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Volume 4, No. 2, 2003

pp. 377–390

Paths in hyperspaces

Camillo Costantini and Wies law Kubís
∗

Dedicated to Professor S. Naimpally on the occasion of his 70th birthday.

Abstract. We prove that the hyperspace of closed bounded sets
with the Hausdorff topology, over an almost convex metric space, is an
absolute retract. Dense subspaces of normed linear spaces are exam-
ples of, not necessarily connected, almost convex metric spaces. We
give some necessary conditions for the path-wise connectedness of the
Hausdorff metric topology on closed bounded sets. Finally, we describe
properties of a separable metric space, under which its hyperspace with
the Wijsman topology is path-wise connected.
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1. Introduction.

Given a metric space (X, d), let CL(X) denote the hyperspace of closed
nonempty subsets of X. We are interested in path-wise connectedness and
related properties of hyperspace topologies on CL(X), mainly the Hausdorff
metric topology and the Wijsman topology. These two topologies come from
identifying a closed set A ⊆ X with its distance functional x 7→ dist(x,A),
so that CL(X) can be regarded as a subspace of C(X,R), the space of all
continuous real functions on X. Under this identification, the Hausdorff and
Wijsman topologies are the topologies of uniform and pointwise convergence,
respectively. Both are different from the well known Vietoris topology (un-
less X is compact). The advantage of these topologies is metrizability: the
Hausdorff topology on bounded sets is always metrizable and the Wijsman
one is metrizable provided the base space is separable. The Vietoris topology
on closed sets is metrizable only if the base space is compact. For a general
reference concerning hyperspace topologies see Beer’s book [3].
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Global and local path-wise connectedness of the Vietoris topology on com-
pact sets has been studied since 1930s. Borsuk and Mazurkiewicz [4] showed
in 1931 that both K(X), the hyperspace of compact subsets of X and C(X),
the hyperspace of subcontinua of X, are path-wise connected provided X is
a metrizable continuum. The case of non-metrizable spaces was investigated
by McWaters [14] and Ward [13]: they obtained results on generalized path-
wise connectedness of the Vietoris hyperspace of compact sets. Local path-wise
connectedness of K(X) and C(X), for a compact metric space X, were first
characterized by Wojdys lawski [15] in 1939. Namely, K(X) is locally path-wise
connected iff X is locally connected. The same is true for C(X) and this prop-
erty is equivalent to the fact that K(X) (or C(X)) is an absolute neighborhood
retract. The case of all metric spaces is due to Curtis [5]: K(X) is locally path-
wise connected (equivalently: K(X) ∈ ANR) iff X is locally continuum-wise
connected, i.e. for every p ∈ X and every neighborhood V of it there is another
neighborhood U of p such that any two points of U lie in a subcontinuum of V .
A famous result of Curtis and Schori [7] says that K(X) is homeomorphic to
the Hilbert cube iff X is a locally connected, nondegenerate, metric continuum
(for other results in this spirit see e.g. [5, 6]). Let us also mention a useful result
of Curtis and Nguyen To Nhu [6]: the Vietoris hyperspace of finite sets over a
locally path-wise connected metric space is an ANR. For a study of topological
properties of compact Vietoris hyperspaces we refer to Nadler’s book [11] or to
a recent one by Illanes and Nadler [8].

Concerning other hyperspace topologies, not much is known. Antosiewicz
and Cellina [1] showed that the hyperspace of closed bounded sets with the
Hausdorff metric topology, over a convex subspace of a normed linear space,
is an absolute retract. Sakai and Yang [12] proved that CL(X) with the Fell
topology is homeomorphic to the Hilbert cube minus a point iff X is a lo-
cally compact, locally connected, separable metrizable space with no compact
components. Banakh, Kurihara and Sakai [2] showed that for a normed linear
space X, CL(X), K(X) and some other subspaces of CL(X), equipped with
the Attouch-Wets topology, are absolute retracts; in case where X is a Banach
space, CL(X) is homeomorphic to a Hilbert space. Finally, Sakai, Yaguchi and
the second author [9] gave general conditions for the ANR property of CL(X)
with the Wijsman topology. In [9] it is also proved that CL(X) with the Wijs-
man topology is homeomorphic to the separable Hilbert space, provided X is
a separable Banach space.

We give several results on path-wise connectedness and absolute neighbor-
hood retract property for some hyperspace topologies. Using well-known re-
sults for compact hyperspaces, we characterize path-wise connectednes of the
Vietoris topology on closed sets over a metrizable space; we apply this result
for the Wijsman topology. We note that for a noncompact metrizable space X,
CL(X) with the Vietoris topology is not locally connected. We prove that the
hyperspace of closed bounded sets endowed with the Hausdorff topology is an
absolute retract, provided the base space is almost convex (see the definitions
below). This improves the above-mentioned result of Antosiewicz and Cellina
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[1]. We give some necessary conditions for the path-wise connectedness of the
Hausdorff topology on closed bounded sets. Finally, we discuss the path-wise
connectedness of the Wijsman topology. We show, among other results, that
CL(X) with the Wijsman topology is path-wise connected if (X, d) is separable
and path-wise connected at infinity or continuum-wise connected.

Notation. All topological spaces are assumed to be T1. For a given topological
(metric) space X, we denote by CL(X), K(X), C(X) and CLB(X) the hy-
perspace of closed, compact, compact connected and closed bounded nonempty
subsets of X, respectively. For any set X, we denote by Fin(X) the collection of
all nonempty finite subsets of X. ω denotes the set of all nonnegative integers.

Let (X, d) be a metric space. We will denote by B(A, r) and B(A, r) the
open and closed ball centered at A ⊆ X and with radius r > 0, respectively.
The Hausdorff metric on CLB(X) is defined by

dH(A,B) = inf{r > 0: A ⊆ B(B, r) & B ⊆ B(A, r)}.

We can define dH(A,B) also for unbounded sets, setting dH(A,B) = +∞ if
there is no r > 0 with A ⊆ B(B, r) and B ⊆ B(A, r). The topology induced
by the Hausdorff metric is called the Hausdorff topology. It is reasonable to
consider the Hausdorff topology on all closed subsets of X, because dH is
locally a metric. However, CLB(X) is clopen in CL(X) and hence CL(X) is
not connected for an unbounded metric space (X, d). The Hausdorff topology
on K(X) agrees with the Vietoris topology. The Wijsman topology on CL(X)
is the least topology T such that for every x ∈ X the function A 7→ dist(x,A)
is continuous. The formula

dH(A,B) = sup
x∈X

∣∣dist(x,A)− dist(x,B)
∣∣

implies that the Wijsman topology is weaker than the Hausdorff topology. For
a noncompact metric space, the Wijsman topology is strictly weaker than the
Vietoris one (even on finite sets). We will denote by TV , TH and TW the
Vietoris, Hausdorff and Wijsman topology, respectively (the latter two depend
on the metric).

A metric space (X, d) is almost convex if for every x, y ∈ X and for every
s, t > 0 with d(x, y) < s + t, there exists z ∈ X such that d(x, z) < s and
d(z, y) < t. For example, a dense subspace of a normed linear space (or, more
generally, of a convex metric space) is almost convex.

A path in a space X is a continuous map γ : J → X where J ⊆ R is a closed
interval (usually J = [0, 1]). We denote by Bk+1 and Sk the standard k + 1-
dimensional closed ball and the standard k-dimensional sphere (which is the
boundary of Bk+1), respectively. A topological space X is k-connected (k ∈ ω)
if every continuous map f : Sk → X has a continuous extension F : Bk+1 → X.
In particular, ”0-connected” means ”path-wise connected”. X is homotopically
trivial if it is k-connected for every k ∈ ω. Local versions of k-connectedness
are defined in the obvious way. A metric space (X, d) is path-wise connected
at infinity if for every x ∈ X there exists a continuous map f : [0,+∞) →
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X such that f(0) = x and limt→+∞ d(x, f(t)) = +∞. A topological space
X is continuum-wise connected if every two points of X are contained in a
subcontinuum of X (i.e. a compact connected subspace of X).

An absolute neighborhood retract (briefly ANR) is a metrizable space X such
that for every metric space Y , every continuous map f : A → X defined on a
closed set A ⊆ Y , has a continuous extension F : U → X, for some open set U
with A ⊆ U ⊆ Y . If, under these assumptions, U = Y then X is an absolute
retract (briefly AR). It is well-known that an absolute neighborhood retract
is locally k-connected for every k ∈ ω and a homotopically trivial ANR is an
absolute retract.

A (join) semilattice is a commutative semigroup (L,∨) such that a∨a = a for
every a ∈ L. A semilattice comes from a partially ordered set (L,6) such that
every two elements of L have a supremum. Specifically, setting a∨b = sup{a, b},
(L,6) becomes a semilattice. Conversely, if (L,∨) is a semilattice then defining
a 6 b iff a ∨ b = b, we get a partial order on L such that a ∨ b = sup{a, b}.
A Lawson semilattice [10] is a topological semilattice (L,∨) (i.e. a semilattice
equipped with the topology such that ∨ : L×L→ L is continuous) which has a
neighborhood base consisting of subsemilattices. Most hyperspaces are Lawson
semilattices with respect to ∪ (see Section 2.2).

2. General results.

2.1. On path-wise connectedness. Fix a topological (metric) space X and
let T be the Vietoris topology or the Wijsman topology on CL(X). Observe
that (CL(X), T ) has the following properties:

(i) If {An}n∈ω converges to A then {C ∪ An}n∈ω converges to C ∪ A for
each C ∈ CL(X).

(ii) If {An}n∈ω is increasing and such that
⋃
n∈ω An is dense in X then

{An}n∈ω converges to X.

Most hyperspace topologies satisfy a stronger condition than (i), namely the
union operator ∪ : CL(X) × CL(X) → CL(X) is continuous. On the other
hand, for a bounded metric space X the Hausdorff topology on CL(X) does
not necessarily satisfy (ii).

Proposition 2.1. Let X be a separable topological space and let T be a topology
on CL(X) satisfying conditions (i), (ii) above. Then the following conditions
are equivalent:

(a) (CL(X), T ) is path-wise connected.
(b) For each a, b ∈ X there is a continuous map γ : [0, 1] → (CL(X), T )

such that γ(0) = {a} and b ∈ γ(1).

Proof. It is enough to show that (b) =⇒ (a). Fix C ∈ CL(X). We show that
there exists a path joining C to X. Fix a countable dense set {dn : n ∈ ω} ⊆ X
with d0 ∈ C. For each n ∈ ω choose a continuous map γn : [0, 1]→ (CL(X), T )
such that γn(0) = {dn} and dn+1 ∈ γn(1). Define φn : [n, n + 1] → CL(X) by
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setting
φn(t) = C ∪

⋃
k<n

γk(1) ∪ γn(t− n).

As T is nice (property (i)), we see that φn is continuous. Furthermore, φn(n+
1) = φn+1(n + 1) and

⋃
n∈ω φn(n) is dense. Thus we can define a map

φ : [0,+∞]→ CL(X) by setting φ � [n, n+1] = φn and φ(+∞) = X. Applying
condition (ii) for T we see that φ is continuous at +∞. This completes the
proof. �

2.2. Hyperspaces as Lawson semilattices. Let (L,∨) be a Lawson semi-
lattice and consider Fin(L) with the Vietoris topology. The formula

r({a1, . . . , an}) = a1 ∨ . . . ∨ an
defines a map r : Fin(L) → L which is easily seen to be continuous (because
L has a basis consisting of subsemilattices). Identifying L with {{x} : x ∈ L}
we see that L is a retract of Fin(L). On the other hand, if L is metrizable and
locally path-wise connected [and connected] then Fin(L) is an ANR [AR] (by
a theorem of Curtis and Nguyen To Nhu [6]). Thus we obtain a useful result
due to Banakh, Kurihara and Sakai [2]:

Theorem 2.2. Let (L,∨) be a metrizable Lawson semilattice which is locally
path-wise connected. Then L is an ANR. If , additionally, L is connected then
L is an AR.

Using similar arguments we can prove the following:

Proposition 2.3. Let (L,∨) be a metrizable Lawson semilattice. Then L is
k-connected for every k > 0.

Proof. Let f : Sk → L be a continuous map. Then f extends naturally to a
Vietoris continuous map f : Fin(Sk) → Fin(L). As k > 0, Fin(Sk) is an AR,
so there is a map j : Bk+1 → Fin(Sk) such that j(x) = {x} for x ∈ Sk (in fact,
there is a straightforward formula for j, see [6]). Now setting F = rfj, where
r : Fin(L) → L is the retraction defined above, we get a continuous extension
of f over Bk+1. �

To apply the above results to hyperspaces we need to know that they are
Lawson semilattices.

Proposition 2.4. The Vietoris, Wijsman and Hausdorff hyperspaces are Law-
son semilattices with respect to ∪.

Proof. Let X be a topological (metric) space and let T ∈ {TV , TH , TW }.
Clearly, T has a base consisting of subsemilattices. We need to show the
continuity of the union. First, let T = TV and fix (A0, B0) ∈ CL(X)×CL(X).
If A0∪B0 ∈ U+ then (A0, B0) ∈ U+×U+ and ∪[U+×U+] ⊆ U+, where ∪[M ]
is the image of M ⊆ CL(X)×CL(X) under ∪ : CL(X)×CL(X)→ CL(X). If
A0∪B0 ∈ U− then (A0, B0) ∈W , where W = (U−×CL(X))∪(CL(X)×U−),
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and we have ∪[W ] ⊆ U−. Thus, ∪ is continuous with respect to TV . For
T = TW and T = TH the continuity of ∪ follows from the formulae:

dist(x,A ∪B) = min{dist(x,A),dist(x,B)},
dH(A ∪B,A′ ∪B′) 6 max{dH(A,A′), dH(B,B′)}.

�

3. The Vietoris topology.

In this section we note some results on path-wise connectedness of the Vi-
etoris topology. Recall that the theorem of Borsuk and Mazurkiewicz [4] says
that both K(X) and C(X) are path-wise connected whenever X is a metrizable
continuum. Using this result, we are able to investigate the case of noncompact
metric spaces. We use the following fact: if γ : [0, 1] → K(X) is a path and
γ(0) is connected then

⋃
γ[0, 1] is a subcontinuum of X (see, e.g., Nadler [11]).

Theorem 3.1. For a metrizable space X the following conditions are equiva-
lent:

(a) Every compact subset of X is contained in a continuum.
(b) (K(X), TV ) is path-wise connected.

Proof. (a) =⇒ (b) Fix A,B ∈ K(X). Let C ⊆ X be a continuum such
that A ∪ B ⊆ C. Then A,B ∈ K(C) and hence, by the theorem of Borsuk-
Mazurkiewicz, there exists a path γ : [0, 1] → K(C) such that γ(0) = A and
γ(1) = B.

(b) =⇒ (a) Fix A ∈ K(X) and pick an a ∈ X. Let γ : [0, 1] → K(X) be a
path joining A to {a}. Then D =

⋃
γ[0, 1] is a continuum containing A. �

Example 3.2. An example of a path-wise connected subspace of the plane R2

which does not satisfy (a) above. Consider

X = ({0} × [0,+∞)) ∪ S ∪ T,

where
S = {(x, | sin(π/x)|/x) : x ∈ (0, 1]}

and T = {(x, y) ∈ R2 : (x − 1/2)2 + y2 = 1/4 and y < 0}. Observe that X is
path-wise connected. Let A = ({0} ∪ {1/n : n ∈ ω}) × {0}. Then A ∈ K(X)
but each closed connected subset of X containing A also contains {0}× [0,+∞)
and therefore is not compact.

Theorem 3.3. For a metrizable space X the following conditions are equiva-
lent:

(a) (C(X), TV ) is path-wise connected.
(b) There exists G ⊆ K(X) containing all singletons of X, such that

(G, TV ) is path-wise connected.
(c) X is continuum-wise connected, i.e. each two points of X lie in a

subcontinuum of X.
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Proof. (a) =⇒ (b) is obvious.
(b) =⇒ (c) Fix a, b ∈ X and let γ : [0, 1]→ G be a path joining {a} and {b}.

Then
⋃
γ[0, 1] is a subcontinuum of X containing a, b.

(c) =⇒ (a) Fix A,B ∈ C(X). Let G be a subcontinuum of X intersecting
both A and B. Then A,B ∈ C(D), where D = A ∪B ∪G. By the theorem of
Borsuk-Mazurkiewicz, there exists a path in C(D) joining A and B. �

Using the above result and Proposition 2.1 we obtain the following.

Corollary 3.4. Let X be a separable topological space. If X is path-wise
connected or X is continuum-wise connected and metrizable then (CL(X), TV )
is path-wise connected.

Let X be a metrizable space. A theorem of Curtis [5] says that (K(X), TV ) is
locally path-wise connected (equivalently: (K(X), TV ) ∈ ANR) iff X is locally
continuum-wise connected. Concerning CL(X), we have the following negative
result.

Theorem 3.5. If X is a noncompact metrizable space then (CL(X), TV ) is
not locally connected.

Proof. Let C = {xn : n ∈ ω} be a (one-to-one) sequence in X having no cluster
point (by the noncompactness of X); then C ∈ CL(X). Choose a disjoint
family {Un}n∈ω of open sets such that xn ∈ Un for n ∈ ω. Let U =

⋃
n∈ω Un.

Then U+ is a neighborhood of C. Let V ∈ TV be any neighborhood of C such
that V ⊆ U+. Then V contains a basic neighborhoodW = V +∩V −0 ∩· · ·∩V

−
m−1

of C, with Vi ⊆ V and V, V0, . . . , Vm−1 open in X. This implies, in particular,
that C ⊆ V and that for every i < m there is an n(i) ∈ ω with xn(i) ∈ Vi.
Let F = {xn(0), . . . , xn(m−1)}, so that F ∈ W, and fix k > max{n(i) : i < m}.
We will prove that S = V ∩ U−k is clopen in V, and this will imply that V is
disconnected, because C ∈ S while F ∈ W \ S ⊆ V \ S.

Clearly, S is open in V because U−k is open in CL(X). On the other hand,
we may observe that S = V ∩ [clUk]−: indeed, every element of V is a subset
of U and hence it cannot contain any point of (clUk) \Uk (because the sets Ui
are pairwise disjoint). Therefore, S is also closed in V. �

4. The Hausdorff metric topology.

In this section we consider CLB(X) endowed with the Hausdorff metric
topology. The Hausdorff metric is actually defined on CL(X) but one can easily
observe that CLB(X) is clopen in CL(X) so CL(X) is not connected unless X
is bounded. If X is not compact then there is an unbounded metric on X; on
the other hand if d is an unbounded metric on X then ρ(x, y) = min{1, d(x, y)}
defines a bounded, uniformly equivalent metric, so the Hausdorff metric induced
by ρ is equivalent to the one induced by d. It follows that a noncompact
metrizable space admits a metric for which the Hausdorff hyperspace of closed
bounded sets is disconnected.
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Observe that if γ : [0, 1] → CLB(X) is a path then the map Γ: [0, 1] →
CLB(X) defined by the formula

Γ(t) = cl
(⋃
s6t

γ(s)
)

is also a path in CLB(X). Such a map will be called an order arc in CLB(X).

Lemma 4.1. For a metric space (X, d) the following conditions are equivalent:
(a) (CLB(X), TH) is path-wise connected.
(b) For each p ∈ X and for each n ∈ ω there exists a path γ : [0, 1] →

CLB(X) such that γ(0) = {p} and B(p, n) ⊆
⋃
t∈[0,1] γ(t).

Proof. We need to show that (b) =⇒ (a). Fix C,D ∈ CLB(X). Fix n ∈ ω
with

n > max{dH({c}, D), dH(C, {d})},
where c ∈ C and d ∈ D are fixed arbitrarily. By (b) there exist paths
f, g : [0, 1] → CLB(X) with f(0) = {c}, g(0) = {d}, B(c, n) ⊆

⋃
t∈[0,1] f(t)

and B(d, n) ⊆
⋃
t∈[0,1] g(t). We may assume that f, g are order arcs, thus

B(c, n) ⊆ f(1) and B(d, n) ⊆ g(1). Set F = f(1) ∪ g(1). Then F ∈ CLB(X)
and C ∪D ⊆ B(d, n) ∪ B(c, n) ⊆ F . Define γ : [0, 2]→ CLB(X) by setting

γ(t) =

{
C ∪ f(t) if t ∈ [0, 1],
C ∪ f(1) ∪ g(t− 1) if t ∈ [1, 2].

Observe that γ is well-defined, continuous and γ(0) = C, γ(2) = F . It follows
that C and F can be joined by a path. Similarly, there is a path joining D to
F . �

4.1. Almost convex metric spaces. Recall that a metric space (X, d) is
almost convex if for each a, b ∈ X and for each s, t > 0 such that d(a, b) < s+ t
there exists x ∈ X with d(a, x) < s and d(x, b) < t. Clearly, every convex
metric space is almost convex and a dense subspace of an almost convex metric
space is almost convex.

Lemma 4.2. A metric space (X, d) is almost convex iff for each A ⊆ X and
for each s, t > 0 we have B(B(A, s), t) = B(A, s+ t).

Proof. If (X, d) satisfies the above condition then for a, b ∈ X and s, t > 0
with d(a, b) < s + t we have b ∈ B(a, s + t) = B(B(a, s), t) and hence there is
x ∈ B(a, s) with d(x, b) < t. Thus (X, d) is almost convex.

Assume now that (X, d) is almost convex and fix A ⊆ X and s, t > 0.
Clearly B(B(A, s), t) ⊆ B(A, s + t). Fix p ∈ B(A, s + t). Let a ∈ A be such
that d(a, p) < s+ t. There exists x ∈ X with d(a, x) < s and d(x, p) < t. Thus
p ∈ B(B(A, s), t). �

Lemma 4.3. Let (X, d) be an almost convex metric space and let C ∈ CL(X).
Then the map γ : [0,+∞)→ CL(X) defined by the formula

γ(t) = B(C, t)
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is a constant 1 Lipschitz map with respect to the Hausdorff metric on CL(X)
and the standard metric on [0,+∞).

Proof. First observe that cl B(A, r) = B(A, r) for every A ⊆ X and r > 0.
Thus, by Lemma 4.2 we have γ(t+ r) ⊆ B(γ(t), r) for every t, r > 0. It follows
that dH(γ(t), γ(t+ r)) 6 r. �

Theorem 4.4. Let (X, d) be an almost convex metric space. Then CLB(X)
with the Hausdorff metric topology is an absolute retract.

Proof. CLB(X) is path-wise connected by Lemma 4.1, but we need to show
that it is locally path-wise connected. Fix C,D ∈ CLB(X) and r > dH(C,D).
Let A = B(C, r) ∪ B(D, r). Then C ∪ D ⊆ A and A ∈ CLB(X). Define
γ : [0, 2r]→ CLB(X) by

γ(t) =

{
B(C, t), if t 6 r,
B(C, r) ∪ B(D, t− r), if r 6 t 6 2r.

By Lemma 4.3, γ is continuous with respect to the Hausdorff metric. Observe
that dH(γ(t), C) 6 2r. Thus C and A can be joined by a path contained
in the open ball centered at C and with radius 2r. By symmetry, the same
applies to D and A. This proves that, given the neighbourhood BdH (C, 3r)
of C in (CLB(X), dH), BdH (C, r) in another neighbourhood of C such that
every element of it may be joined to C by a path lying in BdH (C, 3r). There-
fore, (CLB(X), dH) is locally path-wise connected . As CLB(X) is a Lawson
semilattice, by Theorem 2.2 it is an ANR. On the other hand, CLB(X) is
homotopically trivial (Proposition 2.3), so it is an AR. �

Corollary 4.5. Let X be a dense subset of a convex subset of a normed linear
space, endowed with the metric induced by the norm. Then (CLB(X), TH) is
an absolute retract.

The above result in the case of convex subsets of normed spaces was proved,
using elementary although complicated methods, by Antosiewicz and Cellina
[1].

4.2. C-connectedness. We investigate necessary conditions for the path-wise
connectedness of (CLB(X), dH) and we present some counterexamples.

Let us call a metric space (X, d) C-connected (or connected in Cantor’s
sense) if for each a, b ∈ X and for each ε > 0 there exist x0, . . . , xn ∈ X such
that x0 = a, xn = b and d(xi, xi+1) < ε for i < n. Clearly every connected
space is C-connected and every compact C-connected space is connected. A
sequence (x0, . . . , xn) with d(xi, xi+1) < ε for i < n will be called an ε-sequence
of size n joining x0, xn. Call a metric space (X, d) uniformly C-connected if
for each bounded set B ⊆ X and for each ε > 0 there exists k ∈ ω such that
for each x, y ∈ B there exists an ε-sequence in X of size at most k joining
x, y. Observe that the closure of a uniformly C-connected subset of X is also
uniformly C-connected.
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Proposition 4.6. Let (X, d) be a metric space. Then (CLB(X), dH) is C-co-
nnected if and only if (X, d) is uniformly C-connected.

Proof. Suppose that (CLB(X), dH) is C-connected. Fix a closed bounded set
B ⊆ X and pick a p ∈ B. Fix ε > 0 and let (A0, . . . , Ak) be an ε-sequence in
CLB(X) with A0 = {p} and Ak = B. Fix x ∈ B. We can find xk−1 ∈ Ak−1

such that d(xk−1, x) < ε, because dH(Ak−1, B) < ε. Inductively, we find
xi ∈ Ai such that d(xi, xi+1) < ε. Then x0 = {p} and (x0, . . . , xk−1, x) is an
ε-sequence of size k joining p, x. It follows that every two points of B are joined
by an ε-sequence of size at most 2k. Thus (X, d) is uniformly C-connected.

Suppose now that (X, d) is uniformly C-connected and fix B ∈ CLB(X).
Fix p ∈ B. We show that {p} and B can be joined by an ε-sequence for every
ε > 0. As (X, d) is C-connected and is isometrically embedded in CLB(X), it
then follows that CLB(X) is C-connected.

Fix ε > 0. Let k be such that for each x ∈ B there exists an ε/2-
sequence (y0(x), . . . , yk(x)) such that y0(x) = p and yk(x) = x. Define Ai =
cl{yi(x) : x ∈ B}. Observe that Ai ∈ CLB(X) and dH(Ai, Ai+1) 6 ε/2 < ε
for i < k. Thus (A0, . . . , Ak) is an ε-sequence in CLB(X) joining A0 = {p} to
Ak = B. �

Consider the following metric properties:
C1: Every bounded subset of X is contained in a uniformly C-connected

bounded subset of X.
C2: For each p ∈ X and for each r > s > 0 such that B(p, r) \ B(p, s) 6= ∅

there exists a uniformly C-connected set S ⊆ B(p, r) such that p ∈ S
and S ∩ B(p, r) \ B(p, s) 6= ∅.

Proposition 4.7. Let (X, d) be a metric space such that (CLB(X), TH) is
path-wise connected. Then (X, d) has properties C1, C2.

Proof. Fix p ∈ X and r > 0. Let f : [0, 1] → CLB(X) be a Hausdorff con-
tinuous order arc with f(0) = {p} and f(1) ⊇ B(p, r). Fix ε > 0. Let k ∈ ω
be such that |t − s| 6 1/k implies dH(f(t), f(s)) < ε. Fix x0 ∈ B(p, r). As
dH(f(1), f(1 − 1/k)) < ε, we can find x1 ∈ f(1 − 1/k) with d(x0, x1) < ε.
Inductively, we find xi ∈ f(1− i/k) with d(xi−1, xi) < ε. Finally xk = p which
means that (x0, . . . , xk) is an ε-sequence of size k joining p, x0. This shows that
f(1) is uniformly C-connected and consequently (X, d) has property C1. By
the same argument, f(t) is C-connected for each t ∈ [0, 1]. Now let 0 < s < r
be such that B(p, r) \ B(p, s) 6= ∅. Then dH({p}, f(1)) ≥ s. Let t0 ∈ [0, 1] be
such that dH({p}, f(t0)) ∈ [s, r). Then S = f(t0) is a uniformly C-connected
set included in B(p, r) with p ∈ S and S ∩ B(p, r) \ B(p, s) 6= ∅. This shows
property C2. �

We now describe an example of a path-wise connected space with path-wise
disconnected Hausdorff hyperspace, and an example of a connected, path-wise
disconnected Hausdorff hyperspaces.
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Example 4.8. Let (X, ρ) be an unbounded metric space and define a bounded
metric on X by the formula d(x, y) = min{ρ(x, y), 1}. Then (CL(X), dH) is
not C-connected since (X, d) is not uniformly C-connected. Indeed, (X, d) is
bounded, but for every k we can find two points of X which cannot be joined by
a 1-sequence of size k. This shows that if a metrizable space X is not compact
then there exists a metric d on X such that (CLB(X), dH) is not C-connected.

Example 4.9. Let A =
⋃
n∈ω(3−n, 2 · 3−n) and B =

⋃
n∈ω[3−n, 2 · 3−n].

Consider
X = {(x, y) ∈ [0, 1]2 : χA(x) 6 y 6 χB(x)}

with the topology inherited from the plane. Then for any compatible metric d
on X, CLB(X) is not path-wise connected since (X, d) does not have property
C2. Indeed, if U is a neighborhood of p = (0, 0) contained in [0, 1] × [0, 1/2)
then the only C-connected subset of U containing p is {p}. On the other hand,
if d is the Euclidean metric on X then (X, d) has property C1.

To show that (CLB(X), dH) is connected, one first proves that CLB(X) \
{{(0, 0)}} is connected (actually, path-wise connected, as it is homeomorphic
to CLB(X) \ {(0, 0)}); and then one observes that {(0, 0)} is in the dH -closure
of CLB(X) \ {{(0, 0)}}. We omit details.

Problem 4.10. Do properties C1, C2 characterize path-wise connectedness of
the Hausdorff topology?

5. The Wijsman topology.

Let (X, d) be a metric space. Recall that the Wijsman topology is weaker
than the Vietoris one; on CLB(X) it is also weaker than the Hausdorff metric
topology. (CL(X), TW ) is completely regular and, it is metrizable iff X is
separable. See Beer’s book [3] for details.

Applying Corollary 3.4 and Lemma 4.3 together with Proposition 2.1 we
obtain the following.

Corollary 5.1. If (X, d) is a separable continuum-wise connected metric space
then (CL(X), TW ) is path-wise connected.

Theorem 5.2. If (X, d) is an almost convex metric space then (CL(X), TW )
is path-wise connected.

Proof. If (X, d) is separable, this follows from Proposition 2.1 and Lemma 4.3.
However in general, by Lemma 4.3, the formula

γ(t) =

{
B(A, t) if t ∈ [0,+∞),
X if t = +∞.

defines a Wijsman continuous path γ : [0,+∞] → CL(X) joining A to X, for
each A ∈ CL(X). �

The next result describes different situations. It appears that (CL(X), TW )
may be path-wise connected even if X is far from being connected.
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Theorem 5.3. Let (X, d) be a separable metric space such that for each a, b ∈
X either there exists a uniformly continuous map f : Q∩[0, 1]→ X with f(0) =
a and f(1) = b, or else there exists a map g : Q∩ [0,+∞)→ X such that g(0) =
b, limt→+∞ d(g(t), b) = +∞ and g � (Q ∩ [0, n]) is uniformly continuous for
every n ∈ ω. Then CL(X) with the Wijsman topology is path-wise connected.

Proof. We use Proposition 2.1. Fix a, b ∈ X. Assume first that there exists
a uniformly continuous map f : Q ∩ [0, 1] → X with f(0) = a and f(1) = b.
Define a path γ : [0, 1]→ CL(X) by setting

γ(t) = cl{f(q) : q ∈ Q ∩ [0, t]}.

Clearly, γ(0) = {a} and b ∈ γ(1). We need to show that γ is continuous.
Fix ε > 0. Let δ > 0 be such that d(f(q0), f(q1)) < ε whenever |q0 − q1| < δ,
q0, q1 ∈ Q∩ [0, 1]. Suppose to have any t0, t1 ∈ [0, 1] with |t0−t1| < δ. Consider
x = f(q0), where q0 ∈ Q∩ [0, t0]. Choose q1 ∈ Q∩ [0, t1] such that |q0− q1| < δ.
Then d(x, f(q1)) < ε and f(q1) ∈ γ(t1). It follows that γ(t0) ⊆ B(γ(t1), ε). By
symmetry we get dH(γ(t0), γ(t1)) 6 ε. It follows that γ is uniformly continuous
with respect to the Hausdorff metric on CL(X). Hence, γ is also continuous
with respect to the Wijsman topology.

Now assume that there exists a map g : Q∩ [0,+∞)→ X such that g(0) = b,
limt→+∞ d(g(t), b) = +∞ and g � (Q ∩ [0, n]) is uniformly continuous for each
n ∈ ω. Define γ : [0,+∞]→ CL(X) by setting

γ(t) = {a} ∪ cl{g(q) : q ∈ Q ∩ [t,+∞)}

for t ∈ [0,+∞) and γ(+∞) = {a}. Clearly, b ∈ γ(0). Observe that γ � [0, n]
can be represented in the form

γ(t) = η(t) ∪Bn,

where Bn = {a} ∪ cl{g(q) : q ∈ [n,+∞)} and

η(t) = cl{g(q) : q ∈ Q ∩ [t, n]}.

Thus, by the previous argument, γ � [0, n] is continuous with respect to the
Wijsman topology. It remains to show that γ is continuous at +∞. Fix x ∈ X.
Then dist(x, γ(+∞)) = d(x, a). On the other hand, d(g(q), x) > d(g(q), b) −
d(x, b) so there exists n0 ∈ ω such that d(g(q), x) > d(x, a) for q ∈ Q∩[n0,+∞).
Hence dist(x, γ(t)) = d(x, a) = dist(x, γ(+∞)) for t > n0. �

Corollary 5.4. Let (X, d) be a separable metric space which is path-wise con-
nected at infinity. Then (CL(X), TW ) is path-wise connected.

Let (X, d) be a separable, locally path-wise connected metric space. In [9],
Sakai, Yaguchi and the second author proved that (CL(X), TW ) is an absolute
neighborhood retract provided X \

⋃
B has finitely many components, for every

finite family B consisting of closed balls in (X, d). We give an example of an
almost convex, locally path-wise connected, separable metric space, for which
the Wijsman hyperspace is not locally connected.
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Example 5.5. Let (X, d) be the separable hedgehog space, i.e.

X = {θ} ∪
⋃
n∈ω

(0, 1]× {n},

where d(θ, (t, n)) = t, d((t, n), (s, n)) = |t−s| and d((t, n), (s,m)) = t+s for n 6=
m. Then (X, d) is an almost convex metric space and it is an absolute retract.
We claim that (CL(X), TW ) is not locally connected. Let A0 = {(1, n) : n ∈ ω}
and let U = {A ∈ CL(X) : dist(θ,A) > 1/2}. Then U is a neighborhood of A0.
For each n ∈ ω define

V−n = {A ∈ CL(X) : dist((1, n), A) < 1/2},
V+
n = {A ∈ CL(X) : dist((1, n), A) > 1}.

Clearly V−n ∩ V+
n = ∅ and V−n ,V+

n ∈ TW . Observe that U ⊆ V−n ∪ V+
n . Also,

V−n is a neighborhood of A0. Now we claim that for every neighborhood V of
A0 with V ⊆ U , there is n ∈ ω such that V+

n ∩ V 6= ∅, i.e. V+
n disconnects V.

Indeed, observe that A0 = limn→∞An, where An = {(1, k) : k < n}. Thus, for
every open V ⊆ U with A0 ∈ V there exists n ∈ ω such that An ∈ V. On the
other hand dist((1, n), An) = 2 so An ∈ V+

n .
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