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Strengthening connected Tychonoff topologies
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ABSTRACT. The problem of whether a given connected Tychonoff
space admits a strictly finer connected Tychonoff topology is consid-
ered. We show that every Tychonoff space X satisfying w(X) < ¢
and ¢(X) < Ro admits a finer strongly o-discrete connected Tychonoff
topology of weight 2°. We also prove that every connected Tychonoff
space is an open continuous image of a connected strongly o-discrete
submetrizable Tychonoff space. The latter result is applied to represent
every connected topological group as a quotient of a connected strongly
o-discrete submetrizable topological group.
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1. INTRODUCTION

All spaces we consider are assumed to be completely regular unless explicitly
stated.

In general, it is difficult to construct a strictly finer connected Tychonoff
topology on a connected space X. That is why several assumptions on X usu-
ally appear to make this possible. In [17] it was proved that if X is a connected
space which is locally Cech-complete (or first countable or locally separable),
then X admits a strictly finer Tychonoff connected topology. Sometimes a
strictly finer connected topology on X can even be chosen strongly o-discrete.
It was proved in [20] that this is the case for every connected space X satisfying
w(X) < ¢, | X| = ¢ and which has w; as a precalibre. Actually, one can replace
“wy a precalibre for X” by the weaker condition “c(X) < w” almost without
changing the original proof.
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In this paper we describe a class P of connected spaces that admit a finer
connected strongly o-discrete Tychonoff topology. It turns out that every con-
nected space X with w(X) < ¢ and ¢(X) < Ng admits such a topology (Theo-
rem 2.14), thus generalizing [20, Theorem 2.12]. If additionally | X| = ¢, then
a finer connected strongly o-discrete topology on X can be chosen to be sub-
metrizable (Theorem 2.9).

In Section 3 we consider the problem of representation of a connected space
as an open continuous image of a connected strongly o-discrete one. The main
result here is Theorem 3.4 which states that every connected space Z is an
open continuous image of a connected strongly o-discrete submetrizable space
S. In addition, if |Z| = ¢, then the space S can be chosen to satisfy the same
equality |S| = ¢ (Theorem 3.5).

As far as the authors know, no examples of non-trivial connected o-discrete
topological groups have been constructed previously. In Section 4 we show
that every connected topological group G is a quotient of a connected strongly
o-discrete submetrizable group H (Theorem 4.2). If additionally |G| = c, then
the group H can be chosen to satisfy |[H| = ¢ (Corollary 4.3).

1.1. Notation and terminology. The interior of a closed subset of a space X
is called regular open in X. As usual, Ro(X) denotes the family of all regular
open subsets of X. The interior and the boundary of a subset Y of X are
denoted by Intx Y and Frx Y respectively, or simply by IntY and FrY if no
confusion is possible.

We say that a space X is strongly o-discrete if it is a union of countably many
closed discrete subsets. If the space X admits a coarser metrizable topology,
it is called submetrizable. Equivalently, X is submetrizable iff there exists a
continuous bijection f: X — M onto a metrizable space M.

The weight, m-weight, density and cellularity of a space X are denoted by
w(X), mw(X), d(X) and ¢(X) respectively. The space X is countably cellular if
¢(X) < Ng. If every uncountable family of non-void open sets in X contains an
uncountable subfamily with the finite intersection property, then we say that
w1 is a precalibre for X. Clearly, every space for which w; is a precalibre must
be countably cellular.

We use I to denote the closed unit interval [0, 1] of the real line R endowed
with the interval topology. The power of continuum is also denoted by c.

2. FINER CONNECTED STRONGLY 0-DISCRETE TOPOLOGIES

It is shown in [3] that there exists a dense connected strongly o-discrete
subspace Y of the Tychonoff cube I° such that [Y| = ¢ and Y \ A remains
connected for every subset A of Y with |A| < ¢. Strengthening this result,
Tkachuk showed in [20, Theorem 2.12] that every connected space X satisfying
w(X) < ¢, |X| = ¢ and for which w; is a precalibre admits a finer connected
strongly o-discrete topology. Actually, one can weaken “w; a precalibre for
X" to “c(X) < No” with minimal changes in the original proof. Our aim is
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to strengthen the latter result by showing that the finer connected strongly
o-discrete topology on X can be chosen submetrizable.

We will also show that the conclusion of [20, Theorem 2.12] remains valid
without the condition |X| = ¢ (see Theorem 2.14). It is not known, however,
whether every connected space X with w(X) < ¢ and ¢(X) < Ro admits a finer
connected submetrizable topology if no restriction on the cardinality of X is
given (see Problem 5.5).

Our generalizations of [20, Theorem 2.12] require considerable improvements
of the methods applied in [2], [3] and [20] when refining connected topologies.
We start with two general lemmas on dense connected subspaces of products
that do not require any axioms of separation.

Lemma 2.1. A dense subset S of a connected space X is connected iff S
intersects the boundary of every proper regular open set in X. In addition, a
dense subspace S of a product Il =[], 4 Xo of connected spaces X, satisfying
c(IT) < Ng is connected iff mp(S) is connected for each countable subset B C A,
where mp: Il = [[,cp Xa is the projection.

Proof. 1. Let us prove the first part of the lemma. The necessity of the condition
is clear. Suppose that S is disconnected and intersects the boundary of every
O € Ro(X) with @ # O # X. Represent S as the union of two nonempty
disjoint open subsets, say S = U; U Us. There exist open subsets V; and V;
of X such that U; = X NV;, ¢ = 1,2. Since S is dense in X, the sets 1}
and Vs are also disjoint. Put W; = IntV;, i = 1,2. Then V; C W; (i = 1,2)
and Wy NWy =@. Wehave S =U; UU; C V3 UV, C Wy UWs, so the set
F =W, N W, is disjoint from S. The set X \ F = W; U W, is disconnected,
sothat F = FrW; = W1 \ Wi # @ and, hence, F NS # @, which is a
contradiction. This proves the connectedness of S.

II. If S is connected, then all projections 75 (S) are connected. Suppose that
S is disconnected. Then one can find two nonempty open sets U and V in II
such that SCUUV and UNSNV = @. Since S is dense in II, the sets U
and V are disjoint. Therefore, the set F = U NV is disjoint from S. Since
¢(IT) < Ry, the sets U and V depend on countably many coordinates. In other
words, there exists a countable subset B C A such that U = n5'np(U) and
V = ng'np(V). Then 75(U) and np(V') are disjoint open subsets of [, . 5 Xa
and 75 (S) C np(U)Unp(V), thus implying the disconnectedness of 75(S). O

The proof of the second auxiliary result can be found in [17].

Lemma 2.2. Let X and Y be connected spaces and S be a dense subset of the
product Il = X xY with 7x(S) = X, where mx: X xY — X 1is the projection.
If U and V are nonempty disjoint open sets in X x Y with S CU UV and
F =cpUneclpV, then the set mx(F) has a nonempty interior in X. In
fact, there exists a nonempty open subset W of wx (F) which is contained in
mx (U) N7mx (V).

When one works with connected spaces, regular open sets appear in a natural
way. For example, a dense subspace S of a space X is connected iff S intersects
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the boundary of each nonempty proper regular open set in X (see Lemma 2.1).
Therefore, it is important to have an upper bound for the number of regular
open sets in a space. The following was found by Sapirovskii [16]. Again, no
axiom of separation is required.

Lemma 2.3. |Ro(X)| < 7w(X)*X) for every space X.

It is also important to know when the product of two countably cellular
spaces remains countably cellular. One special case of such a stability is given
below (see also Theorem 4.8 of [15]).

Lemma 2.4. Let X be a countably cellular space and Z be a dense subspace
of a product of separable spaces. Then ¢(X x Z) < Ng.

Proof. Suppose that Z is dense in the product II = [[;.; Zi, where d(Z;) < Ro
for each ¢ € I. Since X x Z is dense in X x II, it suffices to show that
¢(X x II) < Ng. The latter follows, however, from the fact that wy is a calibre
for II [15]. O

A general idea of how one can refine connected topologies is in the following
result.

Proposition 2.5. Let X and Y be connected regqular spaces such that |U| =
|V | = &k for all nonempty open subsets U of X andV of Y, where & is an infinite
cardinal. Suppose that [Ro(X xY)| < k and that Y \ A is connected for each
A CY with |A| < k. Then there exists a (necessarily discontinuous) bijection
f: X =Y such that the graph S = Gr(f) = {(z,f(z)) ;2 € X} C X xY of
the map f is dense in X XY and connected.

Proof. Enumerate the points of X and Y, say X = {z, : v < k} and ¥ =
{y, : v < k}. Denote by R the family of all proper regular open sets O in
X xY such that Intx 7x Fr(O) # @, where mx : X xY — X is the projection.
By our assumption, |R| < |Ro(X x Y)| < k, so there exists an enumeration
R ={04:a< &}

We will define by recursion on a < & subsets X, C X and injective functions

fa: Xo — Y satisfying the following conditions for each a < k:

1) | Xa| <|af - Ro;

) XﬁCXalf,8<Oé,

) {Z‘g ﬂ<a}CXa,

) {yﬂ ﬂ<a}cfa( a)

)£|XB= faif B < a;

) OaNGr(fs) # 25

) Fr(Oy) N Gr(fa) 75 & provided that there exist z € X \ Ug<aXﬂ and
y €Y \ Upq f3(Xp) such that (z,y) € Fr(Oq).

Suppose that for some o < k we have defined the sequences {X3 : 8 < a}
and {fg : B < a} satisfying (1)—~(7). Let P = UB<aX5, Q = U6<a f8(X3)
and g = Uﬁ<a fa. Clearly, |P| < |a|-Rg < & by (1). Since all fg are injections,
from (2) and (5) it follows that g is a bijection from P onto Q. In particular,
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Q] = |P| < |a]-Ro < k. HFr(Oq) C (P xY)U (X xQ), we choose pe X\ P
and ¢ € Y\ Q such that (p,q) € O, (this is possible because |P| < k, |Q| < &
and nonempty open sets in X and Y have cardinality k). Otherwise we pick
p€ X\ Pand qg€eY\Q such that (p,q) € Fr(O,). Let X, be a subset of X
such that PU{p,z,} C X, and | X, \ P| = 3. We can extend g to an injective
function fu: X, — Y such that y, € fo(Xa) and fo(p) = ¢. It is easy to see
that X, and f, satisfy (1)—(7). This finishes the construction.

Define f = (J, <, fo and S = Gr(f). From (2), (3), (4) and (5) it follows
that f is a bijection of X onto Y. Since the product X x Y is regular, the
definition of f together with (5) and (6) imply that S is dense in X x Y.

Let us show that S is connected. Assume to the contrary that there exist
nonempty open disjoint sets U and V in X x Y such that S C UUV. Put
U* =IntU and V* = Int V. Then U* and V* are disjoint regular open sets and
S CUUV C U*UV*. Therefore, the set F' = Fr(U*) is disjoint from S. Clearly,
F =U*NV*. By Lemma 2.2, the set mx (F) contains a nonempty open set W
such that W C wx (U*)N7wx (V*). In particular, U* € R, and, hence, U* = O,
for some a < k. Since nonempty open subsets of X have size k and | X, | < & by
(1), we can pick a point z € W\ X, C X\Ug, X- The space K, = {z} xY is
homeomorphic to Y. The sets U, = U*N K, and V, = V*N K, are nonempty,
open and disjoint in the connected space K. Therefore, U, UV, is disconnected.
Put H = K, \ (U, UV,). Since Y\ A is connected for each A CY with |A| < k,
we conclude that |H| = k. Note that |Uz., fs(Xp)| < |a] - Ro < &, and so
there exists a point y € Y\ Ug,, fs(Xp) such that (z,y) € H C F =Fr(Oa).
Item (7) now implies that F NS = Fr(0,) N Gr(f) 2 Fr(O,) N Gr(fa) # 9, a
contradiction with S N F = &. Thus, S is connected.

If f were a continuous map, S = Gr(f) would become a closed subset of
X x Y (note that Y is regular, hence Hausdorff). Since S is dense in X x Y,
it would then follow that S = X x Y, a contradiction. O

Remark 2.6. The above proposition remains valid for Hausdorff spaces X and
Y under the additional assumption that 7w (X) - mw(Y) < k. To see this, take
a m-base {W, : @ < k} for X x Y and define the functions {f, : & < k} and
the sets {X, : @ < K} to satisfy conditions (1)—(7) of the above proof, and the
following one:

(8) Gr(fo) N W, # & for each a < k.

It is not clear, however, whether there exists a Hausdorff space X with
IRo(X)| < |X] < mw(X).

We remind the reader that from now on, all spaces are Tychonoff.

Corollary 2.7. Let X andY be connected spaces such that w(X) - w(Y) <,
| X| =1Y]=rc¢and (X xY) < Ng. Suppose that Y \ A is connected for each
A CY with |A| < ¢. Then the product X x Y contains a dense connected
subspace S such that the projections of S to the factors are one-to-one maps
onto X and Y.
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Proof. Note that the spaces X, Y and the cardinal k = c¢ satisfy the conditions
of Proposition 2.5. Indeed, every nonempty open subset of an infinite connected
Tychonoff space has cardinality greater than or equal to ¢, and |[Ro(X x Y)| <
w(X x YV)XXY) < (Ro = ¢ by Lemma 2.3. O

Remark 2.8. The roles of X and Y in Corollary 2.7 (and in Proposition 2.5)
are not symmetric: the space Y was assumed to have the property that Y\ A
is connected for each A CY with |A| < ¢. This condition is actually essential:
the plane Rx R does not contain a dense connected subset S whose projections
to both factors are bijections. Indeed, let S be a dense subset of R?> whose
projections to the factors are one-to-one, and suppose that S intersects the
y-axis in the point (0,b). Let (0,c¢) be any other point on the y-axis and let
Q1,--.,Q4 be the open quadrants determined by the lines x =0, y = c¢. It is
clear that one of these quadrants has a frontier which misses S.

We show now that many connected spaces admit finer connected strongly
o-discrete (submetrizable) topologies.

Theorem 2.9. Let X be a connected space satisfying w(X) < ¢ = |X| and
c¢(X) < Ng. Then there exists a connected strongly o-discrete submetrizable
space T which satisfies the same cardinal restrictions and admits a continuous
bijection i: T — X.

Proof. By Theorem 2.24 of [3], there exists a dense connected strongly o-
discrete subspace Y of I° such that Y \ A is connected for each A C Y with
|A| < ¢ (for the latter property of Y, see the proof of Theorem 2.12 of [20]).
Note that w(Y) = |Y| = ¢. In addition, Lemma 2.4 implies that ¢(X xY") < Rp.
Apply Proposition 2.5 to find a dense connected subset S of the product X xY
such that the projections of S to the factors X and Y are bijections. Clearly,
S is strongly o-discrete and satisfies w(S) = |S| = ¢, ¢(S) < Wo. It is easy
to verify that the boundary of every proper regular open subset of R? is of
cardinality c, so that R? \ A is connected for each A C R? with |A| < c. Apply
Proposition 2.5 once again to find a dense connected subset T' of the product
S x R? whose projections to S and R? are bijections. Clearly, T is strongly
o-discrete and submetrizable. Let 7x: X xY — X and ng: S x R?2 = S be
projections. Then i = mx o wg|r is a continuous bijection of T' onto X. Note
that w(T) = |T| = ¢ and ¢(T") < No. O

The following result resembles Theorem 2.9, but deals with a more general
situation.

Theorem 2.10. Let X be a non-trivial connected space such that |U| = |X|
for every nonempty open subset U of X. Suppose that there exists a space Y
with the following properties:
(i) |V| =|X]| for every nonempty open subset V of Y;
(ii) Y \ A is connected for every set A CY with |A| < |X]|, and
(i) |Ro(X xY)| < |X].
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Then there exists a strictly finer connected topology T on X such that (X, T)
admits a one-to-one continuous map onto the space Y.

Proof. Note that X, Y and x = |X]| satisfy the assumptions of Proposition
2.5. Let f: X — Y be the bijection as in the conclusion of this proposition.
Then S = Gr(f) is a connected space and 7x|s: S — X and my|g: S = Y are
continuous bijections, where 7x: X XY — X and ny: X xY — Y are the
projections. Since f is discontinuous, the inverse map (7x|s)™! : X — S is not
continuous, i.e., the topology of S is strictly finer than that of X. It remains
to define the topology 7 on X by

T={nx(UNS):Uisopenin X x Y}.
One easily verifies that the space (X, 7)) is as required. O

Lemma 2.11. Suppose that X andY are spaces such that w(X)*X) <27 and
w(Y) < 7. Then w(X x Y)e(XxY) <27,

Proof. Let us consider two cases. If ¢(X) < 7, then ¢(X x Y) < 7 because
w(Y) < 7, and we have

w(X x V)XY <p(X x ¥)" < max{w(X)", 77} < max{(27)7,27} = 2.

Assume now that ¢(X) > 7. In this case we have ¢(X xY) < ¢(X) and
7o(X) < ¢(X)eX) = 2¢(X) < q(X)°(X) < 27 Therefore,

w(X xY) V) < (X x V)X < max{w(X)*X), 74X} < max{27,27} = 2.
This proves the lemma. O

In what follows J(7) denotes the metric hedgehog with 7 many spines [10,
Example 4.1.5].

Theorem 2.12. Let X be a connected space such that w(X)*X) < 27 and
|U| = |X| =27 for every nonempty open subset of X, where T is an infinite
cardinal. Then:
(i) there exists a strictly finer connected topology To on X such that (X, 7o)
admits a one-to-one continuous map onto the Tychonoff cube I7;
(i) if one additionally assumes that ¥ = 27, then there exists a strictly
finer connected topology T1 on X such that (X, T1) admits a one-to-one
continuous map onto the countable power J(7)¥ of the hedgehog J(7).

Proof. (i) Let Y = I". Then |V| = |I"| = 27 = | X]| for every nonempty open
subset of Y. Furthermore, it is easy to see that I” \ A is connected for every
A C I" such that |A| < 27 = | X|. Thus, the conditions (i) and (ii) of Theorem
2.10 are satisfied. To check (iii), note that w(Y) = 7, and so w(X x Y)e(XxY) <
27 = | X| by Lemma 2.11. Therefore, |[Ro(X x V)| < w(X x V)<(X*Y) < |X|
by Lemma 2.3. Now Theorem 2.10 applies.

(if) Assume now that 7 = 27 holds. Let Y = J(7)%. Then |Y| =7¥ =27 =
| X|. It is easy to check that Y satisfies the conditions (i) and (ii) of Theorem
2.10. Since w(Y) < 7, the argument of (i) shows that Y also satisfies (iii) of
Theorem 2.10. Our result now follows from Theorem 2.10. O
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The lemma that follows is the first step on the way to refining connected
topologies on “large” connected spaces X with Ro(X) < c.

Lemma 2.13. Let X be a non-trivial connected space with w(X) < ¢ and
c¢(X) < Xg. Then one can find a space X*, a dense open connected subset U
of X* and a continuous bijection i: X* — X satisfying

(1) w(X*) <cand c(X*) < Ro;

(2) Ul =¢;

(3) U =U,2, Fn, where each F, is closed and discrete in X*.

Proof. If | X| = ¢, the conclusion follows from [20, Theorem 2.12]. Suppose that
|X| > ¢. By Lemma 2.3, the family Ro(X) satisfies |Ro(X)| < w(X)*X) <
o = ¢. For every proper U € Ro(X), pick a point zyy € U \ U and put
S ={zy :U € Ro(X)}. Then S is obviously dense in X, |S| < ¢, and Lemma
2.1 implies that S is connected. The latter enables us to conclude that |S| = c.

Let Y be a dense connected strongly o-discrete subspace of I such that |Y| =
cand Y \ A is connected for every subset A of Y with |A| < ¢ (see [3, Theorem
2.24] and [20, Theorem 2.12]). Pick a point y* € ¥ and put Y* = Y \ {y*}.
By Proposition 2.5 (with k = ¢), there exists a dense connected subspace U
of § x Y* such that the restriction to U of the projections 7g: S x Y* — §
and 7y-: § X Y* = Y™ are one-to-one maps of U onto S and Y* respectively.
Clearly, U is strongly o-discrete. Put

X*=UUX\S) x{y}, X*CXxY.

Since U C X*, the set X* is dense in X x Y and connected. In addition,
X*\U = (X\S) x{y*} is closed in X* and, hence, U is open in X*. Clearly,
we have w(X*) < w(X) -w(Y) < ¢. It remains to note that ¢(X*) < Ro.
Indeed, since ¢(X) < Ng, d(I¥) < Ng and X* is a dense subspace of X x I,
Lemma 2.4 implies that ¢(X*) < Ro. O

Recall that a dense in itself space X is called submazimal if every dense sub-
set of X is open. It is an unsolved problem dating back to Hewitt [14] whether
there exists a submaximal connected Tychonoff space or even a submaximal
connected Tychonoff topology on R. Arhangel’skii and Collins formulated a
similar question for normal and paracompact spaces (see Problem 4.1 of [6]),
but it has been shown in [1, Corollary 3.4] that at least consistently such spaces
cannot be normal. It is also known that the topology of a submaximal space
contains a base of a free ultrafilter [9]. Therefore, any submaximal connected
(Tychonoff) topology on R (if such exists) has large weight. The following
result shows that there exist connected Tychonoff topologies on R of weight 2¢.

Theorem 2.14. Let X be a non-trivial connected space with w(X) < ¢ and
c(X) < Ng. Then X admits a finer connected strongly o-discrete topology T
of weight 2¢. In addition, the topology T can be chosen so that (X, T) will be
homeomorphic to a dense subspace S of X x I2° and, hence, x(y,S) = 2° for
eachy € S.
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Proof. Put 7 = 2. One can find a space X*, a dense open connected subset
U of X* and a continuous bijection i: X* — X satisfying (1)—(3) of Lemma
2.13. The idea of our construction is to define a dense connected subspace S of
IT = X* x I" such that the restriction to S of the projection p*: X* xI™ —» X*
will be a one-to-one map of S onto X *. In addition, the space S will be strongly
o-discrete.

To guarantee connectedness of S we have to make connected all projections
of S to countable faces in IT (see Lemma 2.1). The latter necessarily implies
that S will intersect the boundary of all regularly open sets in II. We will
construct S as the graph of a (discontinuous) map f*: X* — I7. The problem
we face is the fact that |U| = ¢ while there are 7 = 2° different regular open sets
in X xI7 and almost all projections of their boundary to X* must intersect U.
This obstacle makes our construction technically involved. Let us divide the
construction of S into several steps.

1. Definitions. Let t be a Hausdorff topology on the index set 7 such that
w(7,t) = ¢ and every Gs-set in (7,t) is open. For example, we can identify
(7,t) with the space {0, 1}¢ endowed with the No-box topology. Denote by B a
base of ¢t with |B| =¢, say B={V,:a < c}.

For every ordinal § with w < ¢ < wiy, we fix a bijection bs: w — § and
define the homeomorphism gs: I — I° by the rule gs(z)(e) = z(b; ' (a)) for
all x € I¥ and a € §. In other words, the homomorphism g4 is determined by
the coordinate bijection by.

Suppose that C' is a countably infinite subset of 7. Denote by ¢ the order
type of (C, <¢), where <¢ is the order on C induced by the usual well-ordering
of 7. Let bo: § — C be the order preserving bijection of § onto C. Define the
homeomorphism g¢: 1% — I by the rule go(z)(a) = 2(bs'(@)) for all z € I°
and o € 0. Then g§, = gcogs: I¥ — I and he = idx~ xgl: X*xI¥ — X*xI%
are coordinate homeomorphisms.

Since ¢(X* x I¥) < Ng, Lemma 2.3 implies that the cardinality of the family
of regular open sets in X* x I does not exceed ¢¥ = ¢. Let {O, : p < ¢}
be an enumeration of all regular open subsets O of X* x I¥ such that the
projection of the boundary of O to the first factor X* has a nonempty interior
in X*. Let us also fix an enumeration of points of U in a one-to-one way, say
U={zq:a<c}

Finally, we put

F={pe :w<d<w, YWw,p<W#p= Vo NVyu =2)}
Clearly, |F| =c.
II. Recursive construction. We will first define a map f: U — 1" with the
dense connected graph Gr(f) = {(z, f(z)) : € U} CII. To this end, we shall
construct by recursion auxiliary map ¢: ¢ — ¢ and ¢: ¢ = I7.

Let 0: ¢ = ¢xF be abijection. Suppose that for some a < ¢, we have defined
»(B) and ¥(B) for each B < a. Consider 8(a) = (i, p) and put 6 = dom(p).
By definition of F, the family {Vj,) : v < &} is disjoint. Choose a strictly
increasing sequence C, = {A, : ¥ < §} C 7 such that A, € Vo) for each v < 4.
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This is possible because V3 is cofinal in 7 for each 8 < ¢. By definition, the
projection of FrO, C X* x I¥ to the first factor has a nonempty interior in
X*, say W. Therefore, W is contained in 7¢(Fr hc(Oy)), where C = Cy and
7o X* x I¢ = X* is the projection. Note that |[W| > ¢. Put

Us = {zpp) : B < a} and p(a) =min{A <c:zy € W\ U,}.

Then z,) € W and we can choose a point y, € I¢ such that (Tp(a) Ya) €
Fr(hc(0,)). We define a point §, € I” as follows:

Ta(7) = ya(Ay) if v € Vju) for some v < 4, and §4(7y) = 0 otherwise.

It remains to put ¢¥(a) = §,- This finishes the construction of the map
@p:c—cand 9: ¢ — I7. It is easy to see that ¢ is injective. Put U* = {z(q) :
a < c}. Denote by y* the point in I" all coordinates of which are equal to zero
and define the map f: U — I7 by the rule:

J(#y(a)) = o for every a < ¢, and f(z) =y*if 2 € U\ U".

Let us verify that the graph of f is dense in II and connected. By Lemma
2.1, it suffices to show that Gr(f) intersects the boundary of every proper
regular open set in II. Consider a nonempty regular open set O in II, O # II,
and put F = FrO. Since ¢(II) < Ng, there exists a countable subset D of 7
such that O = p;'pp(0), where pp: X* x I” — X* x IP is the projection.
Without loss of generality we can assume that D is infinite. Since pp is an
open map, we have F = p,'pp(F) and, in addition, pp(O) is regular open in
X* xIP. Therefore, the set hBl (pp(0)) is regular open in X* x I% and, hence,
h5' (pp(0)) = O, for some u < ¢. Denote by d the order type of (D, <p) and
enumerate the elements of D in increasing order, say D = {7, : v < §}. There
exists a disjoint subfamily {V,, : v < &} of B such that v, € V,, for each
v < X. Let us define a map p: § — ¢ by the rule p(v) = a, for each v < 4.
Clearly, p € F. By definition of 8, there exists o < ¢ such that 6(a) = (u,p).
We claim that 24 = (Ty(a), Ja) € Gr(f) N F # &, and this is the key point of
the proof. The fact that z, € Gr(f) follows directly from the definition of f,
so it suffices to verify that z, € F. At the step a of our construction, we had
(Zy(a)>Ya) € Frhc(0,), where C = C,. Since fa|c = ya, we deduce that

(1) pc(2a) = (wcp(a)aga|0) = (wcp(a):ya) € Frhc(0,)

Let C = {\, : ¥ < 6} be the enumeration of C' in increasing order. By recursive
definitions at step a, we have A, € V,,, for each v < §. Therefore, v, A, € V,,
for each v < §. The latter immediately implies that

(2) Ja (1) = Fa(Ay) for each v < A.

Let us define a coordinate homeomorphism ¢§: 1¢ — IP by ¢$(z)(y,) =
z(\,) for all z € I¢ and v < §. Then h$, = idx- x g% is also a coordinate
homeomorphism of X* x I¢ onto X* x I”. Clearly, from (2) it follows that

3) gg(ga|C) = fa|D-
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In addition, the definition of the coordinate homeomorphisms ho and hp im-
plies the equality

(4) hp = h$ o he.
Applying (3), (4) and (1), we deduce that
pp(%a) = (Tp(a) JalD) = W5 (@) Galc) = hppc(za) € hp(Frhe(04))

Fr h$hc(0,) = Frhp(0,).

Combining the latter fact with the equalities
F =Fr0O, O=p,'pp(0) and pp(0) = hpn(0,),
we obtain
%o € pp (Frhp(0,)) = Frpp' (hp(0,)) = Frpp' (pp(0)) =Fr O = F.

So, we have proved that Gr(f) is a dense connected subset of II. It remains
to extend f to a map f*: X* — I” in such a way that Gr(f*) will be strongly
o-discrete.

ITI. Final step. Put K = X*\ U. Then K is closed in X* and |K| < |X*| <
2w(X") < 2¢ = 7. Let {y, : @ < k} be an enumeration of K, where xk = |K| < 7.
For every a < k, define the point a, € I7 by the rule: e,(8) = 1if a = 3,
and e, (8) = 0 otherwise. Clearly, {e, : @ < k} is a discrete subset of I” and,
hence, K' = {(ya,€q) : @ < K} is discrete in X* x I”. The closure of K’ is
contained in K x I7, so that K’ is closed and discrete in S = K' U Gr(f).

By the choice of U C X*, there exists a family {F, : 1 < n < w} of
closed discrete subsets of X* such that U = Uzozl F,,. For every n > 1, put
FE! = {2z € S : p*(2) € F,}, where p*: X* x I" is the projection. Then
F! is closed discrete in S and S = K' U J;2, F,. In other words, S is a
strongly o-discrete subspace of X* x I7. Note that S is the graph of the map
f*: X* — 17 defined by f*(z) = f(z) if z € U and f*(yo) = eq for each
a < k. Since Gr(f) C Gr(f*), we conclude that S is dense in X* x I” and
connected. Clearly, the map j = i o p* is a continuous bijection of S onto
X. This means that X admits a finer strongly o-discrete connected Tychonoff
topology. Finally, X* is a dense subspace of X x I¢, so that S is dense in
X xI¢xI" =2 X x I7. This finishes the proof. O

Corollary 2.15. Every separable connected space (in particular, the Cech-
Stone compactification SR of the reals) admits a finer strongly o-discrete con-
nected topology.

Corollary 2.16. The real line R admits a finer connected strongly o-discrete
Tychonoff topology of weight 2°.
3. OPEN PREIMAGES OF CONNECTED SPACES

By Theorem 2.6 of [20], for every Tychonoff connected space X one can
find a Tychonoff connected strongly o-discrete space Y which admits an open
continuous onto map f: Y — X. Our aim is to show that the space Y can be
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additionally chosen submetrizable. This improvement will enable us to repre-
sent every connected topological group as a quotient of a connected strongly
o-discrete group (see Theorem 4.2). Primarily, we show that the preimage YV
for X can always be chosen of the same cardinality as X. In fact, our proof is
a simplified version of that given in [20].

Theorem 3.1. Let X be a connected space of size 7. Then there exists a dense
connected subspace Y of X x 1™ with |Y| = | X| which openly and continuously
maps onto X under the projection w: X x 1™ — X and satisfies:

(i) Y is strongly o-discrete;

(ii) Y, = 7~ Y(z) NY is connected and dense in {x} x 17 for each z € X;

(iii) for every nonempty open subset U of X X 17 and every point € w(U)

one has [UNY,| =1;
(iv) if BCY and |B| <1, then B is closed in'Y and discrete.

Proof. Without loss of generality we can assume that X is infinite, so that
T = |X| > ¢. For every a < 7, choose a set T, C 7 such that |T,| = 7,
Uaer Ta =T and T, N T = @ if a # 3. Consider the set

F={I:FCr, |F|<w}.

Clearly, |F| = 7-¢ = 7. Since the set X x F has the same cardinality 7, we

can enumerate it in order type 7, say, X x F = {eq : @ < 7}. For every a < 7

we have ey = (Ta,Pa), where £, € X and p, € F. Denote by S, the finite

subset of 7 which determines the face the point p, belongs to, i.e., p, € I%=.
For every a < 7, let y, be a point of X x I” defined by

pa(IB)7 if B € Sa;
Ya(B) =<1, if B €Ty \ Sa;
0, if Ber\(TyUSy).

We claim that the subspace Y = {y, : @ < 7} of the product space X x I7 is
as required.

Denote by f the restriction to Y of the projection . Clearly, f(YV) = X,
because for any z € X there exists an @ < 7 such that =, = x and, hence,
f(ya) = x. Let us verify that the set Y, = f~!(z) is dense in {z} x I” and
connected for each x € X. The density is immediate, because Y, covers all
finite faces in {z} x I". Since this holds for all z € X, the map f: Y — X is
open (see [7, Chap. 2, Problem 340]). By Lemma 2.1, to prove connectedness
of Y, it suffices to verify that the projection of Y, to every countable face I4
of I is connected. Let A C T be countable and 7a: {z} x I” — T4 be the
corresponding projection. We will show that 74(Y;) contains the o-product

o(A) ={z€I4: |{a € A: 2(a) #0}| <w}.

Fix a point z € 0(A) and put F = {a € A : z(a) # 0}. Then |F| < w and,
hence, the set B = {f < 7 : pg = z|r} has cardinality 7. Since the sets T,
are disjoint, there exists 3 € B such that ANTg = @&. Then yg(a) = 0 for
each @« € A\ F = A\ S, whence it follows that m4(ys) = z. Therefore,
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o(A) C wa(F;). Since o(A) is a dense connected subspace of T4, the above
inclusion implies connectedness of w4 (Y, ). This implies (ii).

We can now conclude that Y is a connected space being an open monotone
preimage of the connected space X [10, Theorem 6.1.29)].

Note that for every z € X and every p € F, there exist 7 many indices
a < 7 such that z, = z and p, = p. Since f(ya) = 4 and yo(v) = po(v) for
each v € S, the property (iii) is immediate.

Let H be a subset of Y with |H| < 7. Then H = {ygz : § € B}, where BC 7
and |B| < 7. To show that H is closed in Y and discrete, take any o < 7 and
put S = Sy UlUgep Sp- Then |S| < 7, so there exists v € T, \ S. The open
subset U = {y € Y : y(v) > 0} of Y contains y, and |U N H| < 1, i.e., (iv)
holds.

Finally, for every non-negative integer n consider the set Y, = {yg : 8 <
7, |Ss| = n}. We claim that Y, is closed in ¥ and discrete for each n. Indeed,
take any a < 7 and choose distinct ordinals £, ..., 8nt1 € To \ Sa. The set

V={yeY:y(B;) >0 foreach i <n+1}

is an open neighborhood of y, in Y and |V NY,| < 1, whence the conclusion
follows. Since Y =, ., Y5, this proves (i). O

new

The next set-theoretic lemma is well known (see [8]), so we just give a brief
outline of its proof here.

Lemma 3.2. For every cardinal o there exists a cardinal T such that o < T
and T = 27.

Proof. Define a sequence {7, : n € w} of cardinals by 7o = 0-Rg and 7,41 = 2™.
Let 7 = sup{7, : n € w}. Then ¢ < 7 and 7 = 27 by a theorem of [8]. O

Recall that J(7) is the metric hedgehog with 7 many spines.

Lemma 3.3. For every infinite cardinal T there exists a partition J(1)¥ =
WY, : v < 79} of J(1)¥ into pairwise disjoint sets satisfying the following
conditions for each v < 7¥:
(i) Y, is dense in J(7)%;
(ii) |V|=71¥ for every nonempty open subset V of Y,;
(i) Y, \ A is connected for each A CY, with |A| < 1¢.

Proof. For z,y € J(1), put

diff (z,y) = {n € w: z(n) # y(n)}.
Then define an equivalence relation ~ on J(7) by z ~ y if diff(z,y) is finite.
An easy verification shows that the family of equivalence classes of (J(7)“,~)
has cardinality 7¢. Pick one point in every equivalence class and enumerate
the corresponding set of representatives, say {z, : v < 7}. For every v < 7,
denote by E, the equivalence class containing z,. It is clear that E, is a dense
connected subspace of J(7)¥. Forv < 7¥,set Y, = E,xJ(1)*¥ C J(1)¥xJ(7)¥.
Since J(7)“ is homeomorphic to J(7)¥ x J(7)¥, it is easy to verify that {Y, :
v < 7} is the required partition. O
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Our next result considerably strengthens Theorem 2.6 of [20] by making the
preimage submetrizable:

Theorem 3.4. Let Z be a connected T;-space (i = 2,3,3%). Then there exists
a connected strongly o-discrete T;-space S which openly and continuously maps
onto Z and admits a one-to-one continuous map onto the countable power of a
hedgehog (in particular, S is submetrizable). Moreover, every set B C S with
|B| < |S| is closed in S and discrete.

Proof. Let |Z| = ¢ and use Lemma 3.2 to find a cardinal 7 > ¢ such that
7% = 27. By Theorem 3.1, there exists a subspace X C Z”7 x I?” which satisfies
the following conditions:
(i) X is strongly o-discrete;
(ii) X, =7~'(2)NX is connected and dense in {2z} x I?" for every z € Z7,
where m: Z7 x 12" — Z7 is the projection;

(iii) for every nonempty open subset U of Z7 xI?" and every point z € 7(U)

one has [UN X, | =27,

(iv) if B C X and |B| < 27, then B is closed in X and discrete.

Since ¥ = 27 = |Z"|, we can fix a bijection j : Z" — 7. Let J(1)¥ =
U{Y> : v < 7} be the partition constructed in Lemma 3.3.

Fix z € Z". From (iii) it follows that |U| = 27 for every nonempty open
subset of X,. In particular, |X,| = 27. Note that w(X,) < w(I?") = 27 and
¢(X.) = w because X is dense in {z} x I?". Therefore, w(X,)*X=) < (27)¥ =
27. Since w(Yj(z)) < 7, by Lemmas 2.3 and 2.11 we have [Ro(X; x Yj.))| <
w(X, x Yj(,))*X=>¥i)) < 27, Applying Proposition 2.5 with X, as X, Y},
as Y and 27 as k we can find a bijection f,: X, — Yj(;) such that the graph
S. = Gr(f.) is dense in X, x Y}y and connected.

Define now S = |J{S, : z € Z7}. Let p1: Z7 x 1% x J(1)¥ — Z7 x I’
and po: Z7 x 1" x J(1)¥ — J(7)“ be the projections. By our construction,
pi|s: S = Z7xI? and po|s: S — J(7)“ are one-to-one (continuous) maps and
p1(S) = X. From (i) it follows that S is strongly o-discrete. Since each S, is
dense in X, X Yj(,), X, is dense in {z} xI?" (by (ii)) and Y}(,) is dense in J(7),
we conclude that S is dense in Z7 x 12" x J(1)“. Let q: Z7 xI?" x J(1)* — Z"
be the projection. For every z € Z7, the set SNg~!(z) = {2z} x S, is connected
and dense in {2z} x I?" x J(7)¥. Therefore, q|s: S = Z" is monotone (i.e., an
open continuous map with connected fibers). Since Z7 is connected, so is S
[10, 6.1.29). O

The conclusion of Theorem 3.4 can be strengthened in the case |Z| = c.

Theorem 3.5. Let Z be a connected space of size ¢. Then Z is an open
continuous image of a connected strongly o-discrete submetrizable space of the
same size.

Proof. Apply Theorem 3.1 to find a strongly o-discrete subspace Y of Z x I¢
such that |Y| = ¢ and p,,*(z) NY is dense in I¢ and connected for each z € Z,
where pz: Z x I is the projection. Then the restriction of pz to Y is an open
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monotone map onto Z, so that Y is a dense connected subspace of Z x I. Our
idea is to define a dense connected submetrizable subspace S of the product
Y x I% whose projections to the factors are one-to-one map onto Y and I%. For
every r € I, put

o(r) ={z €1¥: z(n) =r for almost all n € w}.

It is clear that o(r) is a dense connected subspace of I¥. In addition, o(r) N
o(r') = @ whenever r # r'. Note that o(r) \ A is connected for each A C o(r)
with |A] < ¢. Put 0*(0) = 1%\ Uyc, <, 0(r) and o*(r) = o(r) for each r > 0.
Since |Z| = ¢ = [I|, we can fix a bijection f: Z — I and put r, = f()
for each € Z. For every x € Z, put Y, = p,'(z) NY and consider the
product Y, x o*(r;). By definition, Y, is dense in I¢, whence w(Y;) < ¢ and
¢(Y;) < Ng. Apply Proposition 2.5 to find a dense connected subspace S, of
Y, x o0*(r;;) whose projections to the factors are bijections onto Y, and o*(r;).
Clearly, |S;| = |Yz| = ¢ for each € Z. We now put S = |J,c, S;- Then
|S| <|Z|-¢=c. Let us verify that S is as required.

From the definition of S it follows that the projections 71: Y x I¥ — Y
and mo: Y x I¥ — I restricted to S are continuous bijections. Therefore, S
is strongly o-discrete and submetrizable. Since S, is dense in Y, x I¢ for each
x € Z, we conclude that S is dense in Z x [¢x I¥. In addition, S, = wgl(x) ns
is dense in I¢ x I¢ for each € Z, where 7z: Z x I* x I¥ — Z is the projection.
Therefore, the restriction f = wz|s: S — Z is an open map of S onto Z. In
other words, f is an open monotone map of S onto the connected space Z, so
S is connected. O

4. QUOTIENTS OF CONNECTED STRONGLY 0-DISCRETE GROUPS

By Arhangel’skii’s result, every topological group is a quotient of a strongly
o-discrete topological group (see Theorem on page 137 of [5]). It was not
known whether a similar result remains valid in the class of connected groups.
However, Theorem 3.4 helps us to answer this question positively. We start
with an auxiliary lemma.

Lemma 4.1. Let X be a connected, submetrizable, strongly o-discrete space.
Then the free Graev topological group F(X) is connected, submetrizable, and
strongly o-discrete.

Proof. First, F/(X) is connected by Assertion A) of [11, Section 6]. Let us show
that F(X) is strongly o-discrete and submetrizable.

Since X is submetrizable, there exists a continuous bijection h of X onto
a metrizable space M. Denote by ¢ a metric on M generating its topology.
Extend h to a continuous isomorphism h: F(X) —» F(M). There exists an
extension of g to a continuous invariant metric g on F'(M) [11, Section 3]. Let
F,(M) be the abstract group F'(M) endowed with the topology generated by
0. Then F,(M) is a Hausdorff topological group [11] and, hence, the topology
of F,(M) is coarser than the topology of the free topological group F(M).
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In particular, the isomorphism A: F(X) — F,(M) is continuous, so that the
group F(X) is submetrizable.

For every integer n > 0, denote by B,, the subspace of F,(M) consisting
of all elements in F (M) of reduced length < n, and put A,+1 = Bpy1 \ Bn.
Then B,, is closed in F,(M) for each n > 0 (see (ag) on page 133 of [5]) and,
hence, A, is a union of countably many closed subsets of B,,. Let us now
consider the group F(X). Again, for every n > 0, define B}, as the subspace
of F(X) consisting of all elements of length < n with respect to the basis X,
and put A%, = B, \ B It is clear that h(B}) = B, and h(A%) = A, for
each n € w. It is well known that the sets B}, are closed in F(X) (see (a1)
on page 133 of [5]). In addition, for every positive n, the multiplication map
Jn: (X®X )™ — B is continuous and the restriction Jnlizt(as): Jn (AR =
A% is a homeomorphism (see (a2) on page 133 of [5]). Note that the spaces
XX (XX Y and j,1(AY) C (X ® X~1)" are strongly o-discrete, so
that A} is strongly o-discrete as well. Let A} = UiEw K, where each K, ; is
closed in A% and discrete. Since E(B;) = B,, ?L(A:L) = A, and A, is an F,-set
in By, we conclude that A} is an F,-set in B},. Therefore, we can represent A},
as a union of countably many closed subsets of By, say A}, = U, Ln,;- For
i,j € w,put A, ;; = Ky, ;N Ly;. Then the sets A, ;; are closed in B, (and,
hence, in (X)) and discrete. Clearly, A} = U; jc,, An,i,j- Since F(X) is the
union of B = {e} and the sets A%, n > 1, we conclude that F'(X) is strongly
o-discrete. O

Theorem 4.2. Every connected topological group G is a quotient group of a
connected, submetrizable, strongly o-discrete group H.

Proof. By Theorem 3.4, we can find a Tychonoff connected strongly o-discrete
submetrizable space X which admits an open continuous map onto G. Let
f: X — G besuch amap. Extend f to a continuous homomorphism f :F(X) —
G, where F(X) is the free topological group on X in the sense of Graev [11].
The homomorphism f is open by a theorem of [4]. Lemma 4.1 implies that the
group H = F(X) is as required. O

Note that the cardinality of the group H in the above theorem can be con-
siderably bigger than that of its quotient G' because our choice of the space
X and the map f: X — G involves an application of Lemma 3.2. However,
things change if |G| = c.

Corollary 4.3. FEvery connected topological group G of cardinality ¢ is a quo-
tient of a connected, submetrizable, strongly o-discrete topological group H of
the same cardinality.

Proof. By Theorem 3.5, one can find a connected strongly o-discrete sub-
metrizable space X with |X| = |G| = ¢ and an open continuous onto map
f: X — G. As in Theorem 4.2, extend f to an open continuous homomor-
phism f: F(X) — G and apply Lemma 4.1 to conclude that H = F(X) is a
connected, submetrizable, strongly o-discrete topological group. O
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Remark 4.4. Tt is easy to check that every strongly o-discrete space X is
left-separated, i.e., X admits a well-ordering < such that the left ray X, =
{y € X : y < z} is closed in X for each z € X. Therefore, the space X in
Theorem 3.4 and the group H in Theorem 4.2 are automatically left-separated.

5. OPEN PROBLEMS

The question below has been a motivation of the paper. Actually, Theorems
2.9, 2.10, 2.12, and 2.14 answer it positively in the special case of a space X
with a “small” number of regular open sets.

Problem 5.1. Let X be a connected space. Does X admit a finer connected
strongly o-discrete Tychonoff topology? What if X is compact?

The case of a metrizable space X deserves a special mentioning.

Problem 5.2. Does every connected metrizable space X admit a finer con-
nected strongly o-discrete Tychonoff topology?

Note that by Corollary 7 of [17], every infinite connected metrizable space
admits a strictly finer connected Tychonoff topology, so the problem is to choose
such a topology to be strongly o-discrete.

Recall that a connected space X is called mazimal connected [19], [12] if
every strictly finer topology on X is disconnected. Several examples of maximal
connected Hausdorff spaces were constructed in [13] and [18]. It is not known,
however, whether maximal connected Tychonoff spaces exist [6]. We conjecture
that such spaces (if exist) must be strongly o-discrete:

Problem 5.3. Is it true that if there exists a mazimal connected Tychonoff
space X, then X is strongly o-discrete?

By Theorem 4.2, there is a lot of connected strongly o-discrete topological
groups. Our suspicion is that many connected topological groups admit finer
connected strongly o-discrete group topologies.

Problem 5.4. Does every conected topological group admit a finer connected
strongly o-discrete group topology?

The next problem is closely related to Theorem 2.14.
Problem 5.5. Let X be a connected space satisfying w(X) < ¢ and ¢(X) < No.

Does X admit a finer connected submetrizable Tychonoff topology? Can such
a topology additionally be chosen strongly o-discrete?

The following two problems arise in an attempt to strengthen conclusions of
Theorems 3.4 and 4.2 and choose an open preimage as small as possible.

Problem 5.6. Let Z be a connected space. Does there exist a connected,
submetrizable, strongly o-discrete space S which admits an open continuous
map onto Z and satisfies |S| = |Z|?

Problem 5.7. Is it true that every connected topological group is a quotient of
a connected strongly o-discrete topological group of the same cardinality?
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Note that the positive answer to Problem 5.6 would imply the same to
Problem 5.7.

We do not know whether an analog of Theorem 4.2 is valid for algebraic
structures different from groups:

Problem 5.8. Let R be a connected topological ring (field). Does there exist
a connected strongly o-discrete topological ring (field) S which admits an open
continuous ring (field) homomorphism f: S — R?

(1]
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