved similarly. |

Separations induced by cut-points require a more careful discussion. Let
(X, R) be a connected topological graph. We say that (U,z,V) is a division
of (X, R) if z is a cut-point, and (U, V) is a separation of the sub-topological
graph on X\{z}. (An ordinary topological space is taken account of here, by
taking R = id.)

The spaces with which we are concerned in this section generally have the
feature that C-chains are of length at most 2 (as in Examples 3.3, 3.4). The
reason for this is that if we have a chain of length 3, say x C y C z, then y
cannot be a cut-point.

Proposition 3.7. Let (X,C) be a Hausdor(f pre-ordered space in which every
C-chain has length <2, x € X, U,V C X. The following are equivalent:
(1) (U,z,V) is a division of the Hausdorff pre-ordered space (X,C);
(2) (U,z,V) is a division w.r.t either the upper topology or the lower topol-
ogy of (X, ).

Proof. (2) = (1): Evident.

(1) = (2): Let (U,z,V) be a division of the ordered space. Suppose first
that z is not comparable (via C) with any element of U U V. Then U,V are
both upper, as well as lower, open sets, and so (U,z,V) is a division w.r.t.
both the upper and the lower topology. Next suppose that z is comparable
with some element of U U V: say we have that u € U with 4 C z. Then there
is no element v of U UV such that  C v. This means that U,V are both lower
open sets, and so we have a division w.r.t. the lower topology.

Likewise, the case that we have v € UUV with & C v yields a division w.r.t.
the upper topology. O

Our next topic is the comparison of fenced spaces with the selective spaces
of [11]. In order to facilitate the comparison, it is convenient to consider what
we shall call “partially fenced” spaces.

Definition 3.8. A partially fenced space is a tuple (X, <,T,E), where < is a
total order on X, T is the order topology, and C is a partial order on X such
that = C y holds only if z,y are adjacent (or z = y).

Remark 3.9. Under the stated conditions, (X,7,E) is a Hausdorff ordered
space, so that, in particular, C is the specialization order of the upper topology.

Definition 3.10. A selective space is a triple (X, <,7"), where < is a total
order on X and 7’ is a topology coarser than the order topology such that:
(1) (X,7T") is To;
(2) z <y only if z,y are adjacent (or x = y), where <« is the specialization
order of 7.

The resemblance between the two notions is rather evident. Indeed we have:
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Proposition 3.11. Let T' be a topology on the totally ordered set (X, <).
Then (X, <,T") is a selective space if and only if T' is the upper topology of a
partial fencing (T,C) on X.

Proof. TF: immediate, in view of the Remark following Def. 3.8.

ONLY IF: Consider the partially fenced space (X, <, T, <) where T (as usual)
is the order topology. Every subbasic (ray) open set of (X,7") is trivially an
upper open set of (X, 7 ,<). On the other hand, suppose we have an order-open
ray, say (x, —), which is not open in 7'. Then z has an immediate <-successor,
say y (since, by an easy argument, any ray (z,—) is open in case z lacks an
immediate successor). Any subbasic open set which contains y is then either
of the form (z,4+) where y < z, or of the form (z,—) where z < z. Every
such set contains x, from which we conclude that y <z. Hence (x,—) is not an
(open) upper set of (X, T,<). O

Definition 3.12. A fenced space is a partially fenced space (X,<,T,C) in
which every pair of adjacent elements is comparable w.r.t C.

Theorem 3.13. The following are equivalent, for a tuple (X, <,T,E):

(1) (X, T,E) is connected (as a Hausdorff ordered space);
(2) (X, <) together with the upper topology is a connected selective space;
(3) X is complete and fenced.

Proof. (1) = (2) by Props 3.6 and 3.11.

(1) = (3): It is clear that, if X is either incomplete or else has a pair of
adjacent elements not related by C, we get a separation of X into a left ray
and a right ray, each of which is open in the upper topology.

(3) = (1): Suppose that we have a separation (U,V) of X, and that X is
complete. W.l.g. we may suppose that we have points u € U, v € V such that
u<wv. Let p=\/{z € U |z <wv}. Since V is a union of order-open intervals,
we must have p € U. By the same remark (applied to U), there is an element
q € V, adjacent to p on the right. Clearly, p and g are not related by C; thus,
X is not fenced. O

By aresult of [10] (Theorem 9.18), the linear ordering of a connected selective
space X is intrinsic, in the sense that it can be recovered (up to inversion)
from the topology of X. This leaves open the question whether an autonomous
characterization of the topologies involved, not mentioning the linear order,
can be achieved. We shall return to this point in a moment.

A fourth notion, equivalent to the three presented in Theorem 3.13, was
actually the first to be developed, though not fully published at the time. This
was the CLOTS (connected linearly ordered topological space) of [17].

Definition 3.14. A CLOTS is a connected, totally ordered Ty-space (X, <)
such that a subbase of open sets is given by the sets (z,—), (x,+) where {z}
is closed.

Proposition 3.15. Let (X, <) be connected, totally ordered, To. The X is a
CLOTS if and only if it is selective.
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Proof. TF: This is, in effect, Theorem 9.13 of [10].

ONLY IF: Let X be a CLOTS. Suppose, for a contradiction, that we have
points z,y, z with x < y < z and x C 2. Every subbasic open set which contains
y is either of the form (p, —) (and hence contains z), or else of the form (p, +)
and thus contains z (and therefore also z, since z C 2). So y C z. Since X
is Tp, there must be a subbasic open set, say (¢,—) (g closed), containing z
but not y. Thus q € [y, 2), and (g, ) is an open set containing x but not z:
contradiction. O

The development which has led to the ideas presented in this section may
be said to have begun with the studies of digital topology by Khalimsky, Kop-
perman and associates. The requirement was for “digital” lines and arcs which
were Ty but not necessarily 75, and might well be finite. Concretely, there were
the Khalimsky spaces and, as a general concept, the COTS [10]: a COTS is a
connected topological space X in which, for any three distinct points, one of
them (say z) lies between the other two, in the sense that they lie is distinct
components of X\{z}.

Clearly, the one-dimensional Khalimsky spaces and the real line are examples
of COTS.

A desideratum proposed by Smyth (as part of a general theory of the ap-
proximation of “continuous” spaces by digital constructs) was that the class of
spaces involved should be closed under inverse limits. This is not satisfied by
the COTS, as witnessed by Examples 3.3 and 3.4 above (sI is not a COTS,
since the points r*,r~ are not cut-points). The question arose, whether there
is a suitable class of spaces, closed under inverse limits, and including at least
the locally connected COTS. (That COTS were not required to be locally con-
nected was perhaps an anomaly; cf. [22], Sec 2.) This led to the CLOTS of
[17], and to the (connected) selective spaces of [11].

As compared with standard continuum theory and its (intrinsic) separation
order, the CLOTS and selective space theories have the order as an explicit
part of the structure. This feature may appear to be unavoidable: as we
have seen, the points r+,7~ do not separate the space sI, and the prospects
for constructing the ordering of the space as a separation order seem poor.
Nevertheless, Smyth [22] and Webster [28] (independently) proposed means for
achieving this. In [28] the idea is to work with the upper and the lower topology:
in particular, a point z is a di-cut-point (of a stably compact space X) if it
is a cut-point of X or of X°P. This leads to a definition of the di-separation
order as a generalization of the usual separation order. In the case of sI, it is
easy to check that every point is either an end point or a di-cut-point. The
linear ordering of sI is indeed obtained (up to inversion) as the di-separation
order. The approach in [22], on the other hand, is to work with Hausdorff
ordered spaces (or, still more generally, with Hausdorff graphs). Again we note
that in sI, viewed in this way, every non-end point is a cut point. Indeed,
Proposition 3.7 assures us that, in spaces of the kind being considered here,
the two approaches agree.



208 M. B. Smyth and J. Webster

Is it, then, possible to characterize those topological ordered (or, relational)
structures for which a suitable total separation order can be defined intrin-
sically? The answer is given in [22], as a direct generalization of the locally
connected COTS:

Definition 3.16. A connected, locally connected topological graph (X, T, R)
is linear if, for any three distinct points in X, there is a division (U, p, V) of X
such that exactly one of the three points is in each of U, V, {p}.

It is proved in [22] that linear graphs are equivalent, via the separation order,
to complete fenced spaces (called, in [22], “linear orders with adjacency”). It
would take us too far afield to consider this equivalence in detail, and for
convenience we shall continue here to work with the “fenced” spaces, in which
the total order is explicitly given.

It is by now widely accepted that, in asymmetric topology, the stably com-
pact spaces play the role taken by the compact (Hausdorff) spaces in Hausdorff
topology [18, 2]. The study of stably compact continua, called skew continua
in [12], has been initiated in [12, 28]. It turns out that the classical theory
generalizes in a fairly straightforward way to the stably compact situation. An
attractive feature of the stably compact theory is that we have non-trivial finite
continua, which can under certain conditions serve to approximate continua in
general. We are here concerned with arcs as examples of stably compact con-
tinua. The spaces involved may be thought in the first instance in terms of
their compact ordered aspect. With little or no extra work, the compact or-
dered formulation can be generalized to compact graphs; this generalization
will turn out to have some advantages.

In view of the results in the preceding subsection, we can work with a rather
simple characterization of the arcs we are concerned with:

Definition 3.17. An arc is a 2nd-countable compact fenced space.

This definition leaves something to be desired, as it assumes that the overall
(separation) order of the space is given explicitly. But we know from the
previous observations that this feature is not essential. The advantage of Def.
3.17 is that it enables us to describe, in a simple manner, all the arcs which
can arise (our main purpose in this subsection).

Example 3.18. Let C be the set of infinite binary sequences, with the lexico-
graphic order <. Then the order topology T coincides with the Cantor topology
of C. For every pair z,y of adjacent elements of C', put z C y iff z < y; that
is, we have 001% C ¢10% for every finite string o. Clearly, C is T -closed, and
(C,T,C) is an arc. Notice, however, that this space is not a Priestley space
(equivalently, the upper topology is not spectral): C has no non-trivial clopen
upper sets.

Definition 3.19. A Stone arc is a fenced space (X, <, T, R) where (X, T) is
a 2nd-countable Stone space.
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A finite (Stone) arc is simply a finite fence (in the terminology of poset
theory) with discrete topology - if we require the fencing relation to be a partial
order. If the relation is allowed to be a pre-order, we get the same class of finite
arcs, with the single addition of the “arc” a = b consisting of two points, each
related to the other. Allowing the fencing relation to be any reflexive relation
means that we get the class of finite linear (reflexive) graphs. (To be sure, these
remarks are a little imprecise, as we have not explicitly specified the total order
involved.)

Returning to Example 3.18 we see that, since it is not a Priestley space, the
Stone arc (C,T,C) cannot be expressed as the inverse limit of finite arcs in
the strict sense (i.e. with partial orders as fences). However, let us take as Cp,
the graph with vertex-set {0,1}" (the binary strings, or numerals, of length
n), and relation R the reflexive closure of the successor relation on C,,. Then
it is easy to check informally that C' is the inverse limit of these simple linear
graphs C,.

Here we have assumed that the morphisms for the structures (X, <, T, R)
are the maps which preserve < (i.e. < U =) and R, and are continuous w.r.t.
T. Consideration of inverse limits shows that every 2nd-countable Stone space
can be (totally) ordered in such a way that its topology coincides with the
order topology: we have only to express it as an inverse limit of a sequence of
finite discrete spaces, all of them endowed with total orders in such a way that
the bonding maps are morphisms as just described.

Further considering these inverse limits, we note the following. Let ¥ be an
inverse sequence of finite arcs where the bonding maps are graph morphisms
which also preserve the linear (<-)orders. Then the inverse limit of ¥ is a Stone
arc. We claim that, conversely, any Stone arc (X, <, R) can be represented in
this way. The main point is to show that (X, <) has a base of (order-)open
intervals which are also closed. Consider an arbitrary clopen subset K of X.
By compactness, K has a least element g. Moreover, K is a join of (order-)open
intervals, which may be assumed finite in number (again by compactness). It
follows that either ¢ = L x, or ¢ has an immediate predecessor p. Thus < (K)
(= (p,—)) is clopen. Hence, any subbasic open ray, say (y,—), as a join of
clopen subsets (by the Stone property), is actually a join of clopen subbasic
rays. From this we have the desired base of clopen intervals, which we use to
construct a sequence of finite (ordered) discrete spaces having (X, <) as inverse
limit. The relation R induces a relation on each of these finite spaces as its
image (via the projection). The remainder of the argument is straightforward,
and we obtain:

Theorem 3.20. The Stone arcs are exactly the inverse limits of sequences of
finite linear graphs.

Example 3.21. Let C be as in Example 3.18, except that this time we put
x = y (that is, both £ C y and y C z) for each adjacent pair. We now
have a compact (Stone) pre-ordered space, where the pre-order is actually an
equivalence relation. As with Example 3.18, we do not have a Priestley space,
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but the structure, as a Stone arc, is easily expressed as an inverse limit of finite
linear graphs.

The significant new aspect of this example is the equivalence relation. It is
natural to think of quotienting the structure by this equivalence, and the result
is the unit interval - see Example 4.9. In the next Section, we shall provide a
general setting for this observation.

4. STABLY COMPACT GRAPHS

It is well-known that a convenient category of stably compact spaces is
obtained if one takes the continuous maps f : X — UY (UY being the upper
space over Y considered later) as morphisms. More precisely, one shows that
the upper space construct U is (functorial and) monadic over the category K
(of stably compact spaces and continuous maps), and then takes the Kleisli
category with respect to this monad. With [X — UY] as the exponential, and
a suitable tensor product (which in its object part is just the product X x Y in
K), the category turns out to be symmetric monoidal closed. See in particular
Schalk [15] and Siinderhauf [26] (notice that Stinderhauf’s treatment is couched
in terms of quasi-uniform spaces). A recent discussion is provided by Jung &
Kegelmann & Moshier [2], where the emphasis is on Stone duality.

Although this categorical work provides part of the context for what we
are doing here, we shall not use it explicitly. We take from it, however, the
key observation that continuous maps from X to UY are the same as closed
subsets of X x Y°P. This observation, which will be sharpened below (Prop
5.10), partly motivates the following definition:

Definition 4.1. A stably compact graph is a stably compact space X together
with a reflexive relation R that is closed in the product space X x X°P. A graph
morphism between stably compact graphs is a continuous, relation-preserving
map.

Example 4.2.

(1) Stably compact spaces Any stably compact space together with its spe-
cialization order is a stably compact graph (this is a simple consequence
of Nachbin’s separation result).

(2) Topological graphs The stably compact Hausdorff spaces are precisely
the compact Hausdorff spaces. Any compact Hausdorff space together
with a closed reflexive relation is a stably compact graph. This includes
the compact ordered spaces.

(3) Directed graphs Any finite discrete space together with a reflexive
relation is a stably compact graph.

(4) Finite To-graphs The finite stably compact spaces are precisely the
finite Tp-spaces. Any finite Tp-space X together with a relation R such
that Cx C R is a stably compact graph.
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Some basic properties that will be of use later on are:

Lemma 4.3. Let (X, R) be any stably compact graph. Then:

(1) If x Cx y then zRy;
(2) If &' Cx = and xRy and y Cx y' then ' Ry’;
(3) The dual (X°P, R°P) is a stably compact graph;
(4) For any patch-compact C, the set R(C) is compact upper;
(5) For any patch-open U, the set intg(U) = {z | R(z) C U} is open.
Proof. If (z,y) ¢ R then there is some open U and some op-open V' that contain
x, y respectively such that (U x V) is disjoint from R. Then (2) is an immediate
consequence of this, and (1) is an immediate consequence of this together with
that R is reflexive. (3) follows from that (X°P)°? = X. R is obviously a closed
relation on patch(X), and it is a straightforward exercise that R(C) is therefore
patch-compact. (1) gives that R(C) is upper, which then gives (4). For (5), let
C denote the complement of U. Then intg(U) is the complement of R°?(C).
Now C is compact upper in X°P, so by (4) applied to (X°P, R°P), R°?(C) is
compact upper in X P, O

What is the role of stably compact graphs in approximating stably compact
spaces? The case study in the preceding section provided some evidence for the
significance of Stone graphs. This is confirmed by Proposition 4.7 below: any
stably compact space can be represented by a Stone pre-ordered space (X, <),
which in turn is an inverse limit of finite discrete graphs. Why then do we
need to consider so rich a structure as the stably compact graph? The answer
lies in the constructions which we want to be able to carry out, specifically
those mentioned at the beginning of this section. Thus, the upper “space” of a
compact Hausdorff graph (X, R) will be a structure (UX, R') where UX is the
(stably compact) upper space of X, and R’ is a relation yet to be determined.
By working in the category of stably compact graphs, we will be able to accom-
modate these constructions, and treat the corresponding finite approximations
in a uniform manner.

4.1. Inverse sequences. Consider an inverse sequence of stably compact graphs
and perfect graph morphisms (a graph morphism is perfect if it is perfect as a
map between the underlying topological spaces)

A= (Xl,Rl) (—fl (Xz,R2) (—f2

Let X, denote the limit of the sequence of spaces ® = (X, f;), and let p;
denote the projections. The limit relation on X, is

Ry, = ()i x pi) " (R:)

Proposition 4.4. (X, R,,) is a stably compact graph, and is the limit of the
inverse sequence A in the category of stably compact graphs.

Proof. From the last two results in Section 2.2, X x X°P is the limit of the
inverse sequence of spaces ® x ®°P, and R, is closed in this space because it is
the intersection of the closed sets (p; x p;) 1 (R;).
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For any cone ((Y,S5),q1,¢2,...) over A, (Y, q1,¢2,...) is a cone over (X, f;)
in the category of topological spaces. The corresponding mediating map is
Y = X, y+= (¢1(y),q2(y),...), which is easily seen to be relation-preserving
with respect to S and R,,, and is therefore a mediating map in the category of
stably compact graphs. O

4.2. Quotients. In this section we give a “quotienting” construction for a
particular class of stably compact graphs, namely the stably compact pre-
orders, which are the stably compact graphs in which the relation is a pre-order.
The quotient of a stably compact pre-order is a stably compact space, and may
legitimately be called the stably compact reflection, for reasons discussed below.

Let (X, R) be a stably compact pre-order, and consider the corresponding
equivalence relation

z =gy if xRy and yRx

Let Y = X/ =g denote the set of equivalence classes, and let ¢ : X — Y be
the set-theoretic quotient map. The quotient topology on Y is the collection

{U | ¢ 1(U) open and R-saturated}
and we say that Y together with this topology is the quotient of (X, R).

Proposition 4.5. The quotient of a stably compact pre-order is a stably com-
pact space. Moreover, the map ¢ : (X,R) — (Y,Cy) is a perfect graph mor-
phism.

Proof. Tt is simple to prove that =g is a closed relation on patch(X), and the
quotient of a compact Hausdorff space by a closed equivalence relation is again
compact Hausdorff. Let ¢ : patch(X) — patch(X)/ =g be the quotient map,
and consider the relation

() C(y) if xRy

It is again simple to prove that this relation is well-defined, and is a closed
partial order, so we have a compact ordered space. That Y is the corresponding
stably compact space is given by that: U is open and C-saturated iff ¢»=1(U)
is open and R-saturated (and therefore C x-saturated) iff ¢=1(U) is open in X
and R-saturated iff U is open in Y.

Therefore patch(X)/ =r = patch(Y) and C = Cy. Then the map ¢ :
X — Y is perfect because the corresponding map between the corresponding
compact ordered spaces is continuous and order-preserving. O

Observe also that ¢ is a topological quotient map (onto and U open iff
¢~ 1(U) open) with respect to the quotient topology on Y and the R-saturated
topology on X.

Recall (Example 4.2) that a stably compact space Y together with its spe-
cialization order Cy is a stably compact graph, and (as any continuous map is
order-preserving w.r.t. the specialization orders) the category of stably com-
pact spaces is a full subcategory of the category of stably compact graphs.
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Entirely analogous to the Tj;-reflection construction considered by Kopper-
man and Wilson, the above quotienting construction has the property that,
where (Y,Cy) is the quotient of the stably compact preorder (X, R), with
¢ the quotient map, then for any stably compact space Z and any mor-
phism A : (X, R) = (Z,Cy%), there is a unique morphism (continuous map)
k: (Y,Cy) — (Z,Cz) such that h = ko ¢. (That h is relation-preserving
together with that Tz is a partial order (stably compact spaces are Tp) gives
that the map k(¢(z)) = h(z) is well-defined, and the proof that k is continuous
is straightforward.)

4.3. Finite approximation of stably compact spaces.

Definition 4.6. An inverse sequence of stably compact graphs and perfect
bonding maps approzimates a stably compact space Y if its limit is a stably
compact preorder whose quotient is Y.

We are interested in approximation by finite stably compact graphs. Say that
a finite (directed) graph is a stably compact graph whose underlying topological
space is finite discrete. Then any stably compact space can be approximated by
finite graphs (see below). However, it is entirely natural in certain contexts (to
be discussed later on) to consider approximation by finite, but not necessarily
discrete, stably compact graphs. So to be clear about the distinction: a finite
graph is a finite stably compact graph whose underlying topology is discrete.

Proposition 4.7. Every 2nd-countable stably compact space can be approxi-
mated by an inverse sequence of finite graphs.

Proof. Let Y be a 2nd-countable stably compact space. Then patch(Y) is 2nd-
countable, and so is compact metric (= compact, Hausdorff, 2nd-countable).
Where X, denotes the Cantor space, let ¢ : X, — patch(Y) be a topological
quotient map (it is a classical result that the compact metric spaces are precisely
the quotients of Cantor space by closed equivalence relations). The relation

gives a stably compact preorder (X, R, ) whose quotient is Y. Now X, is the
limit of an inverse sequence X; <1 Xy %2 ... of finite discrete spaces; let p;
be the projection maps and, for each i, let

R; = (pi x pi)(Rw)
This gives an inverse sequence (X1, Ry) <71 (X2, Rs) «/2 --. of finite graphs
whose limit is (X, Ry)- O

The requirement that the limit relation be a preorder is equivalent to the
condition that the collection of relations (p; x p;) ' (R;) is a base of a quasi-
uniformity, and can be guaranteed by requiring that each bonding map has the
following property. Say that a graph morphism f: (X, R) — (Y, S) is strong if
it is also relation-preserving with respect to Ro R and S. It is simple to prove
that the limit relation in the limit of an inverse sequence of stably compact
graphs and strong maps is a preorder; it can also be shown that any stably
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compact space can be approximated by an inverse sequence of finite graphs
and strong bonding maps, but we will not go into the proof here.

Example 4.8. Cantor space Let X; denote the set {0,1}* with the discrete
topology, and let f; denote the truncation map (1, ..., T;, Tit1) — (Z1,...,T;)-
Then the Cantor space is the limit X, of the resultant inverse sequence. Every
stably compact space can be approximated by an inverse sequence of graphs
whose underlying inverse sequence of spaces is the this. Moreover, every com-
pact Hausdorff space can be approximated by such an inverse sequence in which
each graph is undirected (i.e. the relation in each graph is symmetric).

Example 4.9. The unit interval Let <; denote the lexicographic order on X;
in the previous example, let A; denote the union of the corresponding adjacency
relation with the identity, and let I; denote the graph (X;, A;). Then the inverse
sequence of graphs I} <% I, <2 ... approximates the unit interval. This was
proved in [20], but to see this, consider the map

¢p: X, = I, (m1,22,...) > —+—+---

This is a topological quotient map, and is one-to-one apart from the fact that,
for each dyadic point 0 <d < 1, ¢ 1(d) = {(z,1,1...), (y,0,0...)}, for some
xz,y € X; such that zA;y and z <; y. It follows that the unit interval is the
quotient by the limit of the adjacency relations.

This example also gives the relationship between the digital and Euclidean
planes mentioned in the introduction. For each i, the product graph (see later)
I; x I; is a digital plane with the “8-connectivity” relation (see e.g. [14]). The
inverse sequence of product graphs approximates (see Prop 5.2) the unit square.

Example 4.10. The Scott unit interval This is the stably compact space
corresponding to the unit interval considered with its usual linear order. Let
S; denote the graph (X;, A; U <;). From the previous example it is clear that
the Scott unit interval is approximated by the inverse sequence of graphs:

AN

AN

S1

Sy  ——
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5. CONSTRUCTIONS ON STABLY COMPACT GRAPHS

In this section we give various constructions on stably compact graphs, and
show that they preserve approximation.

The first result is that concerning duality. The dual of a stably compact
graph (X, R) is (X°P, R°P), which (Lemma 4.3) is a stably compact graph. Any
perfect graph morphism is clearly also a graph morphism when considered as a
map between the respective dual graphs: the dual A°P of an inverse sequence
A is then defined in the obvious way. It is simple to prove (given Prop. 2.4)
that the limit of A°? is the dual of the limit of A. It is also very straightforward
to show that if a stably compact space Y is the quotient of a stably compact
pre-order, then Y °P is the quotient of the dual pre-order. Therefore:

Proposition 5.1. If A is an inverse sequence of stably compact graphs that
approzimates the stably compact space Y, then A°P approximates Y P,

5.1. Products. The product X x Y of two stably compact spaces is stably
compact (see [9]), and the corresponding compact ordered space is (patch(X) x
patch(Y), Ex X Cy), the product order being the product relation defined
below. From this it follows that (X x Y)°? = X°P x Y°P.

The product of the stably compact graphs (X, R) and (Y, .9) is the product
space X X Y together with the product relation

Rx S ={((z,y),(=',y") | zRz" and ySy'}

It is straightforward that this is indeed a stably compact graph, and is the
product in the category of stably compact graphs.

Proposition 5.2. If A, A are inverse sequences of stably compact graphs that
approzimate the stably compact spaces X, Y respectively, then A x A approzi-
mates X X Y.

Proof. Given the result that products preserve limits of inverse sequences in
any category, it suffices to show that if X, Y are the respective quotients of the
stably compact pre-orders (X', R), (Y’,S), then X x Y is the quotient of their
product. Let ¢ : X' — X and ¢ : Y' — Y be the respective quotient maps.
It is straightforward that the product map ¢ x 1 is perfect, and we claim it
is a topological quotient map with respect to the (R x S)-saturated topology.
The product map is clearly onto. The preimage of a basic open set U x V is
¢~ 1(U) x ~1(V), which is (R x S)-saturated because ¢~ (U) is R-saturated
and ¢~ 1(V) is S-saturated. Now let (¢ x )"} (W) be an (R x S)-saturated
open set. If this set contains (z,y) then it contains R(z) X S(y), and then
by compactness of R(z) and S(y) (Lemma 4.3) there are open sets U, V such
that R(z) x S(y) CU xV C (¢ x )~ (W). We may assume that U, V are,
respectively, R-saturated and S-saturated (consider the saturated open sets
intgr(U), ints(V) - see Lemma 4.3), therefore (¢ x ¥)(U x V) = ¢(U) x (V)
is an open set contained in W, so W is open.
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It remains only to check that X x Y is the quotient by the equivalence
relation =gxg, i.e. that (¢ x ¥)(z,y) = (¢ x ¢¥)(¢',y") if and only if (z,y)
=grxs (2',y"), the proof of which is simple. O

5.2. The upper graph. The upper space over a stably compact space X is
the set UX of compact upper subsets of X together with the topology that has
the basis

{OU | U open in X}

where OU denotes the set {C € UX | C C U}. For any continuous map
f: X =Y, the map

Uf:UX - UY, C—up(f(C))

is continuous, and is perfect if f is perfect. The upper space construction is
functorial. The upper inverse sequence over an inverse sequence ® = (X, f;)
of stably compact spaces and perfect bonding maps is the inverse sequence

Ud=UX, <" UX,, V...

The following result appears to be new; we are not aware of any corresponding
work in the literature apart from that on the Vietoris space in [16].

Proposition 5.3. The upper space construction preserves limits of inverse
sequences of stably compact spaces and perfect bonding maps.

Proof. A definition that will be used in this and a later proof is that a
decreasing sequence in ® is a sequence (C;, Ciy1,--. ), beginning at any i, such
that each C; C Xj, and such that each Cj11 C f;'(C;). The limit of this
sequence is the intersection in X, of

p;N(C) 29 (Citn) D -

(where, as usual, X, is the limit of ® with p; the projections). Examples of
decreasing sequences are the threads of U®. Associating a thread with its limit
and considering the properties of this association is the main technique in this
proof.

Lemma 5.4. The limit of a decreasing sequence of patch-closed sets is patch-
closed, and is non-empty if each set in the sequence is non-empty.

Proof. Each projection p; is perfect so the limit, as the intersection of patch-
closed sets, is patch-closed. It is a classical result (given in e.g. [4]) that
the limit of an inverse sequence of non-empty compact Hausdorff spaces is
non-empty. Now the decreasing sequence can be regarded as such an inverse
sequence in an obvious way, and it is then a straightforward exercise to show
that this implies that the above limit is non-empty.

To C € UX, we assign the decreasing sequence (Up:(C),Ups(C),...),
which is a thread of U® because the upper space construction is functorial.
Then C'is the limit of its associated thread: clearly it is contained in the limit,
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and, as was shown in Prop 2.4, for any y ¢ C there is a basic open set that
contains C' but not y. The assignment is therefore one-to-one.

Let (Cy,Cy,...) be any thread in U® and let C be its limit. Then C € UX,,
and we claim that the thread is that associated with C. Now each Up;(C) C C;,
so suppose for contradiction that for some 4 this is a proper subset inclusion. By
Nachbin’s separation result, let U be an open set that contains Up;(C) but not
C;. Then C' C p;l(U ), but consider the decreasing sequence of patch-closed
sets (Ci\U, Ciy1\f; *(U),...). A simple induction argument shows that each
set in this sequence is non-empty, so its limit is non-empty. But the limit is a
subset of C'\p; ' (U), which is a contradiction.

We therefore have a bijection between UX,, and the set of threads of U®.
Now UX; has the basis {O0U | U open in X;}, and it follows easily that the
inverse limit topology on the set of threads has the basis {(C1,C2,...) | C; €
OU, U open in X;, i = 1,2,...}. The sets p; *(U) form a basis of X,,, and
it is a simple exercise in compactness to show that UX, then has the basis
{D(p;l(U)) | U open in X;, i = 1,2,...}. It is then easy to see that the
bijection maps basic open sets in one topology to basic open sets in the other,
and so is a homeomorphism. Therefore U X, is the limit of U®, and it is almost
immediate (see the remarks at the beginning of Section 2.3) that the maps Up;
are the corresponding projections. O

Regarding the other hyperspace constructions, we will not consider the Vi-
etoris space in this work, although the results and proof techniques for the
upper space go through for the Vietoris space. Neither will we consider much
the lower space (apart from the description it gives of the dual of the upper
space), although the duals of the results for the upper space apply immediately
to the lower space.

Definition 5.5. The upper graph over a stably compact graph (X, R) is the
upper space UX together with the upper relation UR = {(C, D) | D C R(C)}.

Spelling out the upper relation, we have
C(UR)D=Vye D3z € C. zRy

Evidently, this is an analogue, or generalization, of the upper (“Smyth”) order
of domain theory. “Power relation” constructs of this kind are also considered
in the algebra literature: see for example Brink [5]. Usually it is only the
“convex”, or strong, relation

D C R(C) & C C R°?(D)
and its generalization to n-ary relations which is considered. At the other
extreme we have the weak relation:

CRyD=3xe€C3dyeD. zRy

Although this has no analogue in domain theory, it proves to be very useful in
approximation studies [29, 24]. The upper relation of Definition 5.5 has been
chosen because it facilitates the upper space approximation theorem (Prop 5.9).
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To show that the upper graph is indeed a stably compact graph, we need a
description of (UX)°P. This is provided by the lower space over X, which is
the set LX of compact lower subsets of X together with the topology that has
as a subbase the collection

{QU | U open in X}

where OU denotes the set {C € LX | CNU # @}. Now the compact upper
subsets of X are precisely the compact lower subsets of X °?, and it is a standard
result (see e.g. [15]) that (UX)°P = L(X°P).

Proposition 5.6. The upper graph is a stably compact graph.

Proof. If (C, D) ¢ UR then there is some y € D such that y ¢ R(C). Then by
compactness of C' there is some open U in X and some open V in X°P such
that C C U, y € V and (U x V) is disjoint from R. Then OU is an open
neighbourhood of C in UX, ¢V is an open neighbourhood of D in L(X) =
(UX)°P, and (OU x OV) is disjoint from UR. O

Proposition 5.7. The upper graph construction is functorial.

Proof. Given that the upper space construction is functorial, we need only show
that for any graph morphism f : (X,R) — (Y,S5), the map Uf is relation-
preserving with respect to UR and US. If (C,D) € UR then f(D) C S(f(C))
because f is relation-preserving. For any x € U f(D) there is some d € D such
that f(d) Cy z, and some ¢ € C such that f(c)Sf(d). Therefore (Lemma 4.3)
f(c)Sz, therefore U f(D) C S(f(C)) = S(Uf(C)). O

The upper inverse sequence UA over an inverse sequence of stably compact
graphs A is defined in the obvious way.

Proposition 5.8. The upper graph construction preserves limits of inverse
sequences.

Proof. Given the result for inverse sequences of upper spaces, and the fact that
the projections Up; are relation-preserving, we need only show that (C, D) €
UR, if, for all i, (Up;(C),Up;(D)) € UR;. Suppose, then, that (C,D) ¢ UR,,.
Then there is some z € D such that (R,)°?(z) and C are disjoint. Now
(R.)°P(x) is by definition the limit of the decreasing sequence of patch-compact
sets ((R1)°P(p1(x)), (R2)°P(p2(x)),...), and C' is the limit of the decreasing se-
quence of patch-compact sets (Upy(C),Up2(C),...), therefore we have a de-
creasing sequence of patch-compact sets

(R1)%%(p1(2)) NUp1(C), (R2)* (p2(x)) NUp2(C),...)
whose limit is (R, )°?(z) N C, which is empty.
Therefore (by the Lemma in the proof of Prop 5.3) there is some ¢ such that
(R;)°P(pi(z)) and p;(C) are disjoint. O

Proposition 5.9. If A is an inverse sequence of stably compact graphs that
approximates the stably compact space Y then the inverse sequence UA approz-
imates UY .
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Proof. Given the previous result it suffices to show that if (X, R) is a stably
compact pre-order whose quotient space is Y, then UY is the quotient of the
upper graph (UR is obviously a pre-order). Recall that the quotient map
¢ : X =Y is perfect, so we have a perfect map U¢ : UX — UY.

We claim that U¢ is a topological quotient map with respect to the UR-
saturated topology on UX. U¢ is onto because ¢ is perfect and onto: for
any C € UY, ¢~1(C) € UX, and C = U¢(¢p~1(C)). For any U open in Y,
¢ 1(U) is open and R-saturated, therefore O¢~'(U) = (U¢) ' (OU) is open
and UR-saturated. Let U be any set in UY such that (U¢)~1(U) is open
and UR-saturated. For any C' € U there is some V open in X such that
¢~1(C) € OV C (Up)~H(U). Now ¢~1(C) is R-saturated, so we may assume
without loss of generality (consider the R-saturated open set intg(V')) that
V' is R-saturated, in which case OV is UR-saturated. Now ¢(V') is open in
Y because ¢ is a topological quotient map with respect to the R-saturated
topology on X, and then C € (U¢)(OV) = O¢(V) C U, therefore U is open.

It remains only to show that UY is the quotient of the U R-saturated topol-
ogy by the equivalence relation =y g, i.e. that (U¢)(C) = (U¢)(D) iff (C,D) €
=ygr- This is given by the easily checked fact that, for any C, (U¢)(C) =
$(R(C)), and so (U¢)(C) = (U¢)(D) iff R(C) = R(D). O

5.3. Function spaces. The natural topology on the set [X — Y] of continuous
functions between any two stably compact spaces is the compact-open topology,
which is the topology that has a subbase of the sets

CU)={flCccf Uy

for any compact C' C X and any open U C Y. But it is well-known that this
topology is not necessarily stably compact. The function space [X — UY]
(considered with the corresponding compact-open topology) is stably compact
however, and so can be approximated by finite graphs. We will not give the
construction here; instead we will give a simpler construction, based on results
already obtained, of a space of relations that is isomorphic to this function
space. This isomorphism takes f € [X — UY] to its graph

graph(f) = {(z,y) |y € f(2)}
which is an element of U(X°? x Y'). Let 2 denote the Sierpinski space: there
is an isomorphism (see Escardd [7])
UX = [XP = 2]
which maps C' to its characteristic map = — 0 iff x € C. Moreover, for any
three stably compact spaces, we have the standard (Currying) homeomorphism
(see [7])
X >V =2 Z]|=2[(X xY)—> Z]

The following result and its proof were communicated to the authors by Martin
Escardé.

Proposition 5.10 (Escardé). The map [X — UY] - U(X°? xY), f —
graph(f) is an isomorphism.
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Proof. We have the following sequence of isomorphisms
[X—>UY] =2 [X—>[Y?->2]
[(X x YP) — 2]
[(XP x V)P — 2]
UX? xY)

1R IR

IR

The resultant isomorphism between the first and last spaces in this sequence
is the map f — graph(f). O

Now let A and A be inverse sequences that approximate the stably compact
spaces X and Y respectively. From previous results we then have that the
inverse sequence U (A% x A) approximates U(X°? x Y).

6. CONCLUSION

An idea implicit in the preceding is that a topological space ¥ may be
“represented” by a space X together with a relation R, in a way that generalizes
ordinary quotienting (in which a space is represented by another space together
with an equivalence relation). More specifically, the idea is as follows. We are
trying to construct the space Y and (surjective) representation map ¢ : X — Y
in such a way that the inequation ¢(z) Cy ¢(y) holds whenever xRy (rather
than ¢(x) = ¢(y) as in the usual quotienting).

We may remark that “quotienting by a pre-order” is an operation that is
very natural in algebraic and domain-theoretic work in computer science, and
has frequently been studied in those settings: see for example Courcelle &
Raoult [6], Hennessy [8], Abramsky & Jung [1].

In the context of Ty-spaces we have the following (recall that the Tp-ification,
or “Tp-reflection”, of a space X is its quotient by the equivalence relation
{(z,y) | Cx y and y Cx =}):

Theorem 6.1. Let X be a Ty-space, and R a relation on X. Then there exists
a To-space Y and continuous ¢ : X — 'Y such that

(1) For allz,y € X, zRy = ¢(z) Cy ¢(y);
(2) Any continuous ¢' : X — Y' with the same property factors uniquely
through ¢.

Moreover, the space Y so specified is unique up to homeomorphism (and ¢ is
surjective).

Proof. (Outline) Let X' be the set X taken with the R-saturated topology, Y
the Tp-ification of X', and ¢ : X' — Y the canonical surjection. Then Y, ¢
satisfy (1).

Suppose that Y’,¢' also satisfy (1). It has to be shown that, if z =x v,
then ¢'(z) = ¢'(y). But this is immediate by the continuity of ¢' and the Ty
property of Y. O
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In this construction we may without loss of generality require that R be a
pre-order, since a relation R may evidently be replaced by its reflexive transitive
closure, without affecting the construction. We may remark further that a pre-
order over X may be defined by fixing a cover of X. Specifically, given the
pre-order R, we have the cover Cr by the R-saturated sets, from which R is
recovered by

tRy=VSe€Cr.zeS=>yes

Example 6.2. The cover of the real line R by the sets (k — 1,k + 1) (k € Z)
specifies the Khalimsky line.

If R is an equivalence relation, the construction reduces to the usual quotient,
provided that the quotient is Tp. On the other hand, in the case that X is stably
compact and R a preorder closed in X x X°P, the construction reduces to that
given in Section 4.2.

What has been shown above is that, in approximating stably compact spaces
finitely, we have (in general) to use representations (X, R) explicitly.

Besides the general machinery, we have in this paper considered only one
application (the treatment of arcs, Section 3). In the symmetric case (that is,
the approximation of Hausdorff spaces by undirected graphs) by comparison, a
fairly detailed study of the properties of continua in relation to those of finite
graphs has been carried out in [27, 29]. There also could be mentioned the use
of graphs in approximating fractals by Bandt and Keller [3]. In recent work,
Smyth and Tsaur [24] have studied fixed points with these techniques, showing
that new fixed point results for both graphs and spaces can be obtained. We
may expect further applications in this case as well as in the (more general)
asymmetric case: the approximation of Ty-spaces by directed graphs.

Acknowledgements. Many thanks to Martin Escardé for much help with
the function space section of this work.
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