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Extendible spaces

M. P. SCHELLEKENS

ABSTRACT. The domain theoretic notion of lifting allows one to
extend a partial order in a trivial way by a minimum. In the context
of Quantitative Domain Theory (e.g. [BvBR98] and [FK93]) partial
orders are represented as quasi-metric spaces. For such spaces, the
notion of the extension by an extremal element turns out to be non
trivial.

To some extent motivated by these considerations, we characterize the
directed quasi-metric spaces extendible by an extremum. The class is
shown to include the S-completable directed quasi-metric spaces.

As an application of this result, we show that for the case of the in-
variant quasi-metric (semi)lattices, weightedness can be characterized
by order convexity combined with the extension property.
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1. BACKGROUND

A function d: X x X — R(T is a quasi-pseudo-metric iff
1) Vz € X.d(z,2) =0
2) Vz,y,z € X.d(z,y) + d(y,z) > d(z, 2).
A quasi-pseudo-metric space is a pair (X,d) consisting of a set X together
with a quasi-pseudo-metric d on X.
In case a quasi-pseudo-metric space is required to satisfy the Ty-separation
axiom, we refer to such a space as a quasi-metric space.
In that case, condition 1) and the Ty-separation axiom can be replaced by
the following condition:

1) Vz,y.d(z,y) = d(y,r) =0 &z =y.

The conjugate d=! of a quasi-pseudo-metric d is defined to be the func-
tion d=!(x,y) = d(y, =), which is again a quasi-pseudo-metric (e.g. [FL82]).
The conjugate of a quasi-pseudo-metric space (X, d) is the quasi-pseudo-metric
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space (X,d™!). The (pseudo-)metric d* induced by a quasi-(pseudo-)metric d
is defined by d*(z,y) = maz{d(z,y),d(y,z)}.
We discuss a few examples of quasi-pseudo-metric spaces.

The function d;: R* — R, defined by di(z,y) = y — 2« when z < y and
di(z,y) = 0 otherwise, and its conjugate are quasi-pseudo-metrics. We refer
to di as the “left distance” and to its conjugate as the “right distance”. These
quasi-pseudo-metrics correspond to the nonsymmetric versions of the standard
metric m on the reals, where Vz,y € R.m(z,y) = |z —y|.

Note that the right distance has the usual order on the reals as associated
order, that is Vz,y € R.z < Y eT < y, while for the left distance we have
Ve,ye Rz <q, y &z >y.

The function dy: (R —{0})2 = R¢, defined by da(z,y) =
and 0 otherwise, and its conjugate are quasi-pseudo-metrics.

The complezxity space (C,dc) has been introduced in [Sch95] (cf. also [Sch96]
and [RS99]. Here

1_1
g—gwheny<$

[e ] . 1
C={frwa>R"> 2 m<+oo}

and dg is the quasi-pseudo-metric on C' defined by

n=0

S~ g-n_ L _ 1

whenever f,g € C. The complexity space (C,d¢) is a quasi-metric space with
a maximum T, which is the function with constant value co.

The dual complezity space is introduced in [RS99] as a pair (C*, d¢+), where
C*={f:w >R | X,2"f(n) < +oo}, and de- is the quasi-metric
defined on C* by de-(f,9) = > 002 "[(9(n) — f(n)) V0], whenever f,g € C*.
We recall that (C,d¢) is isometric to (C*,dc~) by the isometry ¥ : C* — C,
defined by ¥(f) = 1/f (see [RS99]). Via the analysis of its dual, several
quasi-metric properties of (C,d¢), in particular Smyth completeness and total
boundedness, are studied in [RS99].

A quasi-pseudo-metric space (X, d) is totally bounded iff Ve > 03z, ...z, €
XVze XJie{l,...,n}.d*(z;,z) <e.

The associated preorder <4 of a quasi-pseudo-metric d is defined by =z <z ¥y
iff d(z,y) = 0.

A dual property of a given property P of quasi-metric spaces is a property
@ such that P holds for a quasi-metric space (X, d) iff @ holds for the conju-
gate quasi-metric space (X,d~'). A property is self-dual iff it is its own dual
property. As an example, we remark that the property of total boundedness is
(trivially) self-dual.

We write that a quasi-pseudo-metric space encodes a preorder when Vz,y €
X.d(z,y) € {0,1}. In that case we also write that the encoded preorder is the
preorder (X, <,4). Conversely, for a given preorder (X, <), one can define a
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quasi-pseudo-metric space (X, d<) which encodes the preorder, in the obvious
way.

A preorder (X, <) is upper directed iff Vo,y € Xz € X.2 >z and z > y.

A preorder (X, <) is lower directed iff Vz,y € X3z € X.z2 <z and 2 < y.

A preorder (X, <) is bi-directed iff it is both upper directed and lower di-
rected.

As most results will be stated for upper directed spaces, we refer to these
spaces in the following simply as directed spaces.

A quasi-pseudo-metric space is (upper/lower) directed iff its associated pre-
order is (upper/lower) directed. A quasi-pseudo-metric space has a mazimum
(minimum) iff the associated preorder has a maximum (minimum).

We recall ([Sch96], Lemma 5) that quasi-pseudo-metrics satisfy the following
property, which we refer to as the “Monotonicity Lemma”: if (X,d) is a quasi-
pseudo-metric space then Vz,y,z € X.(2' <4 z and ¢y’ >4 y) = d(z',y") <
d(z,y).

A quasi-metric space (X, d) is weightable iff there exists a function w: X —
R¢ such that Vz,y € X.d(z,y) + w(z) = d(y,x) + w(y). The function w
is called a weighting function, w(x) is the weight of x and the quasi-metric d
is weightable by the function w. A weighted space is a triple (X, d,w) where
(X, d) is a quasi-metric space weightable by the function w. A weightless point
of a weighted quasi-metric space is a point of zero weight. A space (X,d)
is weightable with respect to a point y € X iff the function w defined by
Vz € X.w(z) = d(y, z) is a weighting function of (X, d).

Example 1.1. The quasi-metric space (RJ,d;) is weightable by the identity
function, w;(z) = z. The quasi-metric space (F, dy) is weightable by the
function wy(z) = 1. The complexity space (C, dc) is weightable by the function
we where Vf € C.wc(f) =3, % Each of the examples is weightable with
respect to a point (0,00, and T respectively).

We recall that the conjugate quasi-metric space (R ,d; ") is not weightable

([Sch96, p. 352]). For more information on conjugates of weightable spaces we
refer the reader to [KV94].

An extension of a weighted space (X,d,w) is a weighted space (X', d',w")
such that the quasi-metric space (X’,d') is an extension of the quasi-metric
space (X, d) and such that w'|X coincides with w.

A function f: X — R is fading iff inf.cx f(z) = 0.

A weighted quasi-metric space is of fading weight iff its weighting function
is fading.
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Example 1.2. The spaces (R1,dy,w;), (R1,ds2, ws), the complexity space
(C,dc,wc) and the Baire space (N <“, b,w,) are weighted spaces of fading
weight.

We recall the following proposition from [Sch00].

Proposition 1.3. The weighting functions of a weightable quasi-metric space
are exactly the strictly decreasing functions f + ¢, where ¢ > 0 and where f is
the unique fading weighting of the space.

The following section focuses on directed quasi-metric spaces and the exten-
sion by extremal elements (“lifting”, cf. [Sch97]) is analyzed in this context.
We recall that not every directed quasi-metric space is extendible by a maxi-
mum ([Sch97]). This leads to a characterization of the class of directed spaces
which are extendible by a maximum, via the class of “M-spaces”. A dual re-
sult for the case of lower directed spaces is obtained via the class of “m-spaces”
and the results are combined for the case of bi-directed spaces, resulting in a
characterization via the class of “bi-extendible spaces”.

2. EXTENDIBLE SPACES

We focus initially on the case of (upper) directed spaces.

Definition 2.1. An M-space is a directed quasi-metric space (X,d) which
satisfies the condition Vy € X Ja € Ry Yz >4 y.d(z,y) < a. We refer to this
condition as “the M-space condition”.

For future reference we introduce the following definition.

Definition 2.2. If (X,d) is an M-space then its M-extension (X;,d;) is de-
fined as follows:

If (X, d) has a maximum, we define (X1, d;) to be the quasi-metric space (X, d).
Otherwise we choose 1 ¢ X and define X; = X U {z1} and d; to be the
extension of d defined by Vz € X;.di(z,z1) = 0 and Vx € X.di(z1,2) =
sup{limy, d(zn, )| (zn)n € =1}, where 1= {(zp)n>1|z1 >4 z and Vn >
1.2n <qTpy1}-

The following theorem, which is a version of Theorem 13 of [Sch96], adapted
to the context of M-spaces, provides a necessary and sufficient condition for
directed quasi-metric spaces to be extendible by a maximum.

Since the proof is similar to the proof of Theorem 13 of [Sch96], we only
present a sketch. The only difference is that the “functional boundedness”
condition used in [Sch96],i.e. 3f: X — R Vz,y € X.d(z,y) < f(y), has been
replaced by the equivalent M-space condition, for which the original proof still
holds.

Theorem 2.3. A directed quasi-metric space is extendible by a mazimum iff
the space is an M -space.
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Proof. If (X,d) is a quasi-metric space extendible by a maximum, say z1, to a
space (X1,d;) where X; = X U {z1}, then we have that Vz,y € X.d(z,y) =
dy (z,y) < di(x1,y) which implies the M-space condition.

To show the converse, note that if an M-space (X,d) has a maximum x;
then the result holds trivially.

In case the quasi-metric space (X, d) does not posses a maximum, let (X1, d;)
be its M-extension. Using the M-space condition one can verify that the space
(X1,d;1) is a quasi-metric space with maximum z;, which extends the quasi-
metric space (X, d).

O

An easy verification shows that M-extensions of an M-space are unique up
to isometry. Hence in the following we will refer to the M-extension of an M-
space.

Remark 2.4. If (X,d) is an M-space then for any z € X there exists a se-
quence (Y, )n € xt such that dy (z1, ) = lim,, d(y,, z). Indeed, since dy (z1,z) =
sup{lim,, d(z,,,z)|(z,), € 21}, there exists a sequence of sequences in z?, say
[(z¥)n]k, such that d(z1,z) = sup,{lim, di(z%,z)}. Since the quasi-metric
space (X,d) is directed, we can define a sequence (y,), where y; = x1 and
Vn > 1.yn 41 is an element such that y,11 >4 Yn, Tk, ..., 27 Note that (y,), €
z1 and that Vk. lim, d(zk ) < lim,, d(y,, ). So di(z1,z) = lim,, d(y,, ).

We refer to such a sequence (yn). as a “representative sequence for z”.

Example 2.5. Any directed subspace (Y, d) of a space (X, d') which possesses

a maximum z; is an M-space. Indeed, note that by the Monotonicity Lemma

we have that Vz,y € Y.d(z,y) = d'(z,y) < d'(x1,y) and hence the M-space

condition holds. This implies in particular that the complexity spaces are M-

spaces since they are directed subspaces of the complexity space (C, d) ([Sch97]).
The quasi-metric spaces (R",d;) and (R",d2) are M-spaces.

Finally, we remark that any bounded directed quasi-metric space is an M-

space.

The fact that not every directed quasi-metric space is extendible by a max-
imum is shown by the counterexample (Rg,d; "), which violates the M-space
condition (cf. [Sch97]).

Definition 2.6. A quasi-metric space (X,d) is order-convex iff Vz,y,z €
X.z2ay 2a2=d,y) +dy,2) =dz,2).

Example 2.7. It is easy to verify that every weightable quasi-metric space is
order convex (cf. [Sch96]). The quasi-metric space (R¢,d; ") is an example of
an order convex space which is not weightable ([Sch96]).

Remark 2.8. It is easy to verify that the notion of order-convexity is self-dual.

Lemma 2.9. The M -extension of an order convexr M -space is order conver.
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Proof. Let (X,d) be an order convex M-space. In order to verify that the
extension (X;,d;) is order convex, we verify that Vz,y,z € X1.2 >4, y >4,
z = di(z,y) + di(y, 2) = di(=, 2) by a distinction of cases.

If z,y and z all belong to X then the result follows immediately by order
convexity of the quasi-metric space (X, d). The verifications of the cases where
y = x1 or z = x1 are straightforward. So we only need to consider the case
where z = z; and y,z € X.

Ify,z € X such that y >4, 2, then, since d; and d coincide on X, we also have
y >4 z. For some representative sequence (y,), € y1 (cf. Remark 2.4) we have
that di(21,9) + di(y, 2) = lim, d(yn,y) + di(y, 2) = lim,(d(yn,y) + d(y,2)) =
lim,, d(yn, 2), where the last equality follows by order convexity of (X,d). So
to obtain the result it suffices to show that lim, d(y,,2) = di(z1,%2). Since
(Yyn)n € y1 and y >4 2z, we have that (y,), € 21 and thus the inequality
lim,, d(yn, 2) < di (21, 2) holds.

We assume by way of contradiction that lim, d(y,,2) < di(z1,2). Let
(zn)n be a representative sequence for z. Then we have that lim,, d(z,,2) >
lim,, d(yn, 2).

Then there exists a sequence (z,,), € 2z} such that lim, d(z,, 2) > lim, d(yn, 2).

Using directedness, we can define a sequence (u,)n, inductively such that
V. Un > 2Zn,y and Yn. un41 >4 Un. Thus (ug), € yT.

So for this sequence we still have that lim,, d(uy,2) > lim, d(y,, 2). By order
convexity we have that d(un, 2) = d(un,y) + d(y, 2) and d(yn,2) = d(yn,y) +
d(y, z), so we obtain that lim,, d(u,,y) > lim, d(y,,y) = di(z1,y), which yields
a contradiction. O

In the following we focus on the case of lower and bi-directed spaces.

Definition 2.10. An m-space is a lower directed quasi-metric space (X,d)
which satisfies the condition Vz € X3a € ReVy <4 z.d(z,y) < a. We
refer to this condition as “the m-space condition”. A quasi-metric space is
bi-extendible iff it is an M-space and an m-space. In that case we also write
that the quasi-metric is bi-extendible.

Remark 2.11. The notions of an M-space and of an m-space are dual.

Definition 2.12. If (X,d) is an m-space then its m-extension (X7,d;) is de-
fined as follows:
If (X, d) has a minimum, we define (Xg, dg) to be the quasi-metric space (X, d).
Otherwise we choose 9 ¢ X and define Xo = X U {x9} and dy to be the
extension of d defined by Vz € Xo.do(zo,z) = 0 and Vx € X.do(z,z0) =
sup{lim, d(z,z,)| (zn)n € zl}, where z|= {(zp)n>1|z1 <4 z and Vn >
1-$n+1 Sd xn}

One can easily verify that m-extensions are unique up to isometry, so we
will refer in the following to the m-extension of an m-space.

The following theorem provides a dual version of Theorem 2.3.

Theorem 2.13. A lower directed space quasi-metric is extendible by a mini-
mum iff the space is an m-space.
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The reader may wish to omit the proof of the following technical proposition
on first reading.

Proposition 2.14. For bi-extendible quasi-metric spaces the operations of m-
extension and M -extension commute.

Proof. Let (X,d) be a bi-extendible quasi-metric space. We let (X19,d10) de-
note the m-extension of the M-extension of (X, d), while (Xo1,d10) denotes the
M-extension of the m-extension of (X,d).

Since both kinds of extensions are unique up to isometry, we can select the
names of the extremal points added during the extensions and guarantee that
Xo1 = X19. We will denote this set by X in the following and denote the
minimum by Ty and the maximum by T; respectively.

In order to verify that the quasi-metrics dig and dy; coincide, we need to
verify that VZ,7 € X.d1o(Z,7) = do1(%,7). We distinguish seven cases. The
cases where Z,7 € X and where either T € {Z,Z1} or § € {Zo, 71}, or where
T = Tg and § = Ty, follow by straightforward verifications, so we omit the
details.

For the remaining case, we need to verify that di0(Z1,%o) = do1(T1,To); that
is we need to verify that:
sup{limp[sup{limpmd(2?,, n)| (2)m € n1}]| (£n)n is a decreasing sequence} =
sup{limy[sup{limyd(zr,z})| (z¥); € zxL}]| (zk)k is an increasing sequence}.

We will verify that:
sup{limp[sup{limnd(z?,, z,)| (2)m € znT}]| (£n)n is a decreasing sequence} <
sup{limy[sup{limid(yr, yF)| (yF)i € yrd}]| (yr)k is an increasing sequence}.

The converse inequality is shown in a similar way.

The following notation is used: for each natural number n and a given
decreasing sequence (T,,)n, we let A, = sup{lim,d(z?,z,)| (%)m € o1}
and for each natural number k£ and a given increasing sequence (yi)x, we let
By = sup{limud(yx, yf)| (yf )1 € yrl}-

Clearly it suffices to show that for every decreasing sequence (x,), there
exists an increasing sequence (yg)r such that, for A, corresponding to the
sequence (%), and for By corresponding to the sequence (y)g, limn,A, <
likak.

Let (z,,)n be a decreasing sequence then for each natural number n, we select
a representative sequence (u”), for z, (cf. Remark 2.4), which allows us to
rewrite Ay, as: A, = limyd(ul, x,).

It is easy to see that the representative sequence can be chosen inductively
as follows: select a representative sequence (ul,),, for z;. For each n > 1,
we select a representative sequence (vt'),, for z,y; and replace it, using
directedness, by a sequence (u’!),,, such that u"Jrl >4 fu"Jrl,u{L and for each
m > 1, ufn*jrll >q ot ul g, utl. Clearly the sequence (ul), is still a
representative sequence for z,, since it belongs to z,1 and by the Monotonicity
Lemma: Vn.d(ul,,z,) > d(v?, z,).

So we have that A, = lim,d(u?,z,) where, by construction, for each
natural number m, the sequence u}}, is increasing in n.
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Let (e, )n be a sequence which converges to 0, then, since 4,, = limp,d(u?,, z,),
we can select for each n an index m,, such that A, —d(u}, ,7,) < €,. Without
loss of generality we can assume that the sequence (m,,),, is increasing.

In particular we obtain that the sequence (uj, ). is an increasing sequence
for which lim, A, = limpd(u, ,xy).

We remark that for each n, d(u}}, ,xn) < sup{limid(u}}, ,x)|(x}); € ult |

This follows since ujy, >4 z, and thus there exists a sequence (z*); € up, |
such that for some I, ) = x,. By the Monotonicity Lemma, d(u, ,z") is
increasing in [. So we obtain that for each n, d(uj, ,z,) < limid(u}}, ,z}') and
thus for each n, d(up, ,n) < sup{limyd(uy, ,27)| (27') € up, 1}

The result now follows since lim,A, = limpd(u}}, ,zn) < limgysup{limy
d(up, ,x7)| (x7'); € up, 1} = lim,B,. This concludes the proof, where we
define the desired sequence (yx)x to be the sequence (uy, )n.

O

Definition 2.15. If (X, d) is a bi-extendible space then its extension is defined
to be the m-extension of its M-extension, or alternatively the M-extension of
its m-extension.

The fact that the notion of an extension is well defined follows by Proposition
2.14. Again, one can verify that extensions of bi-extendible spaces are unique
up to isometry, so we will refer in the following to the bi-extension of a bi-
extendible space. The bi-extension of a bi-extendible space (X,d) is denoted
by (X2, ds) and its elements are always overlined in order to clearly distinguish
them from other elements.

Combining Theorem 2.3 and Theorem 2.13, we obtain the following result.

Theorem 2.16. A bi-directed space is extendible by a minimum and a maxi-
mum iff the space is bi-extendible. a

In the next subsection we show that the S-completable directed spaces form
a class of M-spaces. Similar results are obtained for the case of lower directed
and bi-directed spaces.

2.1. S-completable directed spaces. The S-completable (topological) quasi-
uniform spaces have been defined in [Siin93] as the (topological) quasi-uniform
spaces of which the Smyth completion is again a quasi-uniform space; a condi-
tion which in general is violated as indicated in [Siin93].

An alternative characterization of S-completable (topological) quasi-uniform
spaces in terms of Cauchy nets has been given in Theorem 5 of [Siin95].

We adopt this characterization in what follows as an alternative definition
of the S-completable spaces, as this approach does not require any reference to
the more abstract context of the theory of topological quasi-uniform spaces.

The definition given below is based on an adaptation of this characterization
to the specific case of the quasi-metric spaces, which suffices for our purposes.
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Definition 2.17. A quasi-metric space (X, d) is S-completable iff every Cauchy
net on (X, d) is biCauchy.

We remark that the Smyth-completability condition can be simplified for
the case of quasi-metric spaces to a requirement on sequences rather than on
nets.

Proposition 2.18. A quasi-metric space is S-completable iff every Cauchy
sequence on the space is biCauchy.

For a proof of this result, we refer the reader to [KS97] or also [Sch96].

Two main examples of classes of S-completable quasi-metric spaces have
been discussed in the literature: the weightable spaces (e.g. [Kiin93]) and the
totally bounded spaces (e.g. [Stin95]). In [Kiin93] it is shown that every totally
bounded quasi-metric space (X, d) can be replaced by an equivalent weightable
quasi-metric space (X,d'). Hence the weightable quasi-metric spaces include
all cases of S-completable quasi-metric spaces thus far encountered in the lit-
erature.

The Smyth-completability of weightable quasi-metric spaces has been demon-
strated by Kiinzi ([Kiin93], Proposition 15). We remark that the above charac-
terization for Smyth-completability consists of a weak symmetry requirement
(cf. also [KS97]).

To end the section, we show that the S-completable directed quasi-metric
spaces form a class of M-spaces.

Proposition 2.19. FEvery S-completable directed quasi-metric space is an M-
space.

Proof. Let (X,d) be a S-completable directed quasi-metric space.

To show that (X,d) is an M-space we need to verify the condition: Vy €
X3da e RMVz >4y.d(z,y) < a.

Assume by way of contradiction that Jy € X Va € Rt Iz >4 y.d(=z,y) > a.

Define the sequence (z,), by induction as follows: z; = y and Vn > 1,
let x,,,; be an element such that z,,, >q y and d(z},,,,y) > d(z,,y) +1
and let 2,11 be an element such that 2,41 >4 5,2, ;. The sequence (), is
increasing with respect to the associated order <4 and thus a Cauchy sequence.
The sequence is not biCauchy however, since Vn > 1. d(zp41,2n) > d(Tnt1,y)—
d(@n,y) > d(@711,y) — d(@Tn,y) > (d(Tn,y) +1) — d(zn,y) = 1. We obtain a
contradiction with the Smyth-completability of the space (X,d) and thus the
space (X, d) is an M-space.

O

The converse of Proposition 2.19 is not true in general as illustrated by the
quasi-metric space (N, d<) which encodes the partial order (N, <), where <
is the standard order on the natural numbers. This space is an M-space, but
is clearly not S-completable. However, cf. Corollary 2.33 for a converse under
suitable hypotheses.
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Corollary 2.20. Every weightable directed space is an M -space. Every totally
bounded directed space is an M -space.

We have focused thus far on the case of (up) directed quasi-metric spaces
and join semilattices. It is straightforward to verify that the results translate
dually to the case of lower directed quasi-metric spaces and meet semilattices.

We state the dual notions and some of the corresponding results, where we
omit the proofs.

A quasi-metric space (X,d) is co-weightable iff its conjugate (X,d1) is
weightable. A co-weighting function of a quasi-metric space is a weighting
function of its conjugate. A co-weighted space (X, d,w) is a triple consisting of
a set X, a quasi-metric d on X and a co-weighting function w.

A quasi-metric space (X,d) is bi-weightable iff it is weightable and co-
weightable. We remark that any weighted space (X,d, w) of bounded weight,
where say Vz € X.w(z) < K, is co-weighted by the weighting function K — w
([Kiin93]). Hence any weighted space of bounded weight is bi-weightable.
Similarly one obtains that any co-weighted space of bounded co-weight is bi-
weightable.

We say that a quasi-metric space (X, d) is co-S-completable iff its conjugate
is S-completable. Hence a space is co-S-completable iff every right Cauchy
sequence if biCauchy.

We immediately obtain dual versions for Proposition 2.19 and for Corollary
2.20.

Theorem 2.21. Every co-S-completable lower directed quasi-metric space is
an m-space.

Corollary 2.22. Every co-weightable lower directed quasi-metric space is an
m-space. Every totally bounded lower directed quasi-metric space is an m-space.

We call a quasi-metric space bi-S-completable in case it is S-completable and
co-S-completable.

We omit the straightforward results for bi-directed spaces corresponding to
the preceding theorem and its corollary.

2.2. Weightable directed spaces. We recall some basic facts regarding the
theory of upper weightable spaces (cf. [Sch97]) and we discuss the connections
with weightable directed spaces.

Definition 2.23. If (X, d) is a quasi-metric space then (X, d) is upper weightable
iff there exists a weighting function w for (X, d) such that Vz,y € X.d(z,y) <
w(y). We refer to such a function w as an upper weighting function. A weighted
space (X, d,w) is upper weighted iff w is an upper weighting function. An up-
per weightable space is strongly upper weighted iff all of its weighting functions
are upper weighting functions. A quasi-metric space is upper weightable with
respect to a point iff it is weightable with respect to this point via an upper
weighting.
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Example 2.24. The quasi-metric space (R{,dy) is upper weightable by the

function wy, the quasi-metric space (R™, d) is upper weightable by the function
we and the complexity space (C,d¢) is upper weightable by the function we.
Each of the spaces is upper weightable with respect to a point (0,00 and T
respectively).

It is easy to verify, using the Correspondence Theorem, that the notion of
an upper weighted space (X, d, w) is equivalent to a partial metric space (X, p)
such that

Vz,y € X.p(z,y) < p(z,z) + py,y)-

We recall from [Sch97] that a weighted space is upper weighted iff it has
a directed weighted extension. Still, upper weightable spaces and weightable
directed spaces need not behave similarly. For instance, an upper weightable
space need not have a fading upper weighting as opposed to a weightable di-
rected space. The following result ([Sch97], Proposition 16) sheds some light
on the case of weightable directed spaces.

Proposition 2.25. A weightable directed space has a fading upper weighting
function and thus is strongly upper weighted.

Since weightable directed spaces are strongly upper weighed, by Proposition
1.3 we know that the upper weighting functions of a weightable directed space
are determined by a unique fading upper weighting.

The following proposition provides a characterization of this fading upper
weighting and hence of all upper weightings of a weightable directed space.

Proposition 2.26. If (X,d, f) is a fading weighted directed space with M -
extension (X1,d1), say with a maximum 1, then the function fi defined by
Ve € X. fi(z) = di(z1,z) and f1(x1) = 0 is the fading weighting of the M-
extension and extends the weighting f.

Proof. Let (X,d, f) be a directed quasi-metric space of fading weight.

Let z € X and let (y,), be a representative sequence for z in z1, that is
di(z1,z) = lim, d(yn, ).

Since the space (X, d, f) is of fading weight and directed, we can construct
a representative sequence (), € 21 such that lim,, f(z,) = 0.

Indeed, let (z,,)n be any sequence of elements of X such that lim,, f(z,) = 0.
It is easy to verify that a sequence (2, ), of 1 can be defined inductively, using
directedness, such that Vn.z, >4 yn, 2n-

The sequence (x,), is still a representative sequence for = by the Mono-
tonicity Lemma. By the fact that f is decreasing, we also obtain that the se-
quence of weights (f(z,)), converges to 0. So d;(z1,z) = lim,, d(z,,z) where
lim,, f(z,) = 0.

By the weighting equality and since Vn.z, >4 © we have that Vn. f(z) =
f(zy) + d(zy, ). Hence by taking the limit, we obtain that f(z) = di(z1, ).

So the function f;, as defined in the proposition, extends f. Clearly the
function f; is still fading.
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In order to show that f; is a weighting for (X1,d;) we only need to verify
that Vo € X1.di(21,2) + fi(z1) = di(z,z1) + f1(x); that is di (21, z) = fi(=).
If z € X the equality follows from the above. If z = z; the equality reduces to
the trivial identity 0 = 0. O

Remark 2.27. The reader familiar with [Sch97] can easily verify that the
lifting (Xo,do, fo) of a weighted directed space (X,d, f) of fading weight, as
defined in [Sch97], is such that the quasi-metric space (Xo,dp) and (X1,d;)
are isometric and such that f, and f; coincide. Hence we will refer to the
fading weighting f; obtained in the above proposition as the lifting of the
fading weighting f. The space (X1,ds, f1) will be referred to as the lifting of
the weighted space (X, d, f).

Combining Propositions 1.3 and 2.26, we obtain the following corollary.

Corollary 2.28. If (X,d) is a weightable directed space then its weighting
functions are exactly the strictly decreasing upper weighting functions fo + ¢
where ¢ > 0 and where fo is the unique fading weighting of (X, d), defined by:
Vz € X. fo(z) = sup{lim,, d(zn,z)| (xn)n € z1}.

It is straightforward to supply dual versions of the results on weightable
directed spaces for the case of co-weightable lower directed spaces. One can
show that the co-weightings of a lower directed space are strictly increasing
and consist exactly of the functions fo + ¢, where ¢ > 0 and fy is the unique
fading co-weighting of the space.

Proposition 2.29. (Co-)weightable bounded (lower) directed quasi-metric spaces
are bi-weightable.

Proof. We verify the case for a weightable bounded directed space. The case
for co-weightable bounded lower directed spaces follows by dualization.

Let (X,d) be a weightable bounded directed quasi-metric space and let K
be a bound for the quasi-metric d. We recall that any bounded directed quasi-
metric space is an M-space.

Let (X;,d1) be the M-extension of the space (X,d), with a maximum z;.
It is easy to verify that the M-extension is still bounded by K.

Let f be the fading weighting of (X, d). Then we have that Vo € X.dy(z,z1)+
fi(z) = di(z1,2) + f1(x1), where f; is the lifting of the fading weighting f.
Since fi(x1) = 0, we obtain that Vz € X. f(z) < K. Hence the fading weighting
f1 is bounded by a constant K and thus the space (X1,d1) is co-weightable by
K — f;. We conclude that the space (X, d) is co-weightable by the co-weighting
K—f.

O

Proposition 2.30. (Co-)weightable bi-extendible quasi-metric spaces (X,d)
are bi-weightable. The weighting functions of the bi-extension (Xa,ds), with
minimum To and maeximum T1, are the functions f = fo + ¢, where ¢ > 0 and
where fo is the fading weighting for (Xa,ds), defined by: VT € Xs. fo(T) =
dy(T1,T). We refer to this weighting as the lifting of the fading weighting f
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to the bi-extension. The co-weighting functions for (Xa,dz2) are the functions
f=f+e where ¢ > 0 and VT € X. f:z(f) = ds(T,To). In particular we have
that f2(To) = f2(T1) = d2(T1,T0) and f>(To) = f2(T1) = 0.

The fading weighting fo and the fading co-weighting fo are related as follows:

VZ € Xs. f2(F) = da(F1,To) — f2(T).

Proof. Let (X,d) be a bi-extendible quasi-metric space. By the Monotonicity
Lemma it is easy to see that the bi-extension (X3, ds) is a bounded quasi-metric
space, where VZ,7 € X5.ds(T,7) < d2(T1,To)- Hence, by Proposition 2.29, we
obtain that any (co)-weightable bi-extendible space is bi-weightable.

So, without loss of generality, it suffices to verify the case for weightable
bi-extendible quasi-metric spaces.

Let (X, d) be a weightable bi-extendible quasi-metric space, say with a fading
weighting f.

We first verify that the bi-extension is weightable. Let (X2,d2) be the bi-
extension of (X, d) and let f» be the fading co-weighting on (X3, ds) obtained
from f via an application of Proposition 2.26 and its dual version. We sketch
the construction. First a fading weighting f; is obtained via Proposition 2.26,
where fi extends f to the lifting (X7, d;). We remark that f; is bounded on X7,
since Vz € Xi. fi(z) = di(x1,2) = d2(T1,2) < d2(F1,To). So we can obtain the
co-weighting K — f1 on (X1, d;), where K = dy(T1,To). Clearly, this function is
fading, by the definition of d» and by the fact that fi(z) = di(x1,z). So, by the
dual version of Proposition 2.26, we can obtain the fading co-weighting f2 on
(X2, ds), which extends K — f;. It is easy to verify that this fading co-weighting
is still bounded by K and thus the fading weighting for the bi-extension is the
function fo = K — fz. Hence we obtain that the bi-extension is weightable.

Since f5 is fading and decreasing, we have that f>(Z;) = 0. By the weighting
equality we also obtain that ds (fl,fo) = fo (fo) — f2 (fl) = fa (fo)

Finally, we remark that since Z; is the maximum of the bi-extension, we
obtain that VZ € Xs. fo(T) + d2(Z,T1) = f2(T1) + d2(F1,T) and thus f>(T) =
do(Z1, ). Similarly one can show that VZ € X. fo(Z) = da (T, To). O

2.3. Invariance. A quasi-metric space (X, d) is called a semilattice iff the as-
sociated partial order (X, <;) is a semilattice.

A join semilattice (X, d) is invariant iff Vz,y,z € X.d(zUz,yUz) < d(z,y).
In that case we also write that the quasi-pseudo-metric d is invariant. The
notions of an invariant meet semilattice and of an invariant lattice are defined
in the obvious way. One can easily verify that invariant join semilattices are
quasi-pseudo-metric join semilattices and that similar results hold for the case
of invariant meet semilattices and for invariant lattices.

It is convenient to recall the following alternative characterization of invari-
ance ([Sch00]).
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A join semilattice (X,d) is invariant iff Vz,y € X.d(z Uy,y) = d(z,y). A
meet semilattice (X, d) is invariant iff Vz,y € X.d(z,x Ny) = d(z,y).

The invariant quasi-metric semilattices include many well known examples
of Quantitative Domain Theory, including the Baire partial metric spaces, the
complexity spaces, the interval domain and the totally bounded Scott domains
([Sch00)).

We will show that in the context of the invariant join semilattices the notion
of an order convex M-space and of a weightable space coincide (Theorem 2.31).
This result is a version of Theorem 13 of [Sch96], adapted to the context of the
M -spaces.

We include the proof since the theorem is central and we remark that again,
the “functional boundedness” condition used in [Sch96] has been replaced by
the weaker M-space condition. The reader familiar with [Sch96] will notice that
the order convexity condition corresponds to the “descending path condition”
discussed in [Sch96]. We prefer to use the terminology “order convex” in order
to be consistent with the terminology used in [Gie80]. The following theorem
is a version of Theorem 15 of [Sch96] in the context of M-spaces.

Theorem 2.31. An invariant join semilattice is weightable iff the underlying
quasi-metric space is an order conver M -space.

Proof. Let (X,d) be an invariant join semilattice.

We assume that (X,d) is weightable. Since the space is directed, (X,d)
is upper weightable and thus satisfies the M-space condition. Since (X,d) is
also directed it is an M-space. The fact that (X, d) is order convex follows
immediately since (X, d) is weightable ([Sch96]).

To show the converse, we assume that (X,d) is an order convex M-space.
By (the proof of) Theorem 2.3, there exists an M-extension (X;,d;) of (X,d),
where X; = XU{z;} and z; is the maximum of the quasi-metric space (X1, d;).

Since upper weightability is a hereditary property, in order to show that
the quasi-metric space (X, d) is upper weightable it suffices to show that the
space (X1,d;) is upper weightable. We will verify that the space (X1,d;) is
upper weightable by the weighting function wyq, defined by Vx € X;.wo(z) =
di (.Z'l s l’) .

Note that (X1, d;) is order convex by Lemma, 2.9 and thus Vz,y € Xy.2 >4,
y = di(z1,2) + di(z,y) = di(x1,y). Equivalently we have that Vz,y €
X1.2 24, y = di(z,y) = wo(y) — wo(z).

It is straightforward to verify that (X;,d;) is an invariant join semilattice.
So we have that Vz,y € X;.d1(z,y) = di(z Uy,y) and di(y,z) = d1(y U z, z).
Since we have shown that Vz,y € X1.2 >4, y = di(z,y) = wo(y) — we(x),
we obtain that Vz,y € X;.dyi(z,y) — di(y,z) = di(z Uy,y) —di(z Uy, z) =
(wo(y) — wo(z Uy)) — (wo(x) — wo(x Uy)) = wo(y) — wo(x). So (Xy,dy) is
weighted with respect to wg and hence (X, d) is weightable with respect to the
function wo|X.

O
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From an inspection of the above proof, we obtain the following corollary.

Corollary 2.32. The M -extension of an invariant join semilattice which is an
order convex M -space is an invariant join semilattice which is upper weightable
with respect to its mazximum.

Corollary 2.33. Invariant join semilattices which are order convex M -spaces
are S-completable.

Proof. Follows by Theorem 2.31. a

We remark that the M-space condition is necessary in the corollary. This
is illustrated by the quasi-metric space (R{,d; ') which is an order convex
invariant join semilattice, but not an M-space and not S-completable. The
space is not S-completable since the increasing sequence of the natural numbers
is an example of a Cauchy sequence which is not biCauchy. The space also
provides an example of an order convex directed space which is not an M-
space.

We state the dual version for Theorem 2.31. As pointed out before, the
notion of order convexity is self-dual.

Theorem 2.34. An invariant meet semilattice is co-weightable iff the under-
lying quasi-metric space is an order convex m-space.

We remark that the co-weighting in this case is the function which expresses
the distance from a point to the minimum of the m-extension.

We obtain the following combination of Theorems 2.31 and 2.34 for the case
of lattices.

Theorem 2.35. An invariant lattice is bi-weightable iff the underlying quasi-
metric space is an order convex bi-extendible space.
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