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Abstract. In the realm of semiuniform convergence spaces first
countability is divisible and leads to a well-behaved topological con-
struct with natural function spaces and one-point extensions such that
countable products of quotients are quotients. Every semiuniform con-
vergence space (e.g. symmetric topological space, uniform space, filter
space, etc.) has an underlying first countable space. Several applica-
tions of first countability in a broader context than the usual one of
topological spaces are studied.
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1. Introduction.

Recently, the author ([4],[5]) has shown that a topologist’s life is easier
in Convenient Topology, where mainly the topological construct SUConv of
semiuniform convergence spaces is considered. In SUConv, topological and
uniform concepts are available and fundamental constructions can be easily
described. In the realm of topological spaces the first axiom of countability
plays an essential role whenever sequences are prefered rather than filters (e.g.
in Analysis). Unfortunately, quotients of first countable topological spaces
need not be first countable. This situation can be improved in the framework
of semiuniform convergence spaces: First countability is divisible. Since first
countability is also summable, this implies that the construct FC-SUConv of
first countable semiuniform convergence spaces is bicoreflective in SUConv,
i.e. every semiuniform convergence space has an underlying first countable
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space. Another consequence is the following: FC-SUConv is a topological
universe (= cartesian closed and extensional topological construct) such that
countable products of quotients are quotients.

Not only first countable (symmetric) topological spaces, but also uniform
spaces with a countable base, i.e. pseudometrizable uniform spaces, are first
countable (as semiuniform convergence spaces). For uniform spaces, there is no
difference between the first and the second axiom of countability, when these
axioms are generalized to semiuniform convergence spaces.

The applications of first countability, studied here, cover the following themes:

1. The definition of the closure of a subset by means of sequences.
2. The definition of completeness by means of sequences.
3. The equivalence of countable compactness and sequential compactness.
4. The definition of continuous convergence by means of sequences.
5. The definition of continuity by means of sequences.

2. Preliminaries.

Definition 2.1. 1) A semiuniform convergence space is a pair (X, JX), where
X is a set and JX a set of filters on X×X such that the following are satisfied:

UC1) The filter ẋ× ẋ, generated by {(x, x)}, belongs to JX for each x ∈ X,
UC2) G ∈ JX , whenever F ∈ JX and F ⊂ G,
UC3) F ∈ JX implies F−1 = {F−1 : F ∈ F} ∈ JX , where F−1 = {(y, x) :

(x, y) ∈ F}.
If (X, JX) is a semiuniform convergence space, then the elements of JX are

called uniform filters.
2) A map f : (X, JX)→ (Y, JY ) between semiuniform convergence spaces is

called uniformly continuous provided that (f × f)(F) ∈ JY for each F ∈ JX .
3) The construct of semiuniform convergence spaces (and uniformly contin-

uous maps) is denoted by SUConv.

Remark 2.2. SUConv is a topological construct, where initial and final struc-
tures have an easy description:

If X is a set, ((Xi, JXi))i∈I a family of semiuniform convergence spaces and
(fi : X → Xi)i∈I (resp. (fi : Xi → X)i∈I) a family of maps, then

JX = {F ∈ F (X × X) : (fi × fi)(F) ∈ JXi for each i ∈ I} (resp. JX =
{F ∈ F (X ×X): there is some i ∈ I and some Fi ∈ JXi with (fi × fi)(Fi) ⊂
F} ∪ {ẋ× ẋ : x ∈ X})
is the initial (resp. final) SUConv-structure w.r.t. the given data, where
F (X ×X) denotes the set of all filters on X ×X.

Example 2.3. 1) Let (X,X) be a (symmetric) topological space. Then its
corresponding semiuniform convergence space (X, JγqX

) is defined by
F ∈ JγqX

iff there is some x ∈ X such that F ⊃ UX(x)×UX(x), where UX(x)
denotes the neighborhood filter of x in (X,X).
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2) Let (X,W) be a uniform space. Then its corresponding semiuniform
convergence space (X, [W]) is defined by

F ∈ [W] iff F ⊃W.

3) Let X = (X, JX) and Y = (Y, JY ) be semiuniform convergence spaces. Then
there is a coarsest SUConv-structure JX,Y on the set [X,Y] of all uniformly
continuous maps from X into Y such that the evaluation map eX,Y : X ×
([X,Y], JX,Y )→ Y (defined by eX,Y (x, f) = f(x)) is uniformly continuous. It
is defined by

Φ ∈ JX,Y iff Φ(F) ∈ JY for each F ∈ JX

(Φ(F) denotes the filter generated by {A(F ) : A ∈ Φ and F ∈ F} with A(F ) =
{(f(x), g(y)) : (f, g) ∈ A and (x, y) ∈ F}).

([X,Y], JX,Y ) is called a natural function space.
4) Let X = (X, JX) be a semiuniform convergence space. Let X* = X ∪

{∞X} with ∞X /∈ X and JX* = {H ∈ F (X*×X*): the trace of H on X ×X
exists and belongs to JX or the trace on X ×X does not exist}.

Then (X*, JX*) is called a one-point extension of (X, JX). Obviously, JX*

is the coarsest SUConv-structure on X* such that (X, JX) is a subspace of
(X*, JX*).

Remark 2.4. 1) The existence of one-point extensions implies that quotients
are hereditary, i.e. if f : X → Y is a quotient map in SUConv, then for every
Z ⊂ Y , the map f | f−1[Z] : f−1[Z]→ Z is again a quotient map.

2) Concerning the definitions of (symmetric) Kent convergence spaces and
filter spaces, and their relations to semiuniform convergence spaces, see [4] (or
[5]).

3. First countable spaces.

Definition 3.1. 1) A semiuniform convergence space (X, JX) is said to fulfill
the first axiom of countability or to be first countable iff each uniform filter has
a uniform subfilter with a countable base.

2) A filter space (X, γ) is called first countable provided that each F ∈ γ has
a subfilter G ∈ γ with a countable base.

3) A Kent convergence space (X, q) is first countable iff for each (F, x) ∈ q,
there is some (G, x) ∈ q such that G is a subfilter of F with a countable base.

Proposition 3.2. Let (X, JX) be a semiuniform convergence space fulfilling
the first axiom of countability. Then the underlying filter space (X, γJX ) is first
countable.

Proof. Let F ∈ γJX . Then F×F ∈ JX and by assumption there is some G ∈ JX
with a countable base B = {B1, B2, . . . , Bn . . .} such that G ⊂ F × F. Thus,
for each n ∈ N = {1, 2, . . .}, there exists some Fn ∈ F with Fn × Fn ⊂ Bn .
Obviously, the finite intersections of elements of {Fn : n ∈ N} form a countable
base of some subfilter H of F. Since G ⊂ H×H , it follows that H×H belongs
to JX , i.e. H ∈ γJX . �
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Proposition 3.3. Let (X, γ) be a filter space and (X, Jγ) its corresponding
semiuniform convergence space. Then (X, Jγ) is first countable iff (X, γ) is
first countable in the sense of 3.1.2).

Proof. “⇒”. This follows immediately from 3.2, since γ = γJγ .
“⇐”. Let F ∈ Jγ . Then there is some G ∈ γ with G×G ⊂ F. Furthermore,

there is some H ∈ γ with a countable base B such that H ⊂ G. Consequently,
H× H ⊂ G×G ⊂ F, where H× H ∈ Jγ has a countable base, namely
{B ×B : B ∈ B}. �

Proposition 3.4. Let (X, γ) be a first countable filter space. Then the under-
lying (symmetric) Kent convergence space (X, qγ) is also first countable.

Proposition 3.5. Let (X, q) be a symmetric Kent convergence space and
(X, Jγq ) its corresponding semiuniform convergence space. Then (X, Jγq ) is
first countable iff (X, q) is first countable in the sense of 3.1 3).

Proof. “⇒”. Since γJγq = γq and qγq = q, (X, q) is first countable by means of
the above propositions.

“⇐”. Let F ∈ Jγq . Then there is some (G, x) ∈ q such that G × G ⊂ F.
By assumption, there exists (H, x) ∈ q such that H is a subfilter of G with a
countable base B. Hence, H × H ⊂ F, where H × H ∈ Jγq has the countable
base {B ×B : B ∈ B}. �

Corollary 3.6. The underlying (symmetric) Kent convergence space (X, qγJX
)

of a first countable semiuniform convergence space (X, JX) is first countable.

Proof. Apply 3.2 and 3.4. �

Corollary 3.7. Let (X,X) be a symmetric topological space (=R0-space) and
define qX ⊂ F (X) × X by (F, x) ∈ qX iff F ⊃ UX(x). Then the following are
equivalent:

(1) (X,X) is first countable in the usual sense, i.e. for each x ∈ X, UX(x)
has a countable base.

(2) (X,X) is first countable as a semiuniform convergence space, i.e. (X, JγqX
)

is first countable.
(3) (X,X) is first countable as a Kent convergence space, i.e. (X, qX) is first

countable in the sense of 3.1.3).

Proof. (1) ⇒ (2). Let F ∈ JγqX
. Then there is some x ∈ X such that UX(x)×

UX(x) ⊂ F. Since, by assumption, UX(x) has a countable base, the subfilter
UX(x)× UX(x) of F has also a countable base and belongs to JγqX

.
(2) ⇒ (3). Apply 3.6.
(3) ⇒ (1). Let x ∈ X and consider UX(x). Then (UX(x), x) ∈ qX and, by

assumption, there is a subfilter G of UX(x) with a countable base such that
(G, x) ∈ qX. Hence, UX(x) ⊂ G ⊂ UX(x), which implies G = UX(x). �

Proposition 3.8. Let (X,W) be a uniform space and (X, [W]) its correspond-
ing semiuniform convergence space.
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Then the following are equivalent:
(1) (X,W) is first countable as a semiuniform convergence space, i.e. (X,[W])

is first countable.
(2) The filter W of entourages has a countable base.

Proof. Since [W] consists of all filters F on X ×X containing W, the proof is
obvious. �

Remark 3.9. It is well-known that a uniform space is pseudometrizable, i.e. its
uniformity is induced by a pseudometric, iff its filter of entourages has a count-
able base. Thus, a semiuniform convergence space (X, JX) is pseudometrizable
(i.e. there is a pseudometric d on X such that JX = {F ∈ F (X × X) : F ⊃
{Vε : ε > 0}} with ∨ε = {(x, y) : d(x, y) < ε}) iff it is uniform (i.e. there is a
uniformity W on X such that JX = [W]) and first countable.

Proposition 3.10. The construct FC-SUConv of first countable semiuni-
form convergence spaces (and uniformly continuous maps) is bicoreflective in
SUConv, where 1X : (X, (JX)FC)→ (X, JX) with (JX)FC = {F ∈ JX : there
is some G ∈ JX with G ⊂ F and G has a countable base} is the bicoreflection
of (X, JX) ∈| SUConv | w.r.t. FC-SUConv, and (X, (JX)FC) is called the
underlying first countable semiuniform convergence space of (X, JX).

Proof. Obviously, if f : (Y, JY )→ (X, JX) is a uniformly continuous map from
a first countable semiuniform convergence space (Y, JY ) into a semiuniform
convergence space (X, JX), then f : (Y, JY ) → (X, (JX)FC) is also uniformly
continuous. �

Corollary 3.11. In SUConv first countability is summable and divisible.

Remark 3.12. 1) In classical General Topology first countability is not di-
visible, e.g. the usual topological space Rt of real numbers is first countable,
whereas the topological quotient space Rt/N, obtained by identifying the set
N of positive integers to a point is not first countable.

If Rt is regarded as a semiuniform convergence space and the quotient Rt/N
is formed in SUConv, then Rt/N is first countable, but no longer topological.
Indeed, Rt/N is a convergence space (=symmetric Kent convergence space),
since Rt is a convergence space and convergence spaces are closed under for-
mation of quotients in SUConv.

2) The convergence spaces are exactly the quotients (in SUConv) of the
topological semiuniform convergence spaces (= symmetric topological spaces).
This has been proved in the language of nearness by W. A. Robertson [6] (cf.
also [1]).

Proposition 3.13. 1) FC-SUConv is closed under formation of subspaces
in SUConv.

2) FC-SUConv is closed under formation of countable products in SU-
Conv.
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Proof. 1) Let (X, JX) ∈|FC-SUConv|, A ⊂ X and let i : A → X be the
inclusion map. If the initial SUConv-structure on A w.r.t. i : A → X is
denoted by JA, then let F ∈ JA. By definition, (i × i)(F) ∈ JX , and by
assumption, there is some G ∈ JX with a countable base B such that G ⊂
(i × i)(F). Hence, the subfilter (i × i)−1(G) of F belongs to JA and has the
countable base {B ∩ (A×A) : B ∈ B}.

2) Let ((Xi, JXi))i∈I be a countable family of first countable semiuniform
convergence spaces and let (Πi∈IXi, JX) be their product. Further, let F ∈ JX .
Then (pi × pi)(F) ∈ JXi for each i ∈ I, where pi : Πi∈IXi → Xi denotes
the i − th projection. By assumption, there is some subfilter Gi ∈ JXi of
(pi × pi)(F) with a countable base Bi. Hence, Πi∈IGi ⊂ Πi∈I(pi × pi)(F) ⊂ F
where Πi∈I(Xi ×Xi) and (ΠXi)× (Πi∈IXi) are not distinguished. Obviously,
Πi∈IGi ∈ JX . The set B consisting of all finite intersections of elements of the
countable set B′ = {(pi × pi)−1[Bi] : i ∈ I,Bi ∈ Bi} is a countable base of
Πi∈IGi. �

Remark 3.14. Since the construct TopS of symmetric topological spaces (and
continuous maps) is closed under formation of products in SUConv, arbitrary
products of first countable semiuniform convergence spaces need not be first
countable, e.g. it is well-known that the topological product space RRt is not
first countable.

Theorem 3.15. 1) FC-SUConv is a topological universe, where the natural
function spaces (resp. one-point extensions) arise from the natural function
spaces (resp. one-point extensions) SUConv by forming the underlying first
countable spaces.

2) In FC-SUConv countable products of quotients are quotients.

Proof. 1) Since FC-SUConv is bicoreflective in the topological universe SU-
Conv and closed under formation of finite products and subspaces, it is the
desired topological universe (cf. [5; 3.1.7 and 3.2.5]).

2) Since countable products and quotients are formed in FC-SUConv as in
SUConv, where products of quotients are quotients, in FC-SUConv count-
able products of quotients are quotients. �

A much stronger condition than the first axiom of countability is the sec-
ond axiom of countability which can be defined in the realm of semiuniform
convergence spaces as follows:

Definition 3.16. A semiuniform convergence space (X, JX) is said to fulfill
the second axiom of countability or to be second countable if there is a countable
set A ⊂ P(X ×X) such that each F ∈ JX has a subfilter G ∈ JX with a base
of elements of A.

Proposition 3.17. Every second countable semiuniform convergence space is
first countable.

Proposition 3.18. Let (X,W) be a uniform space and (X, [W]) its corre-
sponding semiuniform convergence space. Then the following are equivalent:
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(1) (X, [W]) is first countable,
(2) (X, [W]) is second countable,
(3) W has a countable base.

Proof. The equivalence of (1) and (3) has been proved under 3.8. Since 3.17 is
valid, it suffices to prove:

(1) ⇒ (2). Let F ∈ JX . Then F ⊃ W and by (3), W has a countable base
A. �

Proposition 3.19. Let (X,X) be a symmetric topological space and (X,JγqX
)

its corresponding semiuniform convergence space. Then (X, JγqX
) is second

countable iff (X,X) is second countable in the usual sense.

Proof. “⇒”. Let A ⊂ P(X × X) be countable and let each F ∈ JγqX
have a

subfilter G ∈ JγqX
with a base of elements of A.

For each x ∈ X,UX(x) × UX(x) ∈ JγqX
, and by assumption there is some

filter G ∈ JγqX
, i.e. G ⊃ UX(y)× UX(y) for some y ∈ X, such that

(∗) UX(y)× UX(y) ⊂ G ⊂ UX(x)× UX(x)

where G has a base of elements of A. If p1 : X × X → X denotes the first
projection, it follows from (∗)

UX(y) ⊂ p1(G) ⊂ UX(x)

and, since (X,X) is symmetric,

p1(G) = UX(x) = UX(y).

Thus, UX(x) has a base of elements of the countable set A′ = {p1[A] : A ∈ A}.
Let A′′ = {(p1[A])0 : A ∈ A}. Then A′′ is countable and UX(x) has also a base
of elements of A′′. Each O ∈ X is a union of elements of A′′, i.e. (X,X) is
second countable.

“⇐”. Let X have a countable base B and let F ∈ JγqX
, i.e. there is some

x ∈ X such that F ⊃ UX(x)× UX(x).
Obviously, UX(x) has a base of elements of B, and UX(x) × UX(x) has a

base of elements of the countable set A = {B × B : B ∈ B}. Consequently,
(X, JγqX

) is second countable. �

Remark 3.20. The second axiom of countability does not have the nice struc-
tural behaviour as the first axiom of countability. It is easily checked that
second countable semiuniform convergence spaces are hereditary, countably
productive, countably summable and divisible, but they do not form a bi-
coreflective subconstruct of SUConv, since arbitrary sums of second count-
able spaces are not second countable, which is known from second countable
topological spaces (note: coproducts [=sums] of topological semiuniform con-
vergence spaces are topological). Nevertheless, in the realm of semiuniform
convergence spaces, second countability is divisible, a result which is not true
in the framework of topological spaces.
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4. Applications of first countability.

Remark 4.1. If (X, JX) is a semiuniform convergence space, then a filter F
on X is called a Cauchy filter iff F × F ∈ JX (i.e. F ∈ γJX ), and it is said to
converge to x (i.e. (F, x) ∈ qγJX

) iff F ∩ ẋ is a Cauchy filter. A sequence (xn)
in X is a Cauchy sequence iff the elementary filter Fe of (xn) is a Cauchy filter,
and it converges to x iff the elementary filter of (xn) converges to x.

Definition 4.2. For each subset A in a semiuniform convergence space (X, JX),
the closure A is defined as follows:

A = {x ∈ X : there is some filter F onX converging to x such thatA ∈ F}.

Proposition 4.3. Let (X, JX) be a first countable semiuniform convergence
space and A a subset in (X, JX). Then

A = {x ∈ X : there is a sequence inA converging tox in (X, JX)}.

Proof. Let x ∈ A. Then there is some filter F on X such that A ∈ F and
(F, x) ∈ qγJX

, i.e. F converges to x in (X, JX). By 3.6, there is some (G, x) ∈
qγJX

such that G ⊂ F has a countable base B = {B1, B2, . . .}, where we may
assume without loss of generality that B1 ⊃ B2 ⊃ . . . . For each n ∈ N, choose
some xn ∈ Bn ∩ A. Then the elementary filter Fe of (xn) contains G , which
implies that (xn) converges to x in (X, JX).

The inverse implication is evident. �

Remark 4.4. Uniform spaces have been generalized to uniform limit spaces,
which are semiuniform convergence spaces fulfilling the following two additional
axioms:

UC4) If F and G are uniform filters, then F ∩G is also a uniform filter;
UC5) If the composition F ◦G of two uniform filters F and G exists, it is a

uniform filter, which has {F ◦G : F ∈ F, G ∈ G} as a base, where ◦ stands for
the composition of relations.

The underlying filter spaces of uniform limit spaces are called Cauchy spaces.

Proposition 4.5. A first countable Cauchy space (X, γ) is complete iff it is
sequentially complete (i.e. each Cauchy sequence in (X, γ) converges).

Proof. “⇒”. Obvious.
“⇐”. Let F ∈ γ. By assumption, there is some G ∈ γ with a countable

base B = {B1, B2, . . .} such that G ⊂ F. Without loss of generality, let B1 ⊃
B2 ⊃ . . . . For each n ∈ N, choose some xn ∈ Bn. Since the elementary filter
Fe of (xn) is finer than G, it is a Cauchy filter. Furthermore, γ = γJ*γ , where
Jγ* = {G ∈ F (X × X) : there are K1, . . .Kn ∈ γ with G ⊃ ∩ni=1Ki × Ki} is a
uniform limit space structure for X. It follows from

G× Fe ⊃ (G ∩ Fe)× (G ∩ Fe) ∈ Jγ*,

G×Fe ∈ Jγ*, and since by assumption Fe converges to some x ∈ X,Fe× ẋ ∈ J*γ .
Thus, G × ẋ = (Fe × ẋ) ◦ (G ◦ Fe) ∈ J*γ , i.e. G converges to x, which implies
that F converges to x. �
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Corollary 4.6. A first countable uniform limit space (X, JX) is complete iff
each Cauchy sequence in (X, JX) converges.

Proof. By 3.2, the underlying filter space (=Cauchy space) of the first countable
uniform limit space (X, JX) is first countable. Applying 4.5, 4.6 is proved. �

Definition 4.7. A semiuniform convergence space (X, JX) is called
1) countably compact provided that each filter F on X with a countable base

has an adherence point x ∈ X, i.e. there is some filter G on X converging to
x such that G ⊃ F,

2) sequentially compact iff each sequence in X has a subsequence converging
in (X, JX).

Proposition 4.8. A semiuniform convergence space (X, JX) is countably com-
pact iff each sequence in X has an accumulation point (in (X, qγJX

)).

Proof. “⇒”. Let (xn) be a sequence in X and Fe its elementary filter. Then
Fe has a countable base and by assumption there is an adherence point x ∈ X
of Fe, i.e. x is an accumulation point of (xn).

“⇐”. Let F be a filter on X with a countable base B = {B1, B2, . . .} such
that, without loss of generality, B1 ⊃ B2 ⊃ . . . . For each n ∈ N, choose some
xn ∈ Bn. The elementary filter Fe of (xn) is finer that F and has an adherence
point by assumption. Hence, F has an adherence point. �

Proposition 4.9. 1) Every sequentially compact semiuniform convergence
space is countably compact.

2) Every countably compact semiuniform convergence space, which is first
countable, is sequentially compact.

Proof. 1) is obvious.
2) Let (xn) be a sequence in X and Fe its elementary filter. Since (X, JX)

is countably compact, Fe has an adherence point x ∈ X, i.e. there is some
filter F ⊃ Fe such that (F, x) ∈ qγJX

. By 3.6, there is a subfilter G of F with a
countable base B = {B1, B2, . . .} converging to x. Without loss of generality,
let B1 ⊃ B2 ⊃ . . . . For each m ∈ N, Em∩Bm 6= Ø, where Em = {xn : n ≥ m}.
Choose ym ∈ Bm ∩ Em for each m ∈ N. Then (ym)m∈N converges to x, since
the elementary filter F′e of (ym) is finer than G. Furthermore, there exists a
subsequence (xjn) of (xn) such that the elementary filter of (xjn) coincides with
the elementary filter of (ym), i.e. (xjn) converges to x. �

Remark 4.10. Continuous convergence, introduced by H. Hahn [3] in Analy-
sis, is nowadays mainly considered in the realm of limit spaces, where a Kent
convergence space (X, q) is called a limit space provided that for any x ∈ X
and any two filters F and G on X converging to x, the intersection F ∩G con-
verges to x. Let X = (X, q) and Y = (Y, r) be limit spaces and let [X,Y] be
the set of all continuous maps between X and Y, where a map f : X → Y
is continuous iff (f(F), f(x)) ∈ r for each (F, x) ∈ q. A filter F on [X,Y]
converges continuously to f ∈ [X,Y] provided that for each x ∈ X and each
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filter G on X converging to x in X, the filter eX,Y (G × F) converges to f(x)
in Y, where G × F denotes the product filter and eX,Y (x, g) = g(x) for each
(x, g) ∈ X× [X,Y]). A sequence (fn) in [X,Y] is said to converge continuously
to f ∈ [X,Y] iff the elementary filter of (fn) converges continuously to f .

If a Kent convergence space X = (X, q) has the property that for each x ∈ X,
the neighborhood filter U(x) =

⋂
{F ∈ F (X) : (F, x) ∈ q} converges to x, then

it is called a pretopological space.

Proposition 4.11. Let X = (X, q) be a first countable limit space and Y =
(Y, r) a pretopological space. Then a sequence (fn) in [X,Y] converges contin-
uously to f ∈ [X,Y] iff for each x ∈ X and each sequence (xn) in X converging
to x, the sequence (fn(xn)) converges to f(x) in Y.

Proof. “⇐” (indirectly). If the elementary filter Fe of (fn) does not converge
continuously to f ∈ [X,Y], there is some (G, x) ∈ q such that eX,Y (G × Fe)
does not converge to f(x), i.e. there is some U ∈ U(f(x)) in Y such that for
each G ∈ G and each F ∈ Fe, there are y ∈ G and g ∈ F with g(y) /∈ U .
By assumption, there exists some (H, x) ∈ q such that H has a countable base
B = {B1, B2, . . .} and H ⊂ G. Without loss of generality, let B1 ⊃ B2 ⊃ . . . .
Since for each n ∈ N, Bn ∈ G and {fm : m ≥ n} ∈ F, one can construct
sequences (xn) andm0 < m1 < . . . such that xn ∈ Bn and fmn(xn) /∈ U . Define
a sequence (yn) in X by y0 = . . . = ym0 = x0, ym0+1 = . . . = ym1 = x1, . . . and
so on. Obviously, (yn) converges to x in X, but (fn(yn)) does not converge to
f(x), since fmn(ymn) = fmn(xn) /∈ U .

“⇒”. This implication is straightforward. �

Proposition 4.12. Let X = (X, q) be a first countable Kent convergence space
and Y = (Y, r) a pretopological space. A map f : X→ Y is continuous, where
continuity is defined as under 3.10., iff for each x ∈ X and each sequence (xn)
in X converging to x in X, the sequence (f(xn)) converges to f(x) in Y

Proof. “⇒”. This implication is evident.
“⇐”. Since each filter F on X with a countable base is the intersection of all

elementary filters on X containing F (cf. [2; 2.8.6.]) and each map f : X → Y
preserves intersection of filters, the proof is obvious. �
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