| — APPLIED GENERAL TOPOLOGY
WJ —————— © Universidad Politécnica de Valencia
H ——— Volume 4, No. 1, 2003

APPLIED GENERAL TOPOLOGY pp. 99-114

On the use of partial orders in
uniform spaces

BRUCE S. BURDICK

ABSTRACT. We investigate the use of nets indexed by preorders
in uniform spaces. Nine different Cauchy conditions and four different
convergence conditions yield 36 completeness properties, each of which
turns out to be equivalent to a known form of completeness. We also use
these preordered nets to characterize the functors 6, A, and v, which
are associated with these completeness properties. In the case of A\
we give an example to show that the analogous characterization with
predirected nets does not work.
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1. INTRODUCTION

We have recently written a paper [3] on completeness properties determined
by nets whose directed sets are well ordered; this current paper represents the
opposite extreme, namely, the use of preorders as index sets for nets. In the
title, we use the term ‘partial order’ after the fashion of Kelley, who in Chapter
2 of his book [Id] does not require the antisymmetry property for orderings.
His partial orders need only be transitive and reflexive; and his directed sets
have these properties plus upper bounds for finite sets. But over the years, the
terminology has changed, and we follow it, using ‘preordered’ and ‘predirected’
for these concepts below.

Section P deals with the completeness properties which arise. Section B shows
how these preordered nets may be used to give new definitions for functors
discussed in the literature. These new definitions have some advantages over
the definitions previously known. In the case of the functor v the new definition
is internal rather than external. It does not require the use of the completion of
the space. In the case of A the new definition does not make use of Ginsberg’s
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and Isbell’s quasiuniformities, i.e., filters of coverings which may fail to satisfy
the star refinement property.

2. VARIATIONS ON THE PROPERTY OF COMPLETENESS

Definition 2.1. In a uniform space (X,U) a filter F is weakly Cauchy if for
every U € U there is a U-small set S C X which has non-empty intersection
with every member of F. A net £ : D — X is cofinally Cauchy if for every
U € U there is a cofinal set C C D such that £[C] is U-small. A space is
cofinally complete if every cofinally Cauchy net clusters, or, equivalently, if
every weakly Cauchy filter clusters. A filter is stable if for every U € U there
is an F' € F such that for all F/ € F we have F CU[F']. Anet £ : D — X is
almost Cauchy if for any U € U there is a d € D and a set C of cofinal subsets
of D such that for each C' € C, ¢[C] is U-small, and for each d' € D, if d > d
then d’ € |JC. A space is supercomplete if each almost Cauchy net clusters, or,
equivalently, if every stable filter clusters.

Recall that, originally, Isbell called a space supercomplete if it had a com-
plete hyperspace [I2, [3]. That condition is equivalent to the definition given
here. This author stated this in [2] before discovering that Isbell mentioned
this in the last paragraph of [T2]. We note that Csdszar gave this as an open
problem in [4].

In [2] and [T3], Isbell uses a notion of nets indexed by preordered sets to
characterize supercompleteness. In [2] we obtained a slightly different charac-
terization of supercompleteness using these preordered nets. We wish to extend
these results here, but because of the many different Cauchy and convergence
conditions that are possible we need to develop first a streamlined terminology
for all the completeness properties that are generated. To do this we make use
of the Alexandroff topology.

For a preordered set (P, <), the Alexandroff topology [1] is the collection of
upper sets, that is, those A for which z € A and x <y = y € A. This is easily
seen to be a topology which is generated by all sets of the form Tz = {y : x < y}
for z € P, and in this guise was called the partial order topology in Chapter
IIT of the book [I7]. When we refer below to open, dense, open dense, or
somewhere dense (= not nowhere dense) subsets of a preordered set, we will be
assuming that these terms refer to such sets as determined by the Alexandroff
topology.

Definition 2.2. Any function from a preordered set to a uniform space will
be called a ponet. We say a ponet S : (P, <) — (X,U) is open (dense, open
dense, somewhere dense) Cauchy if for each U € U there is an open (dense,
open dense, somewhere dense) set R C P with S[R] x S[R] C U. In addition,
a ponet S : (P,<) — (X,U) satisfies the property open/open dense Cauchy
if for each U € U the union of some collection of open sets R C P such that
S[R] x S[R] C U, is open dense, and we may define somewhere dense/open
dense, somewhere dense/open, somewhere dense/dense, and dense/open dense
in an analogous manner.
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Definition 2.3. We say x is an open (dense, open dense, somewhere dense)
limit of a ponet S : (P, <) — (X,U) if for every neighborhood O of x, S~1[O]
contains an open (dense, open dense, somewhere dense) set.

From these nine Cauchy conditions and four convergence conditions we may
define 36 completeness properties in the obvious way. For example, the property
open/open dense—dense completeness would say that every open/open dense
Cauchy ponet has a dense limit. These 36 properties are not distinct, however,
as we will show below.

The next two propositions are the only previous results we know about this
type of completeness.

Proposition 2.4 (Isbell [I7], equivalence of (¢) and (a) in the Theorem, 1962).
Open/open dense—open completeness is equivalent to supercompleteness.

Proposition 2.5 (Burdick [8], equivalence of (¢) and (a) in Theorem 2, 1991).
Open/open dense—somewhere dense completeness is equivalent to supercom-
pleteness.

In the following table we extend this type of characterization to all 36 of the
completeness properties just defined. The nine Cauchy conditions correspond
to the nine rows and the four convergence conditions correspond to the four
columns. We find that these 36 different combinations resolve into just five
well known versions of completeness.

The 36 Completeness Properties
C = Complete SC = Supercomplete
CC = Cofinally Complete PF = Paracompact and Fine

I = Indiscrete

Somewhere Open Dense Open Dense
Dense Limit Limit Limit Limit
Open Dense
Cauchy ¢ ¢ c ¢
Open/
Open Dense SC SC I I
Cauchy
Dense/
Open Dense SC I SC I
Cauchy
Open
Cauchy cc PF 1 1
Dense
Cauchy cc 1 PF I
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The 36 Completeness Properties (continued)

Somewhere Open Dense Open Dense
Dense Limit Limit Limit Limit
Somewhere
Dense/
Open Dense SC 1 1 1
Cauchy
Somewhere
Dense/Open cc I I I
Cauchy
Somewhere
Dense/Dense cc I 1 1
Cauchy
Somewhere
Dense cc I 1 1
Cauchy

We will only prove some of the results contained in the table above—enough
so that the key ideas are demonstrated.

First of all it is clear that all these properties imply completeness. Like-
wise, dense—somewhere dense completeness clearly implies cofinal complete-
ness. Going the other way we have the following two results.

Proposition 2.6. Completeness implies open dense—open dense complete-
ness.

Proof. Suppose that (X,U) is complete and S : P — X is an open dense
Cauchy ponet. Let @ be the set of open dense subsets of P and let Q =
{(D,z) | z € D € Q}. Define a preorder on Q by (Dy,x) < (Da,y) if Ds C Dy.
Then Q is predirected. Define F': Q — P by F(D,z) = . Then SoF : Q — X
is a Cauchy net. Let = be a limit of S o F'. Then for every neighborhood O of
x, S71[0] contains an open dense set. So x is an open dense limit of S. O

Proposition 2.7. A cofinally complete space is somewhere dense—somewhere
dense complete.

Proof. Suppose that (X, U) is cofinally complete and S : P — X is a somewhere
dense Cauchy ponet. Let @ be the set of open dense subsets of P and let
Q ={(D,z) | x € D € Q}. Define a preorder on Q by (D1,z) < (Da,y) if
Dy C Dy. Then Q is predirected. Define F': Q@ — P by F(D,z) = z. Then
SoF :Q — X is a cofinally Cauchy net. Let z be a cluster point of S o F.
Then for every neighborhood O of z, S~1[0] intersects every open dense subset
of P so it must be somewhere dense. So z is a somewhere dense limit of S. O

We note that there is a symmetry between open and dense in the table. Here
is one example of this.
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Proposition 2.8. A space is open—open complete if and only if it is dense—
dense complete.

Proof. Suppose (X,U) is open—open complete. Suppose S : P — X is dense
Cauchy. Let @ be the collection of dense subsets of P and let Q = {(D,x) |
x € D € Q}. Define (Dy,z) < (Dsg,y) if Dy C D;. Define F : Q — P by
F(D,z) = . Then S o F is open Cauchy. Let x be an open limit of S o F.
Then for every neighborhood O of x, S71[0] is dense. So z is a dense limit of

S.

Suppose (X,U) is dense—dense complete. Suppose S : P — X is open
Cauchy. Let @ be the collection of dense subsets of P and let @ = {(D,z) |
x € D € Q}. Define (Dq,2) < (Da,y) if Do C D;. Define F : Q — P by
F(D,z) = . Then S o F is dense Cauchy. Let x be a dense limit of S o F.
Then for every neighborhood O of z, S71[O] intersects every member of Q so
it contain as open set. So x is an open limit of S. O

Sometimes the method of the last proof doesn’t do the whole job, but the
symmetry still holds.

Proposition 2.9. For a uniform space the following are equivalent:

(1) Supercompleteness.

(2) Somewhere dense/open dense—somewhere dense completeness.
(3) Dense/open dense—somewhere dense completeness.

(4) Open/open dense—somewhere dense completeness.

(5) Dense/open dense—dense completeness.

6) Open/open dense—open completeness.

Proof. (1) implies (2). Suppose (X,U) is supercomplete. Suppose S : P — X
is somewhere dense/open dense Cauchy. Let @ be the set of open dense subsets
of Pand let Q@ = {(D,z) | x € D € Q}. Define (Dy,z) < (Da,y) if Dy C D;.
Then Q is predirected. Define F': Q@ — P by F(D,z) = . Then So F is
an almost Cauchy net. Let z be a cluster point of S o F. Then for every
neighborhood O of x, S~1[O] intersects every member of @ so it must be
somewhere dense. So x is a somewhere dense limit of S.

(2) implies (3). Trivial.

(3) implies (5). A somewhere dense limit of a dense/open dense ponet will
always be a dense limit.

(2) implies (4). Trivial.

(4) implies (6). A somewhere dense limit of an open/open dense ponet will
always be an open limit.

(5) implies (6). Suppose (X,U) is dense/open dense—dense complete. Sup-
pose S : P — X is open/open dense Cauchy. Let @ be the collection of dense
subsets of P and let @ = {(D,z) | z € D € Q}. Define (D1,z) < (Da,y) if

Dy C Dy. Define F': @ — P by F(D,z) =x. Then So F is dense/open dense
Cauchy. Let z be a dense limit of S o F. Then for every neighborhood O of
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x, S71[O] intersects every member of () so it contain an open set. So x is an
open limit of S.

(6) implies (1). This follows from Proposition E.4. |

The method of proof in Proposition B.§ was used here to prove that (5)
implies (6), but it doesn’t supply a direct proof that (6) implies (5). If we tried
that, at a crucial point we would not be able to say that S o F' is open/open
dense Cauchy. There is an asymmetry here stemming from the fact that while
the F~! image of an open set is dense, the FF~! image of a dense set merely
contains an open set. In Section B we will see a breakdown in the symmetry of
the results for this very reason (compare Corollary B.I7 with Example B.13).

The combination of paracompact and fine is equivalent to saying that every
open cover is a uniform cover. This is stronger than cofinal completeness ([],
(a) implies (c¢) in Thereom 1).

Proposition 2.10. Open—open completeness is equivalent to paracompact and

fine.

Proof. Suppose that (X, 1) is open—open complete and that C is an open cover
of X which is not uniform. Let P be the collection of all sets A C X such that
no element of C contains A as a subset. Let P = {(A,z) | z € A € P}. Define
a preorder on P by saying that (A,z) < (B,y) if B C A. Define a ponet
S:P—XbySAz) ==

P is an open Cauchy ponet. So let x be an open limit. Some O € C contains
. But then some A € P would have to be a subset of O, a contradiction.

Conversely, suppose that (X,U) is paracompact and fine. Let S : P — X be
an open Cauchy ponet with no open limit. Then each point in X would have
an open neighborhood O such that S~1[0] would not contain an open set. The
collection of these O’s is an open cover, therefore a uniform cover. But this
contradicts the open Cauchy property. ([

Proposition 2.11. Open/open dense—dense completeness implies that the
uniform space has the indiscrete uniformity.

Proof. Suppose that (X,U) is open/open dense—dense complete. Let X be
given the trivial order defined by = < y if and only if z = y. Then the identity
map ¢ : X — X is an open/open dense Cauchy ponet. Let z be a dense limit.
Then every neighborhood of z must contain all of X, making ¢/ the indiscrete
uniformity. O

3. THE FUNCTORS v, A\, AND

Now we turn to a consideration of certain functors which are associated
with completeness properties. The functors v and A\ are due to Howes [d] and
Ginsberg and Isbell [R], respectively. The latter functor has been utilized by
many authors over the last four decades. Our functor 6 was announced in the



Partial orders in uniform spaces 105

book by Howes [I1] without any details. This is the first time we have used it
in a paper.

After defining Howes’s functor v, we give several results which illustrate the
importance of v. After that we proceed to a new definition of v.

Definition 3.1. For each infinite cardinal £ we say a uniform space (X,U)
is k-bounded if for every U € U there is a subset S of X, of cardinality less
than x, with U[S] = X. For each uniform space (X,U) and each infinite
cardinal x let U, be the supremum of all the x-bounded uniformites on X
which are coarser than &/. For an infinite cardinal &, a topological space (X, 7T)
is k-pseudocompact if every normal cover of X has a subcover of cardinality
less than . A topological space is [k, 00)-compact if every open cover has a
subcover of cardinality less than .

The next two definitions and several results following them are due to N.
Howes.

Definition 3.2. [4] Given a space (X,U) a new space (X, vU) is constructed
in the following manner: embed (X,U) in its completion (Y, V), let V* be the
finest uniformity on Y generating the same topology as V, and then let vl be
the restriction of V* to X.

It is easy to see that this construction defines a functor (in view of the
definitions v(X,U) = (X, vld) and vf = f) from the category of uniform spaces
to itself.

Definition 3.3. A space is preparacompact [d] if every cofinally Cauchy net has
a Cauchy subnet, and it is almost preparacompact [0] if every almost Cauchy
net has a Cauchy subnet.

Lemma 3.4 (Howes). A space is preparacompact iff its completion is cofinally
complete [9]; it is almost preparacompact iff its completion is supercomplete
[Ta].

In [9] and [(0], Howes used the functor v to answer a question of Tamano as
to which spaces had paracompact completions.

Proposition 3.5 (Howes). For a space (X,U) the following are equivalent:
(1) (X,U) has a paracompact completion.
(2) (X,vU) is preparacompact.
(3) (X,vU) is almost preparacompact.

This in turn allowed him to characterize the spaces with Lindel6f completions
in several different ways.

Proposition 3.6 (Howes). For a space (X,U) the following are equivalent:
(1) (X,U) has a Lindeldf completion.
(2) (X,vU) is preparacompact and Nq-bounded.
(3) (X,vU) is almost preparacompact and Nq-bounded.
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The following generalizes these results of Howes’s.

Lemma 3.7. For a space (X,U) and an infinite cardinal K, the following are
equivalent:

(1) (X,U) has a k-pseudocompact completion.
(2) (X,vUd) is k-bounded.

Proposition 3.8. For a space (X,U) and an infinite cardinal k, the following
are equivalent:

(1) (X,U) has a paracompact, [k, 00)-compact completion.

(2) (X,vUd) is k-bounded and preparacompact.

(3) (X,vld) is k-bounded and almost preparacompact.

These results are mentioned to demonstrate the usefulness of the functor v.
Therefore we should ask if there are other ways of defining v, ways which might
facilitate the use of the characterizations above. We give new constructions of
v which involve other uniformities on the given set X but do not require adding
any more points to X. We feel that the results above, which give properties
of the completion of a space, will be more significant if the construction of v
itself does not make use of the completion.

Proposition 3.9. For a fized uniform space (X,U) and a possibly different
uniformity U* on X, the following are equivalent:

(1) Any ponet which is open dense Cauchy for U is open dense Cauchy for
u*.

(2) Any net which is Cauchy for U is Cauchy for U*.

(3) Any filter which is Cauchy for U is Cauchy for U*.

(4) U* Cvl.

Proof. (1) implies (2). Trivial.
(2) implies (3). Elementary.

(3) implies (4). Let the Hausdorff completion of (X,U) bei : (X,U) — (Y, V)
and the Hausdorft completion of (X,U*) be i* : (X, U*) — (Z,W). It suffices
to show that there is a continuous map f : (Y,7(V)) — (Z,7(W)) where
foi=1* The sets Y and Z may be regarded as sets of equivalence classes of
Cauchy filters, and the equivalence relation is such that two filters F and F' are
equivalent if and only if FNF’ is Cauchy. So we may define f by saying that if
F is a representative of the equivalence class [Fly € Y, then f([Flu) = [Flu=-
Our remarks above show that f is well-defined.

To show f continuous it suffices to show that if filter F converges to y in
(Y, V) then f[F] converges to f(y) in (Z,W). This is certainly true if every
F € F intersects ¢[X], since the trace of F on i[X] would be U-Cauchy, therefore
i~1[F] would be a representative of the equivalence class y, and so also of f(y),
and so F = i[i1[F]] would converge to f(y).

So given F converging to y in (Y,V), let G = {V[F] |V € V,F € F}. G
still converges to y, so it is a Cauchy filter on (Y,V) and every member of G
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intersects i[X]. So i~1[G] is Cauchy on (X,U). Since i~![G] is a representative
of the equivalence class y it is also a representative of the equivalence class f(y).
Then for any W € W, W{y] will contain G N i[X] for some G € G. Suppose
G = V[F] for some F € F. Then every point of F' is the limit with respect to
(Y, V) of a filter on G Ni[X] and so by the remark in the last paragraph every
point of f[F] is the limit with respect to (Z, W) of a filter on f[G]. If W has
been chosen to be a closed relation then W{f(y)] contains f[F]. This shows
that f[F] converges to f(y).

(4) implies (1). Any ponet which is open dense Cauchy for ¢ will have an
open dense limit in the completion (X,U) of (X,U), by the table in Section [.
This will still be an open dense limit when I{ is replaced by the fine uniformity
for its topology. Therefore the ponet will be open dense Cauchy for vif and so
for U*. ]

Corollary 3.10. For any uniform space (X,U), vU is equal to (1) the supre-
mum of the uniformities U* such that every U-Cauchy net is U*-Cauchy, and
(2) the supremum of the uniformities U* such that every U-open dense Cauchy
ponet is U*-open dense Cauchy. In each case the supremum is the finest mem-
ber of the set.

Corollary 3.11. A uniform space (X,U) has a paracompact completion if and
only if every cofinally Cauchy net in (X,vU) has a subnet which is Cauchy for
U.

Observation 3.12. If a space (X,U) is complete then v/ is fine; if the space
is paracompact (or even just topologically complete) then the converse is true.

Another useful functor is the locally fine coreflection, A. The reader is re-
ferred to [8], [I1], [I2], [13], and [T5] for many properties of this functor. We
will characterize A using ponets as we have for v.

Definition 3.13. A cover C of X is called uniformly locally uniform if there
is a uniform cover C’ such that on each S € C’, the trace of C on S is uniform.
A space (X,U) is called locally fine if every uniformly locally uniform cover is
uniform. Given a space (X,U) the uniformity MA is the coarsest one finer than
U such that (X, \A) is locally fine. A is constructed by transfinite recursion
(see [§] or [I3]).

Proposition 3.14. vA = v. Consequently, for a uniform space (X,U), we
have vU finer than \U.

Proof. Tt suffices to show that the completion of A\(X,i) is homeomorphic to
the completion of (X,U) via a homeomorphism which is the identity on X.
This follows from Ginsberg’s and Isbell’s ([8], Theorem 4.4) (A commutes with
completion). O

We wish to prove some characterizations of A similar to those we have done
for v, but first we observe an example that shows that the obvious net property
doesn’t hold in this case.
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Example 3.15. Stable filters for (X,U) need not be stable for \U, and conse-
quently almost Cauchy nets for (X,U) need not be almost Cauchy for XU, nor
do dense/open dense ponets for (X,U) need to be dense/open dense for NA.
Let U be the usual uniformity on the reals, and let a filter F be generated by
the sets Fe = (J,cz[n — €,n + €], for € > 0. Then F is U-stable. Since U is
a complete metric uniformity, A/ is fine [R]. But even if &* is a uniformity
which makes the function f : (R,U*) — (R,U), where f(z) = x?, uniformly
continuous, then F is not U*-stable. So F is not AU-stable.

Proposition 3.16. For a fized uniform space (X,U) and a possibly different
uniformity U* on X, the following are equivalent:
(1) U* C M.
(2) Any ponet which is open/open dense Cauchy for U is open/open dense
Cauchy for U*.
(3) Any ponet which is open/open dense Cauchy for U is open Cauchy for
u*.
(4) Any locally fine uniformity which is finer than U is finer than U*.

Proof. (1) implies (2). Given a ponet which is open/open dense Cauchy for U
we can prove by transfinite induction that it is open/open dense Cauchy for
AU. This is the essence of Lemma 40 of Chapter VII of [I3].

(2) implies (3). Trivial.

(3) implies (4). Given a locally fine uniformity V on X with U/ C V, suppose
that U* V. Then there is a U*-uniform cover C which is not V-uniform. Let
P be the collection of all sets A C X such that C is not a V-uniform cover of
A. Let P = {(A,z) | © € A € P}. Define a preorder on P by saying that
(A,z) < (B,y) if B C A. Define a ponet S: P — X by S(A,z) = z.

We show that S is open/open dense Cauchy for V. It suffices to show that
for any A € P and U € V there is a U-small B € P with B C A. Suppose not,
i.e., every U-small subset of A is V-uniformly covered by C. Consider the cover
C'={CU(X —A)| C e C}. The U-small subsets of X are all V-uniformly
covered by C’, so by local fineness C’ is a V-uniform cover of X. The trace
of C' on A is the same as the trace of C, so C is a V-uniform cover of A, a
contradiction.

Since S is V-open/open dense Cauchy it is U-open/open dense Cauchy. But
it fails to be U*-open Cauchy since no element of P is contained in any element
of C, and this contradicts property (3).

(4) implies (1). This follows since A/ is a locally fine uniformity which is
finer than U. U

Corollary 3.17. For any uniform space (X,U), \U is equal to (1) the supre-
mum of the uniformities U* such that every U-open/open dense Cauchy ponet
is U*-open/open dense Cauchy, and (2) the supremum of the uniformities U*
such that every U-open/open dense Cauchy ponet is U*-open Cauchy. In each
case the supremum is the finest member of the set.
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The usual definition of A gives rise to technical difficulties in that the Gins-
berg-Isbell derivatives used in the transfinite induction need not be covering
uniformities, and then it is tricky to show in the end that their union, i.e., the
A uniform covers, is a covering uniformity. If property (1) in Corollary B.17
were taken as the definition of M/ instead this wouldn’t be a problem. What’s
more it would be easy to show directly that A4 preserves the open/open dense
ponets of U. The next theorem of Isbell’s [2] is our chief reason for interest in
the functor A.

Isbell’s Theorem A space (X,U) is supercomplete iff it is paracompact and
AU is fine.

The fact that paracompactness plus fineness implies supercompleteness, and
that supercomplete implies paracompact, can be proved without use of the
functor A. If we add to these facts the observation that A preserves the topology
of the space (true because it is true for ) then Isbell’s Theorem follows from
our Corollary B.T7 and Propostion .. We should not claim too much, however.
We have not replaced the traditional development of this subject because we
have used previously known properties of A in the proofs of Propositions B-14
and BIG. In particular we used the assumption that A as traditionally defined
is in fact a uniformity to prove that (4) implies (1) in Proposition B.1§.

Let us further point out that Pelant in [[H] has shown that the locally fine
uniform spaces are all subfine and so A coincides with the subfine coreflection
described in Chapter VII of [I3]. This also then provides a relatively straight-
forward way of defining \. However, the proof that it coincides with the original
definition of A is quite involved. Our Corollary B-I7 has the combined advan-
tages of being relatively easy to prove and giving a construction of AU which
clearly yields a uniformity.

In view of these properties of v and A it would be interesting to have a third
functor 6 with the following properties:

(1) Cofinal completeness should be equivalent to paracompactness and 6
fine.

(2) 0 should be coarser than .

(3) 0% =0.

(4) 6 shouldn’t change the underlying set or the generated topology, and
should make the uniformity finer than before.

(5) 0, like v and A, should be a coreflection when considered as a functor
from the category of all uniform spaces to its image category. (This
actually follows from (3) and (4) and the assumption that 6 is a func-
tor).

Definition 3.18. A cover C of a uniform space (X,U) is uniformly locally
finitizible if there is a U € U such that for any x € X, Ulx] is covered by
some finite subset of C. A uniform space (X,U) is No-nearly discrete if for any
uniformity U* on X, if every U*-uniform cover is U-uniformly locally finitizible
then Y* C U. For a uniform space (X,U) let 07U be the supremum of the
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uniformities &* on X such that every U*-uniform cover C is ¢-uniformly locally
finitizible.

Lemma 3.19. For a uniform space (X,U), 01U is Ro-nearly discrete and any
T U-uniform cover is U-uniformly locally finitizible.

Proposition 3.20. For a fized uniform space (X,U) and a possibly different
uniformity U* on X, the following are equivalent:
(1) U* Cotu.
(2) Every cofinally Cauchy net for U is cofinally Cauchy for U*.
(3) Every weakly Cauchy filter for U is weakly Cauchy for U*.
(4) Ewery somewhere dense Cauchy ponet for U is somewhere dense Cauchy
foru*.
(5) Every open Cauchy ponet for U is somewhere dense Cauchy for U*.
(6) Every dense Cauchy ponet for U is somewhere dense Cauchy for U*.
(7) Ewvery Xg-nearly discrete uniformity which is finer than U is finer than
u*.
Proof. (1) implies (2). Given a U-cofinally Cauchy net S : D — X and a U*-
uniform cover C, take a U-uniform cover C’ such that each member of C’ can
be covered by finitely many members of C. There is some C € C’ such that S
is frequently in C, and then among the finitely many members of C that cover
C, S must be frequently in at least one of them.

Equivalence of (2) and (3). Elementary.

(2) implies (4). This uses the methods of Section J.

(4) implies (5). Trivial.

Equivalence of (5) and (6). This uses the methods of Section .

(5) implies (7). Let V be an Rg-nearly discrete uniformity on X with &/ C V.
Suppose that U* Z V. Then there is a U*-uniform cover C which is not V-
uniform, so it is not V-uniformly locally finitizible. Let P be the collection of
all sets A C X such that C has no finite subset covering A. Let P = {(4,x) |
x € A € P}. Define a preorder on P by saying that (A,z) < (B,y) if B C A.
Define a ponet S : P — X by S(A,z) = .

S is clearly V-open Cauchy so it is U-open Cauchy. To show it is not U*-

somewhere dense Cauchy we observe that for any A € P and any C € C,
A—-CeP.

(7) implies (1). This follows from Lemma B.19. O

Corollary 3.21. A wuniform space (X,U) which satisfies vid C 07U has a
paracompact completion if and only if it is preparacompact.

We should point out that unlike v and X above, #T may change the topology of
the space since it always contains all the totally bounded uniformities for the
discrete topology on the given set of points.

Definition 3.22. For any uniform space (X,U) define U = 07U N \U.
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Observation 3.23. 02 = 6 since the same is true for #7 and \. 6 preserves
topology because the same is true for .

The following proposition is an immediate consequence of Propositions B.16
and B0

Proposition 3.24. For a fized uniform space (X,U) and a possibly different
uniformity U* on X, the following are equivalent:

(1) U* Cou.

(2) Ewery cofinally Cauchy net for U is cofinally Cauchy for U* and ev-
ery ponet which is open/open dense Cauchy for U is open/open dense
Cauchy for U*.

(3) Every somewhere dense Cauchy ponet for U is somewhere dense Cauchy
for U* and every ponet which is open/open dense Cauchy for U is
open/open dense Cauchy for U*.

Corollary 3.25. For any uniform space (X,U), OU is equal to (1) the supre-
mum of the uniformities U* such that every U-open/open dense Cauchy ponet
is U*-open/open dense Cauchy and every cofinally Cauchy net for U is cofi-
nally Cauchy for U*, and (2) the supremum of the uniformities U* such that
every U-open/open dense Cauchy ponet is U*-open/open dense Cauchy and ev-
ery somewhere dense Cauchy ponet for U is somewhere dense Cauchy for U*.
In each case the supremum is the finest member of the set.

Definition 3.26. We will say (see Rice’s paper [I6]) a space is uniformly
paracompact if every open cover has a uniformly locally finite refinement.

Proposition 3.27. For a uniform space (X,U) the following are equivalent:
(1) (X,U) is cofinally complete.
(2) Any open cover O of X which is closed under finite unions is U-
uniform.
(3) X is paracompact and all locally finite collections in X are U-uniformly
locally finite.
(4) (X,U) is uniformly paracompact.

Proposition B:27 is a combination of several results in Fried [G]. See our
paper [B] for more details about the history of this result.

In [06], Rice gave several different ways of characterizing uniform paracom-
pactness. Some of his results are suggestive of Isbell’s Theorem, but he stops
short of defining a functor # analogous to \. We will prove a new version of
Rice’s Theorem 3 which uses only functors into the category of uniformities.

Definition 3.28. Let x be an infinite cardinal. A space (X,U) is locally k-fine
if every U-uniformly locally U,-uniform cover is a U-uniform cover.

Frolik [7] has already called this locally p-fine when k = g and locally e-fine
when x = Ny. He states without proof that these properties are coreflective.

Note that among the uniformities «* such that every U*-uniform cover is a
U-uniformly locally U-uniform cover, there is a finest one.
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Definition 3.29. For a uniform space (X,U) let §_U be the supremum of
all the uniformities &* whose uniform covers are all /-uniformly locally Us,-
uniform.

f_ is a functor but it doesn’t always satisfy 62 = 6_.

Example 3.30. A space where 0°U # 0_U. Let X = w x w x 2. Let the
uniformity U be generated by all equivalences relations satisfying the following
properties:
(1) For all but finitely many pairs (n,m), (n,m,0) is related to (n,m,1).
(2) For all but finitely many n, (n,m,1) is related to any (n,m’, ).
The relation R which relates (n,m,4) to (n/,m’,i’) if and only if i = ¢’ is not a
member of §_U{. But the relations Rj; which have as their equivalence classes
the three sets {(n,m,i) | n < k, i = 0}, {(n,m,7) | n < k, ¢ = 1}, and
{(n,m,i) | n >k}, are to be found in 0_U, and it is because of them that R is
a member of 02 U.

Lemma 3.31. For any uniformity U we have 0_U C 0U.

Proposition 3.32. For any uniform space (X,U) the following are equivalent:
(1) (X,U) is cofinally complete.
(2) (X,0_-U) is paracompact and fine.
(3) (X,0U) is paracompact and fine.

Proof. (1) implies (2). Suppose (X,U) is cofinally complete. Given a cover C
of X, let C' be the collection of open sets O such that there is a U € U where
for any x € X, U[z] is a subset of some member of C. C’ is a cover of X and it
is closed under finite unions. So by Proposition B.27 it is uniform. This shows
that any open cover of X is uniformly locally uniform.

Again by Proposition B2, every open cover of X has a uniformly locally
finite refinement. So every open cover of X has a refinement which is U-
uniformly locally Uy,-uniform.

Therefore the fine uniformity is one of the uniformities which we take the
supremum of to get 6_U. Since §_ doesn’t change the topology, 6_U/ must be
the fine uniformity. The fact that cofinal completeness implies paracompactness
completes the proof.

(2) implies (3). 0 is trapped between 6_ and A. Therefore if 6_ is fine so
must ¢ be fine as well.

(3) implies (1). If a net is cofinally Cauchy for U it is cofinally Cauchy for
6U by Proposition B.:24. Then since paracompact and fine implies (X, 6U) is
cofinally Cauchy, the net must have a cluster point. O

Proposition 3.33. For a fized uniform space (X,U) and a possibly different
uniformity U* on X, the following are equivalent:

(1) Any open Cauchy ponet for U is open Cauchy for U*.

(2) Any dense Cauchy ponet for U is dense Cauchy for U*.
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(3) U* CU.

Proof. (1) implies (2). Suppose that U* € U. Then there is a cover C which is
U*-uniform but not U-uniform. Let P be the set of A C X such that no C € C
has A as a subset. Proceeding as in several other proofs in this section we can
construct a ponet which is U-open Cauchy but not U*-open Cauchy.

(1) implies (2). Use the methods of Section P
(3) implies (1). Trivial. O

Omnibus Theorem A uniform space is complete (supercomplete, cofinally
complete, paracompact and fine) if and only if the supremum of the uniformi-
ties which preserve the open dense (the open/open dense, both the open/open
dense and the somewhere dense, the open) Cauchy ponets is fine and the un-
derlying topological space is topologically complete (paracompact, paracompact,
paracompact). If this supremum is complete (supercomplete, cofinally complete,
paracompact and fine) then so is the original space.
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