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1. INTRODUCTION

The notion of a large subset of a group, even if with different names, has
been deeply investigated in the recent past (see for example [F54], [CR54],
[EK72], [DPS89]). It was then natural to consider a dual notion of smallness,
and different definitions has been proposed for this purpose. In the first part of
this paper we adopt the definition given in [BM99] and we study the behaviour
of large, small and medium subsets with respect to homomorphisms and prod-
ucts of groups. In the second part we consider another definition of smallness
introduced by I. Prodanov in [DPS89] and we investigate the relations between
the two kind of smallness.

1.1. Preliminaries. The basic definitions and propositions from which we
start can be found in [BM99]; we recall here them for clearness.

Definition 1.1. A subset X of a group G is said to be:
i) large if there exists a finite subset F' C G such that FX = G = X F;
ii) small if for every finite subset F' C G the subset G \ FXF is large;
iii) medium if it is neither large nor small.

To avoid trivialities, in this paper all groups are infinite. First of all we want
to establish an equivalence between the previous definition of smallness and a
slightly different one, that allows us to simplify some proofs.
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Definition 1.2. We call a subset S of a group G asymmetrically small if for
every finite subset K C G both G\ KS and G\ SK are large.

Proposition 1.3. A subset S of a group G is small if and only if it is asym-
metrically small.

Proof. If S is small then taking K’ = K U {e}, where with e we denote the
identity element of G, we have that G\ K'SK' =G\ (KSKUKSUSKUJS)
is small, and so a fortiori G\ KS and G \ SK are small.

Conversely we observe that from the proof of [BM99, Theorem 1.4] we im-
mediately have that the difference between a large subset and an asymmet-
rically small subset is large. So if S is asymmetrically small then G \ S is
extralarge (see [BM00, Definition 3]). Moreover it is immediate to prove that
if S is asymmetrically small then gSg¢’ is still asymmetrically small for ev-
ery g,g' € G. Then if S is small for every finite subset K C S we have that
G\KSK = G\(U; j=1 kiSk;) = N j=1 G\kiSk; is an intersection of extralarge
subsets and so it is large. O

2. HOMOMORPHISMS
We need, to simplify the proofs, this simple but useful lemma:

Lemma 2.1. Let ¢ : G = G' an homomorphism, X C G,Y C G'. Then the
following hold:

(i) o7 "(Y) = (kerp)p~ (V) = o' (V) (ker p).
(i) ' (p(X)) = (ker )X = X (kerp).

With respect to epimorphisms we have two similar, and in certain sense
dual, results for large and small subsets.

Proposition 2.2. Let p: G — G' an epimorphism. Then the following hold:
(i) If X is large in G then ¢(X) is large in G’
(i) IfY is large in G' then o~1(Y) is large in G.
(iii) Y is large in G' if and only if ¢=1(Y) is large in G.

Proof. (i) Let FF C G be finite such that FX = G; then p(F)p(X) =
p(FX) = ¢(G) = G" and since ¢(F) is finite we have finished.
(ii) Let F' C G’ be finite such that F'Y = G’ and F C G finite that
@(F) = F'. Then wehave G = ¢ 1(G") = o1 (F'Y) = 71 (p(F)Y) =
e p(E)(e71(Y) = Fkerp)p~ 1 (Y) = Fp~1(Y) for Lemma 2.1.
(iii) follows from i) e ii).
O

Proposition 2.3. Let ¢ : G — G' an epimorphism. Then the following hold:

(i) If p(X) is small in G' then X is small in G.
(ii) If o 1Y) is small in G then Y is small in G'.
(iii) Y is small in G' if and only if p=*(Y) is small in G.
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Proof. (i) Let F C G be finite and consider G\ FX; we have then ¢~1(G"\
P(F)p(X)) € G\ FX and since ¢(F) is finite then G' \ p(F)p(X) is
large in G, and so for Proposition 2.2 ¢ }(G" \ p(F)¢(X)), and a
fortiori G\ FX, are large in G.

(ii) Let F' C G finite and F' C G such that ¢(F) = F'. Then G\ Fp~(Y)
is large in G, and so (G \ Fo~1(Y)) is large in G' for Proposition 2.2.
But o(G\ Fe 1(Y)) CG'\ p(Fp~1(Y)) = G'\ F'Y, from which we
immediately obtain the conclusion: let be g’ = (g) with g € Fp~1(Y)
and suppose that g’ € @(Fp~1(Y), that is it exists h € Fp~1(Y)
such that g’ = ¢(h). Then we obtain g € hkerp C Fo }(Y)kerp =
Fp=1(Y) for Lemma 2.1, a contradiction.
(iii) Follows from (i) and (ii).
O

We notice here that from Proposition 2.3 we immediately obtain as a corol-
lary Proposition 1.7 of [BM99]: if H < G has infinite index then taking ¢ :
G — G/H the quotient map we have that o(H) = {Og,g} is obviously small
in G/H and so H is small in G.

Studying the behaviour of this notions with respect to monomorphisms we
discovered this interesting result:

Proposition 2.4. Let G be a group, H < G a subgroup. If S C H is small in
H then it is small in G.

Proof. We prove that for every F' C G finite G \ F'S is large in G; the proof
for G\ SF is symmetric. First we suppose that H has finite index in G.
Let T be a set of representatives of left cosets of H with 1 ¢ H, such that
G = HUTH and the union is disjoint. Let now F' C G be finite, and we
write FF = F' U F", where F! = FNH and F" = FNTH; so G\ FS =
G\(F'UF")S =G\ F'SNG\ F"S. Since F'S C H, we have G\ F'S =
(H\F'S)U(TH); moreover G\ F""S D G\ F"H D G\TH = H. Consequently
(G\F'SYN(G\F"S)D((H\F'S)UTH)NH = H \ F'S that is large in G
since H has finite index (see [BM99, Proposition 1.9]).

Now we suppose that H has infinite index in G, and we keep the same
notations. We observe that F" = {t1h4,...,t,h,} for suitable t; € T and h; €
H,and so F''S = J, t;h;S. Then G\ F"S = HUT'H U (U, t:(H \ h;S))
where T = T'\ {t1,...,tn}. So we can write (G \ F'S)N(G\ F"S) = (H \
F'SYUT'H U (Ui t:(H \ h;S)). Let then K, K,...,K, C H be finite such
that K(H\ F'S)=H = (H\ F'S)K and K;(H\ h;S) =H = (H\ h;S)K; for
i =1,...,n. At this point we notice that fori = 1,...,n we have t; K;t; ' (t;(H\
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h;S)) = t;H and that (¢;(H \ h;S))K; = t;H. So we have:

(Kuf1u (Q tKt)) ((G\F'S) N (G\ F"S))
= (Ku{1}u (Lnj tKi)) ((H\F'S)uT'HU (O ti(H \ h:S)))

D(HUT'HU(|Jt:H)) =HUTH =G
i=1

and so G \ F'S is large from the left. Analogously we obtain:

(@\F's)n(@\F"s))(Ku{1}u (Q Ki))

= ((H\F'S)uT'HU U t(H \ hi9)) ) (K U {1}u U K;))
2 (HUT'HU(OtiH)) =HUTH=G

and so G \ F'S is large from the right.

As a consequence we obtain this proposition for monomorphisms:

Proposition 2.5. Let ¢ : G = G' be a monomorphism. Then the following
hold:

(1) If o(X) is large in G' then X is large in G.

(i) If X is small in G then ¢(X) is small in G'.

There are simple counterexamples that show that these are the best results
we can get for epimorphisms and monomorphisms: for instance if we consider
the immersion ¢ : (Z,+) < (R,+) clearly Z is large in itself but it is small
in (R,+). Clearly from the previous results we obtain that these notions, as
expected, are invariant for isomorphisms:

Corollary 2.6. Let ¢ : G — G'be an isomorphism. Then the following hold:
(i) X is large in G if and only if o(X) is large in G’
(il) X is small in G if and only if p(X) is small in G’
(i) X is medium in G if and only if p(X) is medium in G'.

3. ProbucCTsS

Here we consider finite and infinite direct products of groups.
From Proposition 2.2 we straightaway obtain the following:

Proposition 3.1. Let (Gi)icr be a family of groups and L C [[;c; G; large.
If i : [1;e; Gi — G denotes the i-th canonical projection, then m;(L) is large
in G; for everyi € I.
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But we can obtain more. In fact we have this nice characterization of large-
ness in arbitrary products of groups.

Theorem 3.2. Let (G;)icr a family of groups and L; C G; for every i € I.
Then [[;c; Li is large in [[;c; Gi if and only if L; is large in G; for everyi € I
and L; = G; except for a finite subset of indexes.

Proof. =) Clearly L; is large in G; for every i € I by Prop. 3.1 By contradiction
suppose now that exists I' C I infinite such that L; # G; if i € I' and let’s
show that then [];., L; is not large in [[,.; Gi. In fact let F' C [],.; G; be
finite, F' = {f1,..., fn}; as I' is infinite there are iy,...,i, € I' all distinct,
and so we have L;, # G;,,...,L;, # G;, . Then for every h = 1,...,n let
be gn € Gy, \ Ly, and define f € [[;c; Gi by putting f(in) = fr(in)gn and
f(@) = e;, where e; is the identity element of G;, if ¢ & {i1,...,i,}. Now if
[ € F([;c; Li) then there exist h € {1,...,n} and I € [[;c; L; such that
f=f;1l,and so f(i;) = f; (i;)l(i;), that is f; (i;)g; = f;(i;)U(i;), from which
(i) = g; & Li_, absurd. Having found for every finite F' C [[,;Gi an
element f ¢ F(]],c; Li) we can conclude that [],.; L; is not large.

<) Let {i1,...,i,} be the subset of indexes for which L;; C G;,. For every j =
1,...,nthereexists F; C Gj; finite such that F;L;;, = G;; = L;; F;. Thus define
F={f€llic;Gi: f(ij) € Fj and f(i) = e; if i € {i1,...,in}}; clearly |F| =
|F1|--- |Fn| < 400. Let’s show that F([[;c; Li) = [l;c; G = (I1;e; Lo) F: let
h € [l;c; Gi be arbitrarily chosen; for every j = 1,...,n h(i;) € G;; and
so there exist f; € F; and l; € L;; such that h(i;) = f;l;. We then define
f € Il;c; Gi by putting f(i;) = f; and f(i) = e; if i & {i1,...,in}, so that
f € F, and I by putting I(i;) = {; and (i) = h(3) if i &€ {i1,...,in}, SO
that I € [[;c; Li as for i & {i1,...,in} Li = G;. Obviously, h = fI by their
definition, and so we have proved F([[;c; Li) = [I;c; Gi; symmetrically you
obtain [[;c; Gi = ([[;c; Li) F- a

iel

So we have a strengthening of Prop. 3.1:

Corollary 3.3. If L C [],.; G; is large then m;(L) is large for every i € I and
mi(L) = G; except for a finite subset of indezes.

We will see in Prop. 3.7 that even if m;(L) = G; for every i € T it is possible
that L is small.

For small subsets the situation is again, in a certain sense, dual. A first
result is the following;:

Proposition 3.4. Let G1,G2 be groups and S C G1 X G2 be such that either
m1(S) or ma(S) are small. Then S is small in Gy x Gs.

Proof. Suppose for example that 71(S) = S is small, and let’s show that
S1 x G4 is small, from which, since S C S; x Sy C 51 X G2, we have clearly the
proof. Let K C G x G2 be finite, and let’s consider (G1 x G2) \ K(S1 x G2)K.
Let be K; = 7 (K); then we have K(S; x G3)K = K151K; x G2.. Then
(Gl X GQ) \K(Sl X GQ)K = (G1 X GQ) \ (K151K1 X GQ) = (G1 \K151K1) X
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Go; as S is small in Gy then G; \ K151 K is large in G, and consequently
(G1\ K151 K1) x Gy is large in G1 x G2 by Prop. 3.2. O

Corollary 3.5. Let (G;)icr be a family of groups and S C [[;.; G be such that
there exists j € I for which m;(S) is small in G;; then S is small in [[;c; Gi.
Consequently a product of small subsets is small.

In order to go on, and to prove some results for medium subsets too, we
need to introduce, as in [BM99, Theorem 1.2], the following notion: we call
a subset of G of the form gK (respectively Kg) right circle (respectively left
circle) of center g and radius K. Tt is easy then to prove the next lemmas

Lemma 3.6. Let G be a group, A C G. then:

(i) G\ A is not large in G if and only if either A contains right circles for
any finite radius or A contains left circles for any finite radius.

(i) G\ A is large in G if and only if there is F C G finite such that A does
not contain neither left nor right circle of radius F'.

At this point we can prove the following proposition, that gives a general
example of a small subsets with full projection for every index:

Proposition 3.7. Let (G;)icr a family of groups, and for every i € I let
E; CIl;cr Gi be defined by E; = H].EI E;;, where Ey; = G; and E;; = {e;} for
J#i. Then S =J;cr Ei is small in [[,c; Gi-

Proof. Let ' C G = [],c; be finite, and let’s show that G \ F'S is large from
the right; as you will see the proof for the remaining cases is analogous. We
in fact will show that there is K C G finite such that F'S 2 gK for any
g € G, so that we obtain what desired for Lemma 3.6. If F' = {fi,..., fo} we
choose, for each i € I, n+ 1 distinct elements z; 1, ..., Z;nt1 € Gy; let then be
Ir1 = ("L'i,l)z'eI; ey Tl = (-'Ez',n—}-l)z'eI; and K = {331, e ,.’L’n+1}. If there exist
g € G such that gK C F'S = |J;_, frS, we would find j1,j2 € {1,...,n+1}
distinct and f; € F' such that gz;,,92;, € fzS. So there would be i1,i5 € T
such that

9zj € fl_th

924, € frE;, .
Hence taking i # i1,i2, we would have m;(gz;,) = mi(f) = mi(gzj,), and so
Tij, = Tij,, a contradiction. O

If we restrict our attention to abelian groups we obtain a result for medium
subsets, and we can learn more about products of small subsets.

Proposition 3.8. Let G1,Gs be abelian groups, My C G1, My C G4 medium
respectively in Gy and Gy. Then My x My is medium in Gy X G3.

Proof. First of all My x M, is not large by Prop. 3.1. Let then Ky C Gy, Ky C
G2 be finite such that Gy \ (M; + K;) and G2 \ (Ms + K») are not large.
Let be H C 1 x G4 finite, and call Hy, Hy its projections. Then by Lemma
3.6 there exist g1 € G1 and g2 € G2 such that My + K1 DO ¢1 + H; and
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My + K5 D go + Hy. Consequently (M; x M) + (K1 x Ky) = (M; + K;) %
(Ma + K3) 2 (91 + Hi) X (92 + H2) = (g1,92) + (H1 x H2) 2 (g1,92) + H.
Therefore (M x M) + (K1 x K») contains circles for every finite radius, and
so (G1 x G2) \ (M1 x M) + (K1 x K3)) is not large, and then M; x Ms is not
small. 0

Proposition 3.9. Let G, H be two groups, M C G medium and L C H large.
Then M x L is medium in G x H.

Proof. Clearly M x L is not large. Let then K be a finite subset of G such that
G\ KMK is not large, and K' a finite subset of H such that K'L = H = LK".
Then (G x H)\ (K x K')(M x L)(K x K') = (G\ KMK') x H that is not
large by Prop. 3.1, and so M x L is not small. O

Corollary 3.10. A finite product of subsets is small if and only if at least one
of the factors is small.

4. P-SMALL AND SMALL SUBSETS

In [DPS89] I. R. Prodanov introduced, for the case of abelian groups, the
following definition of small subset:

Definition 4.1. Let G be an abelian group, and S C G. Then we call S small
in the sense of Prodanov (brief. P-small) if there exists X = {z,}nen C G
countable such that (S +z;) N (S + ;) =@ if i #j.

It is then natural to ask what are the relations between this definitions and
the previous one. A first result is the following theorem:

Theorem 4.2. Let G be an abelian group, S C G. If S is P-small then it is
small.

Proof. Let X = {x,}nen be such that the subsets S + z; are pairwise disjoint.
By contradiction suppose now that there exists F' C G finite such that G\ (S +
F) it is not large. Then by Lemma 3.6 S + F contains circles for any finite
radius. If |F| = n we consider the radius {—z1, —%2,..., —Zn41}; then there
exists g € G such that S+ F D g+ {—%1,—%2,...,—Znt+1}. So we have that
for every i € {1,...,n+ 1} there exist s; € S, f; € F such that s; + f; = g — =;.
Since |F| = n we can find i, j such that f; = f; = f and so we obtain:

sitf=9—w
sitf=9-2;
it follows then s; + z; = g — f = s; + z;, a contradiction. O

The converse is in general not true, as we will show soon. Before we give
the natural generalization of the previous definition for non abelian case:
Definition 4.3. Let G be a group, S C G;

(a) Sis left P-small if there exists X = {2y, }nen C G such that z;5Nz;S =
@ ifi # .
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(b) S is right P-small if there exists X = {z,}nen C G such that Sz; N
Sz; = @ if i # j.
(c) Sis P-small if it is left and right P-small.

We notice immediately that, unlike the abelian case, P-smallness does not
imply smallness:

Example 4.4. Let F; = (a,b) be the free group of two generators a, b; every
w € F5 can be written in the reduced form w = y; - y2 - - - yr where k > 1 and
y; is a non-trivial power of a or b such that if y; is a power of a then y;_; and
yi+1 are powers of b and vice versa. We consider then the following subsets:
S1={1}U{w € Fs : y1,yy, are powers of a}

Se ={w € F» : y1,yr, are powers of b}

S3 = {w € F, : y; is a power of a, y;, of b}

Sy ={w € F, : y; is a power of b, y;, of a}

It is clear that each of them is P-small both on the left and on the right: for
example if we consider Si, the two family of subsets {b"S1 },>1 and {S1b"}n>1
have pairwise disjoint members. Because U?Zl S; = F, at least one among
the S; must be not small, otherwise we will obtain that F is small by [BM99,
Theorem 1.2], and so that subset is P-small but not small.

Remark 4.5. It is not difficult however to prove that every S; then must be
not small: see [DMMO1, Example 2.16].

So the idea is to introduce another kind of “strongly” P-smallness that
ensures that a subset of a non abelian group that has that property it is also
small; you can refer to [DMMO1] for such a definition and further developments
in this direction.

Now we want to prove what we have announced before:

Proposition 4.6. Let G be a group, H < G an infinite normal subgroup of
infinite index and T C G a complete set of representatives of cosets of H .
Then H UT is small but it is neither left nor right P-small.

Proof. According to [DMMO1, Corollary 2.15] H UT is small. We show here
that HUT is not right P-small (the proof for the left is symmetric). We prove
something more: however you choose z1,z5 € G you obtain (HUT)z; N(H U
T)xy # @. In fact we can write 1 = hqt1,Z2 = hats for suitable hy, hy € H,
and t1,12 € T. Then if t; = to = t we have (H @] T)hltl n (H @] T)hztz )
thtl ﬂthtz = Htl ﬂth = Ht ;é .

If t; # t, there exist t € T,t # 1 and h € H such that tltgl = ht; we
can then write ¢t; = htty = hthy lhgtg; since H is normal there is h' € H such
that thy! = h't, so we obtain t; = hh'thyty = hh'tzy. Then (hh') 't = txy
and therefore Hty N Tz, # @; since Ht; = Hhit; = Hz; we again obtain
(HUT)xy;N(HUT)zy D Hxy NTxy # @. O

Corollary 4.7. Let G be an abelian group, H < G an infinite subgroup of
infinite index, and T C G a transversal of H. Then H UT is small but not
P-small.
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We also have a strengthening of [BM99, Proposition 1.8] in the abelian case:

Proposition 4.8. Let G be an abelian group, S C G such that |S| < |G|. Then
S is P-small in G.

Proof. Since |(S)| < |G|, any transversal T' of (S) must be infinite. So taking a
countable subset T' = {t1,t2,...,tn,... } C T you obtain (S)+t;N(S)+t; = @
if i # j, and so a fortiori S is P-small. O

We want to finish this section giving some “concrete” examples distinguish-
ing smallness and P-smallness in the group of integers. The definition of small
and large in the semigroup of natural numbers N are given in [AMMO01]. We
recall them here:

Definition 4.9. Let be X C N; then:

(i) X is large in N if there exists F' C N finite such that X £+ F = (X +
F)JUX-F)2O N
(ii) X is small in N if for every F' C N finite N\ (X £ F)) is large in N.
(iii) X is medium in N if it is neither large nor small in N

We need now the following Lemma:

Lemma 4.10. Let X C Z be symmetric, that is X = —X. Then the following
hold:
(i) X is large in Z if and only if X NN is large in N.
(il) X is small in Z if and only if X NN is small in N
(iii) X is medium in Z if and only if X NN is medium in N

Proof. For simplicity we use the notation X; = X NN and X_ = X N -N
notice that if X C Z is symmetric, then — X = X_.

(i) If X C Z symmetric is large there exists F' C Z finite and symmetric
such that X + F = Z. If by contradiction X is not large in N then
Xy + Fy 2N. Then also (X + F,)U—(Xy + Fy) # Z. But for the
symmetry of the subsets we have (X, £+ F,)U—(X; £ F,) =X+ F,
and we get a contradiction.

Conversely if X, is large in N than there exists F' C N finite such
that Xy £ F D N; then also —(Xy + F) DO —N, and so we obtain
Z=(Xy+tF)U—(X4y £ F)=X+ (FU-F), therefore X is large in
Z.

(ii) Suppose that X is small in Z. Then taken F' C N we want to prove that
N\ (Xt £ F) is large in N. Consider F' = FU —F; then Z\ (X + F')
is large in Z for hypothesis; moreover, since X + F' is symmetric,
Z\ (X + F') is symmetric too and so (Z \ (X + F')) NN is large in N
for (i); but (Z\ (X + F")) NN C N\ (X4 £ F'), so we have finished.

Conversely suppose that X is small in N and let’s prove that X
is small in Z. If this was false we could find F' C Z finite such that
Z\ X + F is not large; then also Z \ X + F’, where F’ = FU—F is not
large. Since Z \ (X + F') is symmetric, for (i) (Z\ (X + F')) NN is not
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large in N, and since (Z \ (X + F')) "N D N\ (X} £ F}) we obtain
that N\ (Xy £ F}) is not large in N, against the hypothesis.
(iii) Follows directly from (i) and (ii).

As a corollary we immediately obtain:

Corollary 4.11. Let X be a subset of Z. If (X — X)NN is not large in N then
X is P-small in Z.

Proof. From [DMMO01, Lemma 2.5] if X — X is not large then it is P-small; so
the conclusion follows from the previous lemma since X — X is symmetric. O

We can now give a “concrete” example of a P-small subset:

Proposition 4.12. For every q > 2 the set X, = {¢* : k € N} is P-small in
Z.

Proof. We want to prove that (X, — X,;) N N is not large in N. First of all
we notice that (X, — X,) "N = {0} U{¢" —¢* : b,k e Nk > k+1} =
{0yu{g*(¢* —1) : k > 0,t > 1}. Suppose now that (X, — X,) NN is large in N,
so that there exists M > 0 that is a superior bound to the differences between
consecutives elements of (X, — X,;) NN (see [AMMO1, Proposition 1.1]). Let’s
take k € N such that ¢* > M and consider ¢F(q — 1) € (Xy— X)) NN Its
immediate successor will be q’_“"“d(qd"|r1 —1) where d,d’ € N and at least one of
them is strictly positive. Therefore we get ¢F+td(g?+t — 1) —¢F (g — 1) = ¢F - 2
with z > 1, and so ¢F+¥(¢git% — 1) — ¢F (¢! — 1) > ¢F > M, a contradiction. O

As announced we conclude this section with another example distinguishing
P-smallness from smallness. Before we need this two lemmas:

Lemma 4.13. Let G be an abelian group, S C G. Then S is P-small in G if
and only if there exists X C G countable such that (S —S)N (X — X) = {0}.

Proof. =) Let X = {x;};en be such that S+2; NS +2; = @if i #j. If
S—S5NX—-X 3 g # 0 then we could find ¢ # j such that z; —z; € S — 5,
from which follows that S + z; NS + z; # @, an absurd.

<) Taken X as in the hypothesis, if S+z;NS+z; # @ then z; —z; € S-S
and so z; — x; = 0, that is z; = x;. O

Lemma 4.14. Let S be a subset of Z. Then if N\ (S — S) = F, where F is a
finite subset of N, S is not P-small in 7.

Proof. Suppose that there exists X C Z infinite such that (S —S)N(X —X) =
{0}; then it must be (X — X) NN C F U {0}, absurd. O

At this point we can build the desired example:

Example 4.15. We define by induction the following subset X = {z, }nen of
N taking 1 = 1 and 2,41 = 25, + n. Therefore for every n > 1 241 — 2, = n,
from which (X — X)NN = N, and so for the previous corollary X is not P-small
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in Z. Nevertheless lim,,_, oo{Zn+1 — Tp} = limp 400 n = +00, and so X is
small in N for [AMMO1, Proposition 1.2] and also in Z, since X N —N = {0})
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