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On the structure of completely useful topologies
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ABSTRACT. Let X be an arbitrary set. Then a topology ¢
on X is completely useful if every upper semicontinuous linear pre-
order on X can be represented by an upper semicontinuous order-
preserving real-valued function. In this paper we characterize in ZFC
(Zermelo-Fraenkel + Axiom of Choice) and ZFC+SH (ZFC + Souslin
Hypothesis) completely useful topologies on X. This means, in the ter-
minology of mathematical utility theory, that we clarify the topological
structure of any type of semicontinuous utility representation problem.
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1. INTRODUCTION

1.1. The problem. Let X be an arbitrary set. In Herden [18] a topology ¢
on X is said to be useful if every continuous linear (total) preorder < on X
can be represented by a continuous real-valued order preserving function, i.e.
has a continuous utility representation. Continuity of < means that the order
topology = induced by = is coarser than ¢. Sufficient conditions for a topology
t on X to be useful are, for instance, given by the classical Eilenberg-Debreu
theorems EDT and DT (Eilenberg [11], Debreu [8, 9]). Necessary and suffi-
cient conditions for a topology ¢t on X to be useful have been presented in 1995
by Estévez and Hervés in case that ¢ is a metrizable topology on X and have
been generalized recently by Herden and Pallack [20] to arbitrary topologies on
X. Using the concept of a useful topology ¢ on X the Eilenberg-Debreu theo-
rems and the theorem of Estévez and Hervés (EHT) can be restated as follows:

EDT: Every connected and separable topology t on X is useful.

DT: FEvery second countable topology t on X is useful.
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EHT: A metrizable topology t on X is useful if and only if t is second count-
able.

In utility theory besides continuous linear preorders also semicontinuous lin-
ear preorders are of interest. In contrast to useful topologies t on X completely
useful topologies t on X, i.e. topologies ¢t on X for which every upper semicon-
tinuous linear preorder admits an upper semicontinuous utility representation,
have not systematically been studied in the literature. In this paper we, thus,
focus our attention on these topologies. Of course, analogous considerations
also work for lower semicontinuous order-preserving real-valued functions.

The reader may recall that a linear preorder < on X is said to be upper
semicontinuous if for every point z € X the set L(z) = {y € X | y < z} is an
open subset of X. It will be shown in Proposition 4.4 that completely useful
topologies ¢t on X are useful, which justifies the concept of a completely useful
topology ¢t on X and implies, in particular, that the semicontinuous analogue
of EHT exists (cf. Corollary 4.5). On the other hand, useful topologies ¢ on
X are not necessarily completely useful. Indeed, on every sufficiently large
set the cardinality of the set of useful topologies ¢ on X coincides with the
cardinality of the power set of the set of all completely useful topologies ¢t on X
(cf. Theorem 5.1). This theorem shows in a very strong way up to which degree
the concept of a completely useful topology ¢ on X strengthens the concept of
a useful topology ¢t on X.

Considering the theorems EDT and DT only the semicontinuous analogue
of DT, which has been proved for the first time by Rader [30], is known. Using
the concept of a completely useful topology ¢ on X Rader’s theorem (RT) can
be restated as follows (cf. also Richter [31], Isler [22] and Mehta [27]):

RT: FEvery second countable topology t on X is completely useful.

EDT cannot be generalized to the semicontinuous case, which shows, in ad-
dition, that useful topologies ¢t on X are not necessarily completely useful (cf.
Theorem 5.1). Indeed, let X; := Q be the first uncountable ordinal and let ¢ be
the topology on X := [0, X;[= [0, Q[ that is induced by the sets [0, a], where a
runs through all countable ordinals. Let us denote by A the topological closure
of any subset A of X. Then {0} = [0,a] = X for every countable ordinal .
Hence, t is a separable and connected topology on X. On the other hand, the
natural order < on X is an upper semicontinuous linear preorder on X that,
obviously, has no (upper semicontinuous) utility representation (cf. Example
4.6).

Let ¢ be the cardinality of the real line IR and let [0, 1] be the closed interval
of all reals that are not smaller than 0 and not greater than 1. Then a more
appealing example that shows that EDT cannot be generalized to the semicon-
tinuous case is given by the topological product (X, t) := ([0, 1]%, tproq). Indeed,
([0,1]°, tproq) is & compact, connected and separable space and, thus, satisfies
the assumptions of EDT. On the other hand, we shall show in Corollary 4.13
that in case that « is an ordinal number and ¢ is a completely useful topology
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on X such that | ¢ |> 2 the topological product (X*,¢pr0q) is completely useful
if and only if & is countable, which, in particular, implies that ([0, 1]¢, tproq) is
not completely useful.

1.2. The relevance for mathematical utility theory. In mathematical
utility theory one often considers compact sets. In this case it suffices to as-
sume upper (or lower) semicontinuity of a preference relation. Indeed, then a
semicontinuous utility representation obtains its minimum (respectively maxi-
mum) (cf., for instance, Bridges and Mehta [5, Remark 3.2.8]).

Semicontinuous preference relations and their representability by a semi-
continuous numerical function are frequently discussed in the literature (cf.,
for instance, Rader [30], Jaffray [23], Richter [31], Sondermann [32], Bridges
and Mehta [5], Subiza and Peris [34], Alcantud and Gutiérrez [2], Alcantud
[1], Droste [10] and many others). The particular relevance of semicontinuous
preference relations is mainly based upon three aspects. In the first place, it
often suffices to only assume semicontinuity (cf. Alcantud [1] where spaces are
considered that satisfy a weaker property than compactness). Secondly, conti-
nuity often cannot be reached without adding additional (artificial) properties
(cf. the negative result of Alcantud [1]). Finally, semicontinuity often appears
in a natural way and, thus, can be applied to construct continuous utility rep-
resentations (cf., for instance, the Arrow-Hahn approach [3] or, more generally,
the Euclidean distance approach that is thoroughly discussed in Bridges and
Mehta [5] and the approach of Sondermann [32] that generalizes Neuefeind’s
construction of utility representations (cf. Neuefeind [29]).

In opinion of the authors the main advantage of the following considerations
is the clarification of the topological structure of the general semicontinuous
utility representation problem. This means that our approach is within the
main stream of results that clarify the general structure of the utility repre-
sentation problem (cf. Eilenberg [11], Wold [36], Birkhoff [4], Debreu [8, 9],
Fleischer [14, 15], Jaffray [23, 24], Mehta [25, 26], Herden [16, 17, 18], Estévez
and Hervés [12], Candeal, Hervés and Indurdin [6], Herden and Pallack [20],
Herden and Mehta [19] and many others). In particular, we shall widely gen-
eralize the semicontinuous analogue of the afore-quoted result of Estévez and
Hervés [12]. Indeed, in the following sections we shall discuss necessary and suf-
ficient conditions for a topology to be completely useful. These conditions can
be applied in any concrete situation as follows: In case that a given consump-
tion set is endowed with some topological structure (in practice this is nearly
always the case), then one has to check if the given structure satisfies any of the
assumptions of the corresponding characterization theorems that will be proved
in this paper in order to guarantee the semicontinuous and, thus, also contin-
uous, representability of an arbitrary semicontinuous, respectively continuous,
preference relation on this consumption set. If none of the assumptions of the
these theorems are satisfied, then a given semicontinuous preference relation
may be not semicontinuously representable and one has to look for additional
conditions like countably boundedness in order to guarantee semicontinuous
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representability (cf. Monteiro [28] or Estévez, Hervés and Verdejo [13]). An-
other useful condition could be convexity (cf. Candeal, Indurdin and Mehta [7,
Theorem 3]).

2. NOTATION AND PRELIMINARIES

Let for the remainder of this paper an arbitrary but fixed chosen non-empty
set X be given. Then a preorder < on X is a reflexive and transitive binary
relation on X. The induced ordered set of equivalence classes of X will be
denoted by X, _. The reader may recall that an antisymmetric preorder on X
is said to be an order. A function f: (X, =) — (IR, <) is said to be a utility
function if it is order-preserving, i.e. isotone and f(x) < f(y) whenever z < y.
For every point z € X we set L(z) := {z € X | z < z} and K(z) := {z €
X | z < z}. A pair (z,y) of points of X is said to be a jump if x < y and
Jz,y[={uv € X :z < u < y} is empty. If < is a linear order on X, then the
related set (X, <) is said to be a chain.

The order topology t< for X, which is induced by some preorder < on X,
is generated by the order intervals L(z) and K(z), where x runs through all
points of X. If ¢ is a topology on X, then a preorder < on X is said to be
continuous if L(x) and K(x) are open subsets of X for every point z € X,
or equivalently the order topology ¢t~ is coarser than ¢t. A topology ¢t on X
is said to be useful if for every continuous total preorder < on X there exists
a continuous utility function u : (X, <,t) = (IR, <,tnat) (tna: is the natural
topology on IR).

The upper order topology ti on X, which is induced by some preorder < on
X, is generated by the order intervals L(x), where z runs through X. If ¢ is a
topology on X, then a preorder < on X is said to be upper semicontinuous if
L(z) is an open subset of X for every point z € X, or equivalently the upper

order topology t5 is coarser than t. A topology t on X is said to be completely
useful if for every upper semicontinuous linear preorder < on X there exists an
upper semicontinuous utility function w : (X, <,t) = (IR, <, tnat)-

3. A GENERAL CHARACTERIZATION THEOREM

In this section we shall show that completely useful topologies on X are
closely related to second countable topologies on X.

Let, therefore, ¢t be a second countable topology on X. Then it is easily
seen that also every subtopology of ¢ that is linearly ordered by set inclusion
(briefly: linearly ordered subtopology) must be second countable. Indeed, let
t! be a linearly ordered subtopology of t. Then we choose a countable base b
of t and consider the countable subset

B:= {0€t|IBeb(BCOAVO €t (0'SO=B¢0))}

u{oet|3Beb(0= |J O"}u{e X}
BgO'et!



Completely useful topologies 149

of t in order to immediately verify that b' is a base of # .

Of course, the converse does not hold. Indeed, in case that X is an infinite
set, then there exist topologies ¢t on X that are neither second nor first countable
but for which every linearly ordered subtopology is second countable. Let, for
instance, ¢ be any function from X onto the set IN of natural numbers. Then
each topology on IN that is not second countable induces with respect to ¢ a
topology on X that is neither second nor first countable but for which every
linearly ordered subtopology is second countable.

We soon shall see that a topology ¢ on X which has the property that all its
linearly ordered subtopologies are second countable is completely useful, which
generalizes Rader’s theorem. Therefore, we choose some fixed given topology
t on X and consider the family O of all sets O of open subsets of X which are
linearly ordered by set inclusion.

Let some set O € O be arbitrarily chosen. A set O € O is said to be
isolated if U 0"¢0¢& ﬂ O'. In some sense the following lemma is

030"¢0 0g0'€0
fundamental for our considerations.

Lemma 3.1. In order for t to be completely useful it is necessary that every
set O € O only contains countably many isolated sets.

Proof. Let O € O be arbitrarily chosen. Then we set Ot := O U {X} and
define a linear preorder < on X by setting for every pair of points z,z € X

T3,26V¥0€0" (2€0=2€0).

Since for every point z € X the equality L(z) := {y € X | y <0 z} =
U{O € o' | z ¢ O} holds it follows that < is upper semicontinuous. In
order to, thus, prove the lemma it is because of the definition of O sufficient
to show that there exists a bijective correspondence between the set J of jumps
of (Xjv,%g).) and the set T of isolated sets of O*. Indeed, since = is
representable (X, = 0|N) only has countably many jumps. Let ([z],[y]) € J
be arbitrarily chosen. Then there exists some set O, i € O C O such that
z € Oy and y € Oy, 1 Let us abbreviate this property of Oy, ,; by (*). Since
([z], [y]) is a jump of (X|~, 24 |N) there exists no other set O € OF which also
satisfies property (*). Therefore, we may set ¢([z],[y]) := O}z, In order to
show that ¢ is a function from J into I we must verify that O, € I. But
this is easily to be seen since Oy, [ is the only set which satisfies property (*).

Hence, no set OF D 0 3 O' & O, can contain z and every set Op, 1 &
0" € Ot must contain y. Now we consider, on the other hand, an arbitrary
set O € I. Then we may choose some point z € O\ U 0", and some point
030"¢0
Y€ ﬂ 0"\ O. Because of the definition of < the pair ([z],[y]) belongs
0g0'eo+
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to J. In addition, since [z] = O\ U O" and [y] = ﬂ 0"\ O the
030”50 050’0t

jump ([z], [y]) is uniquely determined by O. Thus, we may set ¢([z], [y]) := O.

Clearly, ¥ o ¢ = idy and ¢ o) = idy. So the proof is complete. |

For the remainder of this paper a topology ¢t on X which satisfies the neces-
sary condition of Lemma 3.1 is said to be countably isolated.

In order to prove the main result of this section we need some more notation:

Let O € O be arbitrarily chosen. Then a set O € O is said to be right
isolated, respectively left isolated, if O ¢ ﬂ O', respectively U o" ¢

0g0’€0 030"¢0
0.

O is said to be semi-separable if there exists a countable subset O’ of O such
that for every right isolated set O € O and every set O” € O such that O’; O
there exists some set O’ € O’ such that 0" C O’ C O.

The following theorem is a first characterization of completely useful topolo-
gies t on X. It clarifies, in particular, the relations between completely use-
ful topologies t on X and topologies ¢ on X for which every linearly ordered
subtopology # is second countable (cf. Corollary 3.4).

Theorem 3.2. Let t be an arbitrary topology on X. Then the following asser-
tions are equivalent:
(i) t is completely useful.
(ii) Every linearly ordered subtopology t' of t is semi-separable.
(iii) t is countably isolated and every linearly ordered subtopology t' of t that
only contains countably many left isolated sets is second countable.
(iv) Ewvery linearly ordered subtopology t' of t that has a base b that only con-
tains countably many sets that are not right isolated is second countable.

Proof. (i) = (ii): Let ¢! be a linearly ordered subtopology of . As in the proof
of Lemma 3.1 we consider the upper semicontinuous linear preorder = ,onX
that is induced by #!. Let t“ be the linearly ordered subtopology of ¢ that is
induced by the family L := {L(z)}sex = {{y € X | y <1 2} }zex, i-e. tL is the
upper order topology on X with respect to %,. Since t is completely useful we
may conclude with help of Proposition 1.6.11(v) of Bridges and Mehta [5] that
the order topology t~: on X that is induced by 3, and, thus, t¥ are second
countable. Let, therefore, b be a countable base of t“. Then we choose some
right isolated set O € ¢' and some set 0" € t' such that 0" & O. Since O is

right isolated it follows that ( ﬂ O1)\O # @ and that O = L(z) for every
O§O+Etl
point z € ( ﬂ O7)\ O. This means, in particular, that O = U O*.
ogotet! 530*CO
Hence, the linearity of # implies that there must exist some set O' € b such
that O" C O' C O, which proves assertion (ii).
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(ii) = (i): Let < be some upper semicontinuous total preorder on X. Then
we consider the linearly ordered subtopology t¥ of ¢ that is induced by the
family L := {L(z)}zex. The structure of L implies that the isolated sets of t©
are sets L(y) for which there exists a unique set L(z) ¢ L(y) such that for no
set L(z) the strict inclusions L(x) ¢ L(z) ¢ L(y) hold. Hence, assertion (ii) im-

plies that t“ only contains countably many isolated sets. This means because
of the proof of Lemma 3.1 that (X, _, le) only has countably many jumps. In
addition, assertion (ii) immediately implies that the order topology ¢~ which
is induced by < is separable. Because of Proposition 1.6.11(iv) of Bridges and
Mehta [5] it, thus, follows that =< is representable. Now the famous Repre-
sentation Lemma (RL) of Debreu [8, 9], which states that a continuous linear
preorder < has a continuous utility representation if and only if < has a utility
representation, implies that < has a utility representation that is continuous

with respect to <. Hence, we may conclude, in particular, that =< has an upper
semicontinuous utility representation, and assertion (i) follows.

(i) A (ii) = (iii): Let # be a linearly ordered subtopology of t. Because of
Lemma 3.1 it suffices to consider the case that ¢! only contains countably many
left isolated sets. We must verify that ¢ is second countable. As in the proof of
the implication “(i) = (ii)” we, therefore, consider the upper semicontinuous
linear preorder ¥, on X that is induced by #'. Assertion (ii) guarantees the
existence of a countable subset O’ of # such that for every right isolated set
O € t' and every set 0" € t! such that O" ¢ O there exists some set O' € O'
such that O” C O' C O. Let b be the union of O’ with the set of all left isolated
sets of t!. Then b is countable and it suffices to show that b is a base of ¢. In
order to verify that b is a base of # it remains to prove that every set O € ¢!
that is not left isolated is the union of sets O' € O’. Let, therefore, some set
O € t that is not left isolated be arbitrarily chosen. We assume, in contrast,
that U o ¢ O. Since O is not left isolated there exist sets ot,0tt et

0/30'co
such that | ) O ¢ OF ¢ 0" C 0. Now the definition of %, implies the
0'30'co
existence of some point z € O \ O** such that O*+ C L(z) ¢ O. Since L(x)
is right isolated there exists some set O* € O’ such that Ot C O* C L(z),

which means that Ot C U O'. This contradiction implies the validity of
0'30'co

assertion (iii).

(iii) = (iv): Let b € O be a base of some linearly ordered subtopology
t! of ¢t such that only countably many sets O € b are not right isolated. In
case that b contains uncountably many left isolated sets it, thus, follows that
b contains uncountably many isolated sets. Hence, assertion (iii) implies that
b only contains countably many left isolated sets. With help of the definition
of a left isolated set we, therefore, may conclude that also #' only contains
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countably many left isolated sets. Assertion (iii), thus, implies that ¢ is second
countable.

(iv) = (i): Let < be some upper semicontinuous linear preorder on X. Then
we consider the linearly ordered subtopology t¥ of ¢ that is induced by the
family L := {L(z)}zex. Since L U {@,X} is a base of # and since every set
L(z) € L is right isolated assertion (iv) implies that t* is second countable.
Now the arguments that have been applied in the last part of the proof of
the implication “(ii) = (i)” imply that < has an upper semicontinuous utility
representation, which proves assertion (i).

O

Remark 3.3. Theorem 3.2 implies, in particular, that a topology ¢ on X for
which every linearly ordered subtopology # is second countable is completely
useful. Hence, RT is a consequence of Theorem 3.2.

In addition to Remark 3.3 the following observation is a consequence of
Lemma 3.1, the equivalence of the assertions (i) and (iii) of Theorem 3.2 and
some straightforward additional consideration which, for the sake of brevity, is
left to the reader.

Corollary 3.4. Let t be an arbitrary topology on X. Then the following as-
sertions are equivalent:

(i) The condition that t is completely useful and the conditon that every
linearly ordered subtopology of t is second countable are equivalent con-
ditions for t.

(i) Ewvery linearly ordered subtopology t' of t contains only countably many
left isolated sets.

Example 3.5. Example 3.5 Because of Corollary 3.4 the following example
is characteristic for a topology ¢ on X that is completely useful but contains
linearly ordered subtopologies that are not second countable:

Let X be the real line. Then the topology ¢ on X which is induced by the
sets | — 0o, r] where r runs through all reals satisfies the equivalent assertions
of Theorem 3.2 and contains uncountably many left isolated sets. Hence, ¢
is completely useful but contains linearly ordered subtopologies that are not
second countable.

In case that X is the real interval [0, 1] the afore-described topology can be
extended to a compact (Hausdorff-)topology ¢ on X that is completely useful
but contains linearly ordered subtopologies # that are not second countable.
Indeed, one only has to consider the topology ¢t on X that is generated by the
sets [0,7] and ]s, 1] where r runs through all reals that are greater than 0 but
not greater that 1 and s runs through all reals that are smaller than 1 but not
smaller than 0.
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4. THE STRUCTURE OF COMPLETELY USEFUL TOPOLOGIES ZFC+SH AND
ZFC

A topology t on X is said to be short if there exists no uncountable ordinal
a that can be order-embedded into (%, 9 or (t, 3)
The following lemma is an immediate consequence of Lemma 3.1.

Lemma 4.1. In order for t to be completely useful it is necessary that t is
short.

The reader may recall that a topology ¢ on X is said to be a hereditarily
Lindeldf-topology if for every subset A of X and every open covering C of A
there exists a countable covering C' C C of A. In case that for every open
covering C of X there exists a countable covering C' C C of X the topology ¢
on X is said to be a Lindeldf-topology. In addition, the reader may recall that ¢ is
said to be hereditarily separable if every subspace (4,1t 4) of (X, 1) is separable.
With help of this notation short topologies easily can be characterized.

Proposition 4.2. Lett be a topology on X. Then the following assertions are
equivalent:

(i) t 4s short.
(ii) t s hereditarily Lindeldf and hereditarily separable.

Proof. (i) = (ii): At first we show that ¢ is a hereditarily Lindelof-topology.
Let, therefore, some subset A of X and some open covering C of A be arbitrarily
chosen. Assume that there exists no countable covering C' C C of A. Then we
consider some well-ordering {Oq } o <|c| of C and define by transfinite induction
a well ordered chain of open subsets of X that is increasing by set inclusion.

a = 0: We set Of := Op.

a > 0 is not a limit ordinal: In this case we set O!, := O/,_; U O,.

a > 0 is a limit ordinal: Now we set O, := U Oj.

B<Lla
Finally we set O := {0}, },<|c|- Since there exists no countable subset C' of
C which also covers A we may assume without loss of generality that O'B g Ofy
for all ordinals 8 < 7 <| C |, which contradicts the shortness of ¢.

It remains to prove that t is hereditarily separable. Let, therefore, A be
some arbitrarily chosen subset of X. We have to show that A contains some
countable subset B such that A C B. Without loss of generality we may assume
that A # @. Then we define by transfinite induction a well ordered chain of
open subsets of X that is decreasing by set inclusion.

a =0: We set By := {ag} for some arbitrarily chosen point ag € A.

a > 01is not a limit ordinal: In this case we set B, := B,_1 if A\Ea,l =g
and B, := B, 1 U{a,} for some arbitrarily chosen point a, € A\ B,_; if
A\ B,1 # 2.

a > 0 is a limit ordinal: Now we set B, := U Bg.

B<La
Let us now assume, in contrast, that there exists no countable subset B of A
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such that 4 C B. Then there exists, in particular, no countable ordinal o
such that A\ B, = @. This means that the well ordered chain (O, 3) = ({X\

B, | ais an ordinal}, 3) of open subsets of X is uncountable, a contradiction.
Hence, t is hereditarily separable.

(if) = (i): The proof that no uncountable ordinal a can be order-embedded
into (t,g) is based upon the assumption that ¢ is a hereditarily Lindelof-
topology. The proof is similar to the proof that no uncountable ordinal «
can be order-embedded into (t,g). For the sake of brevity we, thus, concen-
trate on the proof that no uncountable ordinal a can be order-embedded into
(t,g). Let us assume, in contrast, that there exists an uncountable ordinal
o that can be order-embedded into (t,;). We may assume without loss of
generality that c¢f(a) > w. As usual c¢f(a) denotes the cofinality of @ and w
is the first infinite ordinal (cardinal). Then there exists a well ordered chain
By g B g S Bg g g ... of length (order-type) a of closed subsets Bg of

X. We, thus, set B := U Bg. Since t is hereditarily separable there exists
B<a

some countable subset C' of B such that B C C. The inequality cf(a) > w

implies because of the countability of C' that there exists some ordinal v < «

such that C' C B,. Hence, C C B, ¢ B. This contradiction completes the
proof of assertion (i). O

At first we note that Proposition 4.2 allows us to generalize assertion (ii) of
Theorem 3.2.

Corollary 4.3. Let t be an arbitrary topology on X. Then the following as-
sertions are equivalent:

(i) t is completely useful.
(ii) Fvery set O € O is semi-separable.

Proof. Because of assertion (ii) of Theorem 3.2 it suffices to show that the
implication “(i) = (ii)” holds. Let, therefore, some set O € O be arbitrarily
chosen. Then we consider the upper semicontinuous linear preorder <o on
X that is induced by O and the corresponding subtopology & of t that is
generated by the family {L(z)},cx. Because of the proof of the implication
“(i) = (ii)” of Theorem 3.2 there exists a countable subset b of L that is a
base of t¥. In addition, Proposition 4.2 implies that every set L(z) € b is the
union of countably many sets O € O. Let, thus, for every set L(xz) € b some
countable subset O(z) C O such that L(z) = U O be chosen. Then we set
0€e0(z)
o' := U O(z). Obviously, O’ is a countable set. Furthermore, one verifies
L(z)eb
immediately that for any pair of sets O",0 € O such that O" ¢ O and O is
right isolated there exists some set O’ € O’ such that O" C O' C O, which was
to be shown. O
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A comparison of assertion (ii) of Proposition 5.1 in Herden and Pallack [20]
with assertion (ii) of Corollary 4.3 immediately implies the following proposi-
tion that, in particular, shows that DT is a consequence of RT. In addition,
it guarantees that any characterization of completely useful topologies t on X
also provides sufficient conditions for a topology ¢ on X to be useful.

Proposition 4.4. FEvery completely useful topology on X is useful.

Since for a metrizable topology ¢ on X the concepts of a Lindel6f-topology,
separability and second countability are equivalent the following corollary is
an immediate consequence of Proposition 4.2 and RT. Of course, the corollary
also is a consequence of Proposition 4.4 and EHT.

Corollary 4.5. Let t be a metrizable topology on X. Then the following as-
sertions are equivalent:

(i) t is completely useful.

(ii) t is second countable.

Example 4.6. Let 1 < a be an ordinal number. Then the topology t* on
a that is induced by the sets [0, 8] (8 < a) is always a hereditarily separable
topology on a. On the other hand, it is a (hereditarily) Lindel6f-topology
on ¢ if and only if «a is countable. Conversely, the topology t, on a that is
induced by the sets |3,a[ (8 < «) is always a hereditarily Lindel6f-topology
on a, but, on the other hand, a (hereditarily) separable topology on « if and
only if « is countable. Let, furthermore, <y, be the lexicographic (linear) order
on the plane IR%. Then the topology t“ on IR? that is induced by the family
{L(r,8)}(rs)cm2 is a short topology on IR? that is not completely useful.

In order to proceed we now return to the concept of a countably isolated
topology ¢ on X.

We need the following notation:

Let O € O be some arbitrarily chosen set. Then a gap of O is a pair (O, B)
of subsets of X that satisfies the following conditions:

Gu: 0= |J OadB= [] 0"

030'CO O;EO”EO

G2: There exists an open set O" € ¢\ O such that O < ot < B.

O € O is gap free if it has no gaps.

The reader may compare our concept of a gap with the concept of a Debreu
gap (Debreu [8, 9]). Indeed, both concepts are closely related.

t is said to be thin if there exists no uncountable chain (Z, <) such that the
lexicographic product (Z x {0,1}, <r) can be order embedded into (¢, 9

t is said to be small if for every uncountable chain (Z, <p) and every order-
embedding ¢ : (Z x {0,1},<z) — (t,g) there exists some point z € Z such
that ¢(2,1) \ 3(z,0) # 2.

An open subset O of X is said to be thin bounded if it satisfies the following
conditions:
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TB1: There exists no uncountable chain (Z, <) for which there exists some
order embedding ¢ : (Z x {0,1}, <) — (&, S) such that O C ¢(z,0) C

#(z,1) and O = ¢(z,0) = ¢(z, 1) for every point z € Z.

TB2: For each set O € O such that O C O' and O ¢ O for all set O' € O
there exists a set O"” € O such that for every uncountable chain (Z, <)
for which there exists some order-embedding ¢ : (Z x {0,1},<z) —
([0,0"], g) there exists some point z € Z such that ¢(z,1)\¢(z,0) # 2.

In addition, the reader may recall that ¢ satisfies ccc (countable chain
condition) if every family of pairwise disjoint open subsets of X is countable.
Of course, any separable topology ¢ on X satisfies ccc.

Now the following lemma holds.

Lemma 4.7. Let t be a topology on X. Then the following assertions are
equivalent:

(i) t is countably isolated.
(ii) Fvery set O € O has at most countably many gaps.
(iil) t is thin.
(iv) t is small and satisfies ccc.
(v) t is short and every non-empty open subset O of X is thin bounded.

Proof. (i) = (ii): Let, in contrast, O € O be some set that has uncountably
many gaps. Then we interpose in every gap (O, B) of O some open subset O of
X such that O < o' ¢ B. Tt follows that the union O’ of O with these sets O’
contains uncountably many isolated sets. This contradiction proves assertion
(ii).

(if) = (i): Let O € O be arbitrarily chosen. Then O' := O\ {O € O |
O is an isolated set} has at most countably many gaps. Hence, {O € O |
O is an isolated set} is at most countable and assertion (i) follows.

(i) = (iil): Let us assume, in contrast, that ¢ is not thin. Then O contains
some set O such that the induced upper semicontinuous linear preorder < on
X (cf. the proof of Lemma 3.1) has uncountably many jumps. Because of the
proof of Lemma 3.1 the topology ¢ on X, thus, cannot be countably isolated.
This contradiction proves assertion (i).

(ili) = (i): In order to verify this implication we assume, in contrast,
that ¢ is not countably isolated. Then there exists some set O € O that
contains uncountably many isolated sets. Hence, (Z,<) := ({ U o' |

0300
O is an isolated set of O}, ;9 is an uncountable chain such that (Z x {0,1},
<1,) can be order-embedded into (¢, 97 a contradiction. Indeed, for every point
z= U O' € Z the pair (z,0) corresponds to U O' and the pair (z,1)
0300 0300
corresponds to O. This indirect argument implies the validity of assertion (i).

(i) A (iii) = (iv): This implication follows immediately with help of Lemma

4.1, Proposition 4.2 and the definition of a small topology ¢ on X.
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(iv) = (i): Now we assume, in contrast, that there exists some set O € O
that contains uncountably many isolated sets. Let Og := O := @ and Oj :=
{O{}. Then we choose the family Oy of all isolated sets of O. Assertion (iv)

implies the existence of some set O; € Oj such that O; \ U 0 # 2.
030'¢0;

Therefore, we set 07 := 01 \ U O' and consider the set O} := {0, 01 }.
OBO’§O1

Let Q be the first uncountable ordinal (cardinal). We proceed by transfinite
induction on all countable ordinals ¢, i.e. all ordinals a < €.

1 < a < Qisnot a limit ordinal: In this situation the family of all sets
O € Og such that Og ¢ O for every ordinal 0 < 8 < a — 1 is uncountable or
there exist ordinals 0 < 8 # v < a — 1 such that the family of all sets O € Oy
such that Og ¢ 0 ¢ 0, is uncountable. In both situations there exists a set
O, € Og that is different from all sets O,, where 7 runs through all ordinals

that are strictly smaller that a, such that O, \ U O’ # @. Hence, we set
0300,

Ol =04\ U O' and consider the set O', := O'q_1 U{O0L}.
030/ 0a
1 < a < is a limit ordinal: Now we set O’y := {0} | 8 < a}.

Finally we consider the set O' := U O’,. It follows that O' is an uncountable

a<
family of pairwise disjoint open subsets of X, which contradicts ccc. Thus,

assertion (i) is proved.

(i) A (iv) = (v): With help of Lemma 4.1 this implication easily can be
verified.

(v) = (i): Let < be some upper semicontinuous linear preorder on X. Be-
cause of the proof of Lemma 3.1 it suffices to show that < only has countably
many jumps. Let L := {L(z) | + € X}. Then the jumps of < correspond
bijectively to the sets L(y) € L for which there exists a unique set L(z) < L(y)
such that for no set L(z) € L the strict inclusions L(x) < L(z) < L(y) hold
(cf. the proof of the implication “(ii) = (i)” of Theorem 3.2). Let J(L) be
the family of these uniquely determined sets L(x) ¢ L(y). Then we assume,
in contrast, that J(L) is not countable. Since t is short we may conclude that
there exists some isolated set L(y) € J(L) such that the set O, of all sets
L(u) € J(L) that properly contain L(y) is uncountable. Indeed, otherwise
a (meanwhile) routine transfinite induction argument implies the existence
of some uncountable ordinal a that can be order-embedded into (t,g). Let

C(L(y)) := {L(v) € JL) | L(y) ¢ L(v) A L(y) = L(v)}. Then we distinguish
between the following two cases:
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Case 1: C(L(y)) = @. In this case the application of condition TB2 in each
step of the transfinite induction argument in the proof of the implica-
tion “(iv) = (i)” allows us to use this transfinite induction argument
in order to conclude that there exists some set L(p) € O, such that
[L(y), L(p)] is a countable interval of (J(L), 9

Case 2: C(L(y)) # @. Now condition TB1 guarantees the existence of some
set L(q) € C(L(y)) such that [L(y), L(q)] is a countable interval of
(J(L),g). Since both intervals [L(y), L(p)], respectively [L(y), L(q)]
are countable we may construct by transfinite induction an uncountable
well ordered increasing subchain (Z, g) of (t, g) (cf. the proof of the first
part of the implication “(i) = (ii)” of Proposition 4.2). The reader may
notice that at limit steps the same transfinite induction argument can
be applied that has been used in order to guarantee the uncountability
of Oy. On the other hand, at limit steps also the arguments that
have been used in the afore-discussed two cases may be applied. The
existence of (Z, g) contradicts the shortness of ¢, which completes the
proof of assertion (i).

O

The reader may recall that a chain (Z, <) satisfies ccc (countable chain
condition) if every family of pairwise disjoint open intervals of (Z, <) is count-
able, or, equivalently, if the order topology t< that is induced by < satisfies
cce. The Souslin Hypothesis (SH) states that every order-dense and (almost)
complete unbordered chain that satisfies ccc is order-isomorphic to the real
line. SH was posed by M. Souslin (1894-1919) in the only paper that he pub-
lished during his life. Since the late sixties it is known that SH is independent
of ZFC. Recently SH has been applied by Vohra [35] in order to prove in
ZFC+SH a general continuous utility representation theorem. It is easily to
be seen that SH is equivalent to the assertion that every chain (Z, <) that
satisfies ccc and only has countably many jumps can be order-embedded into
the real line.

The particular relevance of Lemma 4.7 is based upon the following theorem
that in combination with Proposition 4.2 and Lemma 4.7 is the main result of
this section.

Theorem 4.8. The following assertions are equivalent:

(i) SH holds.
(ii) For every set X and any topology t on X the concepts t to be countably
isolated and t to be completely useful are equivalent.

Proof. (i) = (ii): Let X be an arbitrary set and let ¢ be some countably iso-
lated topology on X. In order to show that ¢ is completely useful we consider
some upper semicontinuous linear preorder < on X. Then restricting our con-
siderations to equivalence classes a routine and well known argument allows
us to assume that <, actually, is an order on X. The validity of SH implies
together with the Representation Lemma (RL) that assertion (ii) will follow
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if we are able to prove that (X, <) satisfies ccec and only has countably many
jumps. Therefore, we choose the set L := {L(z) | z € X} (cf. the proof of the
implication “(iv) = (i)” of Lemma 4.7). Since every set O € O only contains
countably many isolated sets the proof of Lemma 3.1 implies that (X, <) only
has countably many jumps, and it remains to verify that (X, <) satisfies ccc.
Let us, thus, assume in contrast that (X, <) does not satisfy ccc. Then there
exists an uncountable family {]z;,y;[}ier of pairwise disjoint non-empty open
intervals of (X, <). But this means that the set L' := {L(y;) | ¢ € I'} contains
uncountably many isolated sets. Indeed, it follows from the disjointness of the
open intervals ]z;,y;[ of (X, <) that every set L(y;) € L' is isolated (cf. the
characterization of the jumps of < by means of the sets L(y) in the proofs of
Theorem 3.2 and Lemma 4.7). This contradiction implies that (X, <) satisfies
cce and, thus, finishes the proof of assertion (ii).

(ii) = (i): This implication will be proved by contraposition. Let us, there-
fore, assume that SH does not hold. Then there exists some linearly ordered
set (Z, <) which satisfies cec, only has countably many jumps and is not repre-
sentable by a real-valued order-preserving function. Therefore, we set X := Z
and consider the linearly ordered topology t := t“ on X that is induced by
the set L := {L(z) | x € X} (cf. the proof of the implication “(i) = (ii)”
of Theorem 3.2). In order to now verify the desired implication it suffices to
show that every set O € O only contains countably many isolated sets. Let
some set O € O be arbitrarily chosen. We choose the upper semicontinuous
linear (pre)order X, on X that is induced by O (cf. the proof of Lemma
3.1). The definition of ¢ implies that for all points z,y € X the implication
“r <o y = = < y” holds. If we, thus, assume that O contains uncountably
many isolated sets, then it follows with help of the construction of the function
1 in the proof of Lemma 3.1 that (Z, <) does not satisfy ccc or has uncountably
many jumps. This contradiction proves the validity of the implication “(ii) =
(i)” and, therefore, finishes the proof of the theorem. O

Theorem 4.8 implies in combination with Lemma 3.1 that the following
equivalence holds.

Corollary 4.9. Lett be an arbitrary topology on X. Then in ZFC+SH the
following assertions are equivalent:

(i) t is completely useful.
(ii) t is countably isolated.

We want to finish this section by proving a theorem that in some sense may
be considered as the strengthening of Corollary 4.9 in ZFC. We hope that
in combination with Theorem 3.2 and the preceding results of this section it
presents a quite satisfactory characterization of completely useful topologies.

Indeed, the concept of a gap allows us to strengthen the equivalent concepts
of Lemma 4.7.
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A topology t on X is said to be strictly thin if the following construction by
transfinite induction, that will be abbreviated by TIP (transfinite induction
procedure) always leads to a countable set O € O.
 In the first step we choose arbitrary open subsets Og g 0O} of X and set
O :={00,0}}.

At non-limit steps a we interpose between any pair of subsets O ¢ Bof X
that define a gap of O,_; some open set Ot € t\ Oq—1 such that O g ot ;E B.
Then Oy, is the union of O,_; with the family of these additional sets Ot. In
case that O,_; has no gaps the transfinite induction process stops.

At limit steps o we set O, := U O;.

B<a

Finally we set O := U O,.

In order to make the oé:oncept of a thin topology on X more transparent we
still need the following notation:

t is said to be locally strictly thin if for every open subset O of X and every
gap free set O € O such that O ¢ O' for each O' € O there exists some
set O € O such that starting with O'g := {O,0"} TIP always leads to a
countable set O’ € O.

t is said to be countably dense if every gap free set O € O contains some
countable subset O’ such that every set O € O is the union or meet of sets
0' €0

t is said to be linear separable if for every set O € O there exists a countable
subset Y of X such that Y N (0" \ O) # @ for every pair of sets O, 0" € O such
that O ¢ O' and (0,0") is a gap of {0,0'}.

With help of TIP the reader will have no effort in order to conclude that
t is linear separable if and only if for every gap free set O € O there exists
a countable subset Y of X such that Y N (O'\ O) # @ for every pair of sets
0,0' € O such that O < 0" and (0,0") is a gap of {0,0'}.

t is said to be locally linear separable if for every open subset O of X and
every gap free set O € O such that O g O' for every set O' € O there exists

some set 0" and some countable subset Y of X such that Y N (Ot \O%) # &
for every pair of sets OT, 0T+ € O such that Ot ¢ Ott Cc 0" and (OF,01T)
is a gap of {OT,0T*}.

In order to prove in ZFC the desired characterization of completely useful
topologies we need the following lemma. Its proof is essentially based upon
ccc. Since its proof is straightforward it will be omitted for the sake of brevity.

Lemma 4.10. Let (Z,<) be some chain that satisfies ccc but is not repre-
sentable by a real-valued order-preserving function. Then there exists some
point z € Z such that no non-degenerate (non-trivial) interval I of (Z,<) that
contains z is representable by a real-valued order-preserving function.

Now we are able to prove the following theorem.
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Theorem 4.11. Let t be a topology on X. Then the following assertions are
equivalent:

(i) t is completely useful.
(ii) t is strictly thin.
(iii) t is countably dense.
)
)
)

t is short and locally strictly thin.
t is linear separable.

t is short and locally linear separable.

(iv
(v
(vi

Proof. (i) = (ii): Let us assume, in contrast, that ¢ is not strictly thin. Then
there exists an uncountable set O € O that can be constructed by TIP. Let
Op g 0, g (O 2) g g O, C ... € be the corresponding chain of sets O, € O
and let T" be the corresponding set of ordinals that appear as indexes of these
sets. We consider the upper semicontinuous linear preorder <, on X that is
induced by O (cf. the proof of Lemma 3.1) and the corresponding set L :=
{L(z) | x € X}. Assertion (i) implies with help of Lemma 4.7(iv) that the
topology t of t that is induced by L is second countable. On the other hand,
the particular construction of the sets O, (a € I') implies that for non-limit
ordinals a no set O € Oy \ Oqy-1 is the union of sets O' € O,_1. Hence, the
second countability of t* implies that there must exist some countable ordinal
a such that O, has no gaps. This conclusion contradicts the uncountability of
T and, thus, proves assertion (ii).

(ii) = (iii): Let O € O be some gap free set. Then starting with Og :=
{@,X} TIP allows us to construct a countable gap free subset O’ of O. Since
0y = {9, X} it follows that O’ can be constructed in such a way that every set
O € O is the union or meet of sets O’ € O', which means that ¢ is countably
dense.

(iii) = (i): Assertion (iii) immediately implies that ¢ is countably isolated.
In order to, therefore, apply assertion (iii) of Theorem 3.2 we consider a linearly
ordered subtopology # of ¢ that only contains countably many left isolated sets.
In order to show that ¢ is second countable we may assume without loss of
generality that # is gap free. Indeed, TIP allows us to construct some gap
free linearly ordered subtopology ' of ¢ that only contains countably many
left isolated sets and contains t!. Since #! is a linearly ordered subtopology of
#" then the second countability of ¢ ! implies the second countability of t!. If
t! is gap free assertion (iii) guarantees the existence of some countable subset
b; of t such that every set O € ¢ is the union or meet of sets O’ € b;. Hence,
the assumption that ¢! only has countably many left isolated sets implies that
the union of b; with the set of all left isolated sets of ! is a countable base of
t!. Thus, Theorem 3.2(iii) can be applied and assertion (i) follows.

(if) = (iv): Obviously, a strictly thin topology on X must be thin. Hence,
assertion (ii) implies with help of Lemma 4.7 that ¢ must be short. Since ¢ is
strictly thin it follows, in particular, that ¢ is locally strictly thin, which proves
the desired assertion.
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(iv) = (i): Let < be an arbitrary upper semicontinuous linear preorder on X.
With help of the Lemma, of Zorn we may conclude that there exists a maximal
upper semicontinuous linear preorder < on X such that <C<, i.e. for every
upper semicontinuosu linear preorder <" on X such that <C=<' the equality of <
and <’ holds. Obviously, < has an upper semicontinuous utility representation
if < has an upper semicontinuous utility representation. Therefore, the desired
implication follows if we are able to verify that < has an upper semicontinuous
utility representation. Let, thus, L be the family of all sets L(z) (z € X)
that are defined with respect to <. Then the maximality of < implies that L
has no gaps. Let us abbreviate this observation by (*). Assertion (iv) implies
that ¢ satisfies the assumptions of assertion (iv) of Lemma 4.7. Hence, we may
conclude with help of Lemma 4.7 and the proof of Theorem 4.8 that < satisfies
ccc. Let us now assume, in contrast, that < has no upper semicontinuous utility
representation. As in the implication “(i) = (ii)” of the proof of Theorem 4.8
we may assume without loss of generality that < is an order on X. Then RL
implies that (X, <) is not order-embeddable into (IR, <). Thus, Lemma 4.10
allows us to conclude that there exists some point z € X such that no non-
degenerate interval I of (X, <) that contains  is order-embeddable into (IR, <).
Since ¢t is locally strictly thin there exists some set L(z) ¢ L(y) € L such that
starting with L'y := {L(z), L(y)} TIP leads to a countable subset O € Q.
Because of (*) and the arguments of the proof of the implication “(ii) = (iii)”
it follows that O € O can be constructed by TIP in such a way that O C L
and that every set L(u) € L is the union or meet of sets O € O. We abbreviate
this conclusion by (**). Now we consider the set Z of all points z € X such
that L(z) € O. The countability of O implies that Z is a countable subset of
X. Because of conclusion (**) it follows, in addition, that Z is an order-dense
subset of the non-degenerate interval [z,y] of (X, <) that contains z. This
means that every point u € [z,y] is the greatest upper bound, respectively
smallest lower bound, of some subset U of Z. This property of Z implies that
the interval ([z,y],<) can be order-embedded into (IR, <), a contradiction.
Therefore, (X, <) has an upper semicontinuous utility representation and the
validity of assertion (i) follows.

(ili) = (v): Let some gap free set O € O be arbitrarily chosen. Then
assertion (iii) implies the existence of some countable subset O’ of O such that
every set O € O is the union or meet of sets O’ € O'. Hence, we choose in
every set O" \ O' such that (O',0") € O' x O’ and O’ ¢ 0" some point y €
0"\ O'. The set Y of all in this way chosen points is countable. Furthermore,
the properties of O’ imply that Y N (Ot \ OF) # @ for every pair of sets
Ot,0*tt € O such that OF < Ot and (OT,0%") is a gap of {01,071},
which means that assertion (v) holds.

(v) = (vi): This implication can be proved in a similar way as the implication
“(ii) = (iv)”.
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(vi) = (i): This implication follows by analogous arguments as have been
applied in the proof of the implication “(iv) = (i)”. For the sake of brevity we,
thus, may omit the details of the proof. a

Remark 4.12. A comparison of Lemma 4.7 and Theorem 4.8 with Theorem
4.11 implies, in particular, the equivalence of SH with the statement that for
every set X and every topology t on X the transfinite induction process TIP
stops after countably many steps if and only if every set O € O has at most
countably many gaps.

Corollary 4.13. Let k be an arbitrary ordinal number and let t be a completely
useful topology on X that contains ot least three open sets. Then the following
assertions are equivalent:

(i) The topological product (X*,tproq) s completely useful.

(ii) & is countable.

Proof. (i) = (ii): Since | ¢ |> 2 there exists some pair of points z,y € X for
which there exists an open subset O of X such that z € O and y € X\ O. We
abbreviate this observation by (*). Let us now assume, in contrast, that & is
not countable. Then we choose the subset Z of X" that consists of all tuples
(2a)a<w for which there exists a unique ordinal § such that 2 =y and 24 =y
for all ordinals @ < k that are different from 3. Because of observation (*)
it follows that (Z, torod| z) is not separable, which contradicts Proposition 4.2
and, thus, proves assertion (ii).

(if) = (i): Let us assume, in contrast, that there exists some set O € O of
open subsets O of X* that has been constructed by TIP but is not countable.
Since for every ordinal o < k the projection p, of X" onto X is open and since
k is a countable ordinal number a routine cardinality argument implies that
there exists at least one ordinal a < k such that the set po(O) := {Paipha(O) |
O € O} is not countable. Because O has been constructed by TIP we may
conclude that p,(O) can be constructed by TIP. Hence, X is not completely
useful. This contradiction implies the validity of assertion (i). O

Remark 4.14. Of course, Corollary 4.13 can be generalized to products of
completely useful topologies t, on sets X,.

5. THE CARDINALITY OF THE SET OF ALL USEFUL AND THE CARDINALITY
OF THE SET OF ALL COMPLETELY USEFUL TOPOLOGIES ON X

Let X be an infinite set. Then we denote by T'op(X) the set of all topologies
on X, by U — Top(X) the set of all useful and by CU — Top(X) the set of
all completely useful topologies on X. In addition, we denote by p(X) the
cardinality of the power set P(X) of X. Tt is well known that | Top(X) |= 2¢X)
(cf. Herrlich [21]).

Let ¢ be the cardinality of the real line and let w be the first infinite ordi-
nal (cardinal). We set v := min{k | k is a cardinal number and 2" > 2°¢}.
Unfortunately, the only inequality that is known in ZFC about - means that
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v > w. In order to illustrate up to which degree useful topologies on X gen-
eralize completely useful topologies on X we still want to prove the following
theorem.

Theorem 5.1. The following assertions hold:

() If | X |< v, then | U — Top(X) |=| CU — Top(X) |= 2°X) = 2.
(i) If v <| X |[< ¢, then | U — Top(X) |= 2°X) >| CU — Top(X) |= 2¢.
(iii) If | X |> ¢, then | U — Top(X) |= 2°X) >| CU — Top(X) |= p(X).
(iv) If | X |> w, then | U — Top(X) \ CU — Top(X) |= 2°X),

Proof. (i): On a countable set X the sets Top(X), U—-Top(X) and CU—-Top(X)
coincide. In case that w <| X |< v we, thus, may conclude that 22 = 2¢ <
| CU = Top(X) |< | U = Top(X) |<| Top(X) |= 2¢X) = 22™ = 2¢_ which
already proves assertion (i).

(ii): Let X be an arbitrary infinite set. Then we choose some fixed point
z € X, set X' := X\ {z} and consider some bijection ¢ : X — X'. ¢
induces a bijection ® : TOP(X) — TOP(X'). In addition, every topology
t" on X' induces a connected and separable and, thus, useful topology ¢ on
X by setting t := {@} U{O U{z} | O € t'}. Hence, we may conclude that
| U = Top(X) |=| Top(X) |= 2¢3).

Because of the definition of 7 the proof of assertion (i) will be complete if
we are able to show that | CU —Top(X) |= 2¢. Let, therefore, v <| X |< ¢ and
t be a completely useful topology on X. Then Proposition 4.2 implies that ¢ is
hereditarily separable. For every open subset O of X we, thus, may (uniquely)
choose some countable subset Co of X \ O such that Co = X \ O. Since Cp #
Cor for every pair of different open subsets O, O' of X, the correspondence
O — Cp defines an injection from t into the set of all countable subsets of
X. Hence, it follows that | ¢t |<| {C C X | C is countable} |<| X |“< ¢¥ < c.
These inequalities imply that | CU—-Top(X) |<|{S C P(X) | | S|<| X |} |<
(2¢)¢ = 2¢° = 2°. Summarizing these last inequalities and equalities we may
conclude that | CU—Top(X) |< 2°. Conversely, it follows with help of assertion
(i) that 2¢ <| CU —Top(X) |. Hence, the desired equation | CU —Top(X) |= 2¢
holds and assertion (ii) follows.

(iii): Let | X |> ¢. Because of the first part of the proof of assertion (ii)
it suffices to verify that | CU — Top(X) |= p(X). The inequality | X |> ¢
implies with the help of the same arguments that have been applied in the
second part of the proof of assertion (ii) that the inequality and equality |
CU —Top(X) |<| {S Cc P(X) || S |<| X |} |= p(X) hold, which means that
| CU—-Top(X) |< p(X). On the other hand, it is well known and easily verified
that the cardinality of the set of all second countable topologies on X is p(X).
This means because of RT that p(X) <| CU—Top(X) |< p(X) and the desired
equation | CU — Top(X) |= p(X) follows, which finishes the proof of assertion
(ii).

(iv): Let | X |> w. We choose some fixed point z € X and divide X into
three pairwise disjoint sets X', Y and {z} such that | X |=| X' |=] Y |.
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Let ¢ : X — X’ be an arbitrary bijection. As in the first part of the proof
of assertion (ii) it follows that ¢ induces a bijection ® between TOP(X) and
TOP(X'). Furthermore, for every topology ¢’ on X' the set b’ := {@} U{OU
{2} | O e }u{Vu{z} | V € P(Y)} is a base of a topology t' on X.
Of course, t] # t) for every pair of different topologies t}, t5 on X'. ¢ is a
connected and separable and, thus, useful topology on X. Since | Y |=| X |> w
we may conclude, on the other hand, that ¢ is not short, which means that
t" is not completely useful. Summarizing these considerations it follows that
2¢X) =| Top(X) |<| U — Top(X) \ CU — Top(X) |< 2¢X) which implies the
validity of assertion (iv). O

Remark 5.2. The characterization of useful topologies t on X is based upon
the concept of a separable system on X (cf. Herden and Pallack [20]). The
reader may recall that a subset £ of ¢ is said to be a separable system on X if
there exist (open) sets E C E' € £ such that E C E and if for every pair of
(open) sets E C E' € £ such that E C E' there exists some (open) set E' € &

suchthat ECECE CE CE. Indeed, if one replaces in the results of
this paper the concept of an open set by the concept of a separable system on
X, then one often (not always) obtains characterizations of useful topologies ¢
on X. The main difference between completely useful and useful topologies ¢
on X, thus, means that in order to characterize completely useful topologies
t on X we may restrict our considerations on open subsets of X instead of
considering the much more complicated concept of a separable system on X.
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