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Dense S;-diagonals and linearly ordered
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ABSTRACT. The notion of the Ss-diagonal was introduced by H.R.
Bennett to study the quasi-developability of linearly ordered spaces. In
an earlier paper, we obtained a characterization of topological spaces
with an Ss-diagonal and we showed that the Ss-diagonal property is
stronger than the quasi-Gs-diagonal property. In this paper, we define
a dense Ss-diagonal of a space and show that two linearly ordered
extensions of a generalized ordered space X have dense Ss-diagonals if
the sets of right and left looking points are countable.
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1. Ss5-DIAGONALS

We review in this section the definitions of Ss-set and Ss-diagonal, and state
our results obtained in [H].

The following definition is a generalization of a Gs-set and was introduced
by H. R. Bennett [?] to study the quasi-developability of linearly ordered (topo-
logical) spaces.

Definition 1.1. Let X be a topological space. A subset A of X is called an
Ss-set if there exists a countable collection {U(1),U(2),...} of open subsets of
X such that, for two points p € A and g € X \ A, there exists an n such that
p € U(n) and q ¢ U(n).

It is easy to see that a Ggs-set is an Ss-set. Hence the notion of Ss-set is
a generalization of Gs-set. See [B] for a description of S-normal spaces whose
closed subsets are Ss-sets.

Definition 1.2. Let X be a topological space. X has an Ss-diagonal if the
diagonal subset Ax of X x X is an Ss-set of X x X, where Ax denotes the
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diagonal set {(z,x) : x € X} in the Cartesian product X x X. The symbol ( , )
is used to stand for a point of X x X.

It is useful to show the following lemma that relates to the property (x)
given in [P]. N denotes the set of natural numbers.

Lemma 1.3. [6] Let X be a topological space. Let {G(n) : n € N} be a
family of countable collections of open subsets of X. Suppose that, for any three
points x,y and z with y # z, there exists an m € N such that © € |JG(m)
and that no element of G(m) contains the set {y,z}, where |JG(m) denotes
\H{U : U € G(m)}. Then, there exists a family {F(n) : n € N} of countable
collections of open subsets of X such that, for such three points above, there
exists an m € N such that x € |JF(m) and any two distinct points of {z,y, 2}
do not belong to the same member of F(m).

Theorem 1.4. [5] Let X be a topological space. X has an Ss-diagonal if and
only if there exists a family {G(n) : n € N} of countable collections of open
subsets of X such that, for three points x,y and z with y # z, there exists an
m € N such that x € |JG(m) and any two distinct points of {z,y,z} do not
belong to the same member of G(m).

2. TWO LINEARLY ORDERED EXTENSIONS AND NOTATION

Recall that a generalized ordered space (GO-space) is a triple (X, 7, <),
where < is a linear ordering of the set X and 7 a Hausdorff topology on X
having a base of order-convex sets. We will denote by A the order topology
on (X,<). It is known that A C 7. A space of the form (X, )\, <) is called
a linearly ordered topological space (LOTS). Every LOTS is a GO-space, but
not conversely. In fact it is known that the class of GO-spaces coincides with
the class of subspaces of LOTS. Given a GO-space X there are two well-known
linearly ordered extensions of X. One of these is X* and was defined by D. J.
Lutzer [@]. The other one is L(X) and was studied in [R]. We review here the
definitions of those linearly ordered extensions. The intervals in a GO-space
or a LOTS are written in the form [a,b], [a,b], ]Ja,b] and ]a,b[. For example,
[a,b) ={z:a <z <b}, [a,b] = {z :a < 2 < b} and so on. For a GO-space
X,weset R={zeX:[z,o[er7—-Aand L={z € X :]—,z] €7 — A},
where A denotes the order topology as mentioned above. R (resp. L) is called
the set of right (resp. left) looking points. Then X* is defined as follows:

X' =X x{0})U{(z,k):z € Rk<0,keZ}U{(x,k):x € Lk>0,keZ}
C X X127,

where Z denotes the set of integers. On the other hand, L(X) is defined as
follows:

LX) = (X x {o)U{(z,~1):z € R}U{(z, 1)tz € L} C X x {~1,0,1}.

X* and L(X) are linearly ordered topological spaces equipped with the lex-
icographic order topologies. We, furthermore, need some technical notation
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for the proof of the theorems in Section 5. For a convex open subset U of a
GO-space X, we define a convex open subset U of E(X), where E(X) denotes
either X* or L(X). Then eight cases can occur. In the following, the intervals
must be considered in E(X).
(1) If a is the minimum point of U, then we define U, = [(a,0), — [ € E(X).
(2) Let @ = infU and a € X \ U. If B(X) = X*, then U, = {(z,k) €
X*:a <z} =](a,+00),— [ C X*, where (a,+00) € X X (ZU {+00})
and the interval is taken in X*. Likewise, if F(X) = L(X), then
Uy = {(z,k) € L(X) :a < 2} = (a,1), — [ € L(X). Note that (a,1)
may not belong to L(X).
(3) If there is a gap u = (4, B) such that u is the left end-point of U, then
we define U; =|(u,0), — [ C E(X).
(4) If none of Cases 1 — 3 occurs, then we define U; = E(X).
(5) If b is the maximum point of U, then we define Uy = | —, (b,0)] C
E(X).
(6) Let b = supU and b € X \ U. If E(X) = X*, then Uy = {(z,k) €
X* 2 <by=]«,(b,—o0)] C X* (cf. (2)). If E(X) = L(X), then
Uy = {(x,k) € L(X) : z < b} =] «,(b,—1)[ € L(X). Note that
(b, —1) may not belong to L(X).
(7) If there is a gap v = (A, B) such that v is the right end-point of U,
then we define Uy = |+, (v,0)[ C E(X).
(8) If none of Cases 5 — 7 occurs, then we define Uy = E(X).
We set U = Ul N Ug. U is called the convex open set associated with U. Let U
be an open set of a GO-space X. Then U is decomposed into a union of open
convex subsets {U, : a € A}. In this case, we define U = |J{U, : a € A},
where U, is the open set associated with U,. Then U is an open subset of
E(X), and called the open set associated with U.

3. S5-DIAGONALS IN LINEARLY ORDERED EXTENSIONS

The following theorems are proved in our paper [5]. Let X be a GO-space.
It is easily seen that X* contains X as a closed subset and L(X) contains X
as a dense subset. See [, B] for further information about X* and L(X). In
both cases, X and X x {0} are identified by the correspondence of z to (z,0).

Theorem 3.1. [5] Let X be a generalized ordered space with an Ss-diagonal.
If RU L is countable, then X* has an Ss-diagonal.

To prove a similar theorem concerning L(X), it is necessary to assume the
existence of sequences in X that witnesses first-countability for points of RU L:

Theorem 3.2. [8] Let X be a GO-space with an Ss-diagonal. Assume that,
for every point s € L, there exists a decreasing sequence {x(s,n) : n € N}
in X such that inf{x(s,n)} = s and, for every point s € R, there exists an
increasing sequence {y(s,n) : n € N} in X such that sup{y(s,n)} =s. f RUL
is countable, then L(X) has an Ss-diagonal.
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4. DENSE Ss5-DIAGONALS
The following definition gives an analogy to the dense Gs-diagonal in [d].

Definition 4.1. A Hausdorff space X has a dense Ss-diagonal if there exists
a dense subset D of Ax such that D is an Ss-subset of X x X, where Ax
denotes the diagonal subset of the Cartesian product X x X.

We show the following theorem that is analogous to a result concerning
spaces that have a dense Gs-diagonal [f].

Theorem 4.2. Let X be a Hausdorff space. Then X has a dense Ss-diagonal
if and only if X has a dense subset Y such thatY is an Ss-subset of X and Y
has an Ss-diagonal.

Proof. If D C Ax is a dense Ss-set in X x X, then DN Ax is a dense Sj-set in
Ax. Now the map h : Ax — X defined by h(z,z) = z is a homeomorphism,
and the homeomorphic image of a dense Ss-set is a dense Ss-set.

Conversely, suppose Y is a dense Ss-subset of X. Then h~!(Y) is a dense
Ss-subset of Ax. The rest is easily verified. O

5. THEOREMS CONCERNING DENSE S§-DIAGONALS OF LINEARLY ORDERED
EXTENSIONS

Theorem 5.1. Let X = (X,7) be a GO-space with a dense Ss-diagonal. If
R UL is countable, then X* has a dense Ss-diagonal.

We first show the following lemma.

Lemma 5.2. Let X be a GO-space and X* the linearly ordered extension of
X. For a subspace Y of X, set Z =Y U(X*\ X). If Y is dense in X and an
Ss-subset of X, then Z is a dense subspace of X* and an Ss-subset of X*.

Proof. To see that Z is dense in X*, let x € X*\Z = X \Y and V be a
neighborhood of x in X*, where X is identified with X x {0} as usual. Since
V' N X is a neighborhood of z in X, it follows that VN X NY # @. Since
VNXNY CcVnZ, it follows that VN Z # @&. Hence Z is a dense subspace
of X*. To show the last part, let {U(n) : n € N} be a countable collection
of open subsets of X such that, for y € Y and z € X \ Y, there exists an
m € N such that y € U(m) and = € U(m). For every n € N, let U(n) be the
open subset associated with U(n) as in Section 3. Set U(0) = X*\ X. Then
it is obvious that U(0) is an open subset of X*. We show that the countable
collection {U(n) : n > 0} of open subsets of X* assures that Z is an Sj-subset
of X*.Let z€e Zandzx € X*\Z=X\Y.

Case 1. Let z € X*\ X. Then it is easy to see that z € U(0) and = ¢ U(0).

Case 2. Let z € Y. Since z € X \ 'Y, there exists an m € N such that
z € U(m) and « ¢ U(m). By the definition of U(m), it follows that z € U(m)
and x ¢ U(m). This completes the proof. O
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Now we shall prove Theorem 5.1.

Proof of Theorem 5.1. By Theorem 4.2, there exists a dense subspace Y
of X such that Y is an Ss-subset of X and that Y has an Sj;-diagonal. Let
{G(n) : n € N} be a family of countable collections of open subsets of ¥ such
that, for three points z,y and z of Y with y # z, there exists an m € N such
that « € |JG(m) and no element of G(m) contains {y, z}. The existence of the
above family is guaranteed by Theorem 1.4. For an open subset V of Y, there
exists an open set Vx of X such that Vx NY = V. Let f/X be the open subset
of X* associated with Vy as explained in Section 2. Set Vz = Vx N Z, where
Z is as mentioned in Lemma 5.2.

It is clear that Vz is open in Z and that V; NY = V. For every n € N, set
Gn) ={Vy :V €G(n)} and G(0) = {{z} :z € X*\ X}. Let S = RUL =
{si : i € N} be an enumeration of the countable set S. Let (s;, k) € X*\ X. Set
Gy(si k) = {](s5,k),— [NZ} and G_(s;, k) = {]—, (si, k)[N Z}, where these
intervals are considered in X*. By virtue of Lemma 5.2 and Theorem 4.2, it is
sufficient to show that a family of those countable collections of open subsets
of Z witnesses the Ss-diagonal of Z. To see this, let z,y and z be three points
of Z with y # z. We may assume without loss of generality that y < z.

Case 1. If {z,y,z} C Y, then there exists an m € N such that z € |JG(m)
and {y,z} ¢ V for any V € G(m). Hence it follows that = € JG(m) and that
{y,2} ¢ Vy for any V € G(m).

Case 2. Let z € Y and y or z belong to Z \ Y.

(i) We assume that y € Z \ Y. Then we can write y = (s;,k), where
k#0.Ifx <y, then z € | —,y[NZ and {y,z} ¢ | —,y[. Hence, by
the definition, it follows that = € (JG_ (s, k) and that {y, 2} ¢ V for
V eG (si,k). Ify <z, thenz € Jy,— [NZ and {y, 2} ¢ |y, — [. Hence
it follows that x € |G (s, k) and that {y,z} ¢ V for V € G, (s;, k).

(ii) Let z € Z\ Y. Then the proof is analogous to (i).

Case 3. Let 2 € Z\ Y. Then it follows that 2 € |JG(0) and {y,z} ¢ V for
any V € G(0). Therefore, by virtue of Lemma 1.3 and Theorem 1.4, X* has a
dense Ss-diagonal. This completes the proof. ([l

Theorem 5.3. Let X = (X,7) be a GO-space with a dense Ss-diagonal. If
RU L is countable, then L(X) has a dense Ss-diagonal.

Proof. By Theorem 4.2, there exists a dense subspace Y of X such that Y is
an Ss-subset of X and Y has an Ss-diagonal. Since X is dense in L(X), it
follows that Y is a dense subspace of L(X). To prove that L(X) has a dense
Ss-diagonal, it is sufficient to show, by Theorem 4.2, that Y is an Ss-subset of
L(X). Let {U(n) : n € N} be a countable collection of open subsets of X such
that, for y € Y and = € X \ Y, there exists an m € N such that y € U(m) and
@ & U(m). For every n € N, let U(n) be the open subset of L(X) associated
with U(n). For s; € S = RUL and € € {—1,1}, set Uy (s;,¢) = |(si,¢), — [
and U_(s;,€) = ]+, (s;,¢)[, where the intervals are considered in L(X). The
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countable collection {U(n), Uy (s;,e), U_(si,e) :n €N, i € N, ¢ = £1} of
open subsets of L(X) guarantees that Y is an Ss-subset of L(X). To see this,
let yeY and z € L(X) \ Y.

Case 1. Let z € X \ Y. Then there exists an m € N such that y € U(m) and
z & U(m). Hence it follows that y € U(m) and z & U(m).

Case 2. Let z € L(X) \ X. We can write z = (s;,¢), where ¢ € {—1,1}. If
y < z, then it follows that y € U_(s;,¢) and z ¢ U_(s;,¢). If z < y, then it
follows that y € U, (s;,e) and z & Uy (s;,¢). Hence Y is an Ss-subset of L(X).
This completes the proof of Theorem 5.3. O

6. EXAMPLES

Example 6.1. Theorems 3.1 and 3.2 do not hold without the assumption of
the countability of the set RUL. Let us consider the Sorgenfrey line X = (R, S).
In this case, the right looking points R = R is uncountable. Since X has a G-
diagonal, X has an Ss-diagonal. However, X* does not have an Ss-diagonal.
To prove this, it is sufficient to see that X* does not have a quasi-Gs-diagonal
[6). We easily see that there does not exist a family of countable collections
of open subsets of X* that separates two points of the form (z,0) and (z,1),
where z € X.

Example 6.2. Theorem 3.2 does not hold without the existence of the se-
quences for points of R U L. To show a counterexample, let Y be the set of
countable ordinals [0, w; [ with the discrete topology. The right looking points
of Y comprise the set of limit ordinals. Let Y* be the linear extension of Y
defined in Section 2. Let X = Y*U{(w1,0)}, where X is ordered as (w1,0) > «
for all @ € Y*, and given the discrete topology. Then R = {(w;,0)} is a single-
ton and L(X) = Y* U {(w1,—1)} U {(w1,0)}, where a < (w1, —1) < (w1,0) for
all & € Y*. There does not exist an increasing sequence in Y* that converges to
(w1, —1). Furthermore, L(X) does not have a quasi-Gs-diagonal, because the
points of X and the point {(w;, —1)} are not separated by a family of countable
collections of open subsets of L(X). Hence L(X) does not have an Ss-diagonal.

Example 6.3. A generalized ordered space does not necessarily have a dense
Ss-diagonal. To show this, consider the linearly ordered space Z that was
constructed by H. R. Bennett and D. J. Lutzer [@]. They proved that Z is not
first-countable at any point. Z is defined as follows:

Z ={(a1,az,...,ap,wi,w1,...) i <wp, 1<i<n, oy =wy, i >n, n>1}

with the lexicographic order. Since Z is densely-ordered, a dense subset Y of
Z is a LOTS. If Y has a quasi-Gs-diagonal, Y is quasi-developable. Since a
quasi-developable space is first-countable, Y does not have a quasi-Gs-diagonal.
Therefore, Z does not have a dense Ss-diagonal.
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