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1. INTRODUCTION

Many generalizations of the notion of compact space have been defined in the
literature, including those of quasi H-closed space, S-closed space, rs-compact
space, feebly compact space, countably S-closed space, countably rs-compact
space, and many more. Some of these concepts have been characterized in terms
of filters and nets, and this has lead to such notions as r-convergence, RC-
convergence, SR-convergence, r-accumulation point, RC-accumulation point
and SR-accumulation point of filters and filterbases.

The notion of an operation on a topological space is a useful tool when
attempting to unify such concepts, and in earlier studies we have defined
1,2-countably compact sets, 1 o-convergence of a filter and ¢; 2-accumulation
points of a filter, and used these to obtain some such unifications.

In the present work we will study the relations between ¢; 2-countable com-
pactness, filters, sequences and ¢ o-closure operators.

There are several different definitions of an operation in the literature. We
have used the one first given in [12] for fuzzy topological spaces.

In a topological space (X, 7), int, cl, scl, pcl etc. will stand for the interior,
closure, semi-closure, pre-closure operations, and so on. For a subset A of X,
A°, A will also be used to denote the interior and closure of A, respectively.

*Dedicated to the memory of Professor Dogan Coker.
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Definition 1.1. Let (X, 7) be a topological space. A mapping ¢ : P(X) —
P(X) is called an operation on (X, 1) if (&) = @ and A° C p(4), VA € P(X).
The class of all operations on a topological space (X, 7) will be denoted by
o(X, ).
For 1,2 € O(X,7) we set 1 < o <= ¢1(A4) C p2(A), VA € P(X).
The operations ¢, @ are dual if p(A) = X \ (X \ 4), VA € P(X).
An operation ¢ € O(X,7) is called monotonous if p(A) C ¢(B) whenever
ACB (A, Be P(X)).

Definition 1.2. Let ¢ € O(X, 7). Then A C X is called p-open if A C ¢(A).
Dually, B C X is called p-closed if X \ B is p-open.

Clearly, X and @ are both y-open and (-closed, while each open set is a
p-open set for any ¢ € O(X, 7).

If (X,7) is a topological space, ¢ € O(X,7), then pO(X), ¢C(X) will
denote respectively the set of w-open, p-closed subsets of X. For z € X we set
O(X,z) ={U € pO(X) | x € U}.

For ¢s,p1 € ¢O(X) sufficient, generally not necessarily, conditions for
©10(X) C pa0O(X) are po > 1 or @y > @ [21]. Here ¢ is the identity op-
eration.

Definition 1.3. For the operations 1, @3 € O(X, T), w2 is called regular with
respect to p10(X) if for each x € X and U,V € ¢10(X, z), there exists a
W € p10(X, x) such that w2 (W) C ¢o(U) N pa(V).

Clearly, if p10(X) is closed under finite intersection and ¢ is monotonous,
then g is regular w.r.t. ¢10(X).
Definition 1.4. Let p1, 902 € O(X,7), AC X, z € X. Then:
(a) x € 1 2int A iff there exists a U € ¢10(X, z) such that ¢o(U) C A.
(b) z € p12clA <= ¢o(U)N A # & for each U € p10(X, x).
(c) Ais @10-0open <= A C ¢ oint A.
(d) Ais ¢y o-closed <= p12clAC A.

For any set A we have X \ (1 2int A = @1 2¢1 (X \ A) and A is ¢; o-open iff
X \ A is @1 o-closed.
Definition 1.5. [1] A subfamily U of the power set of a non-empty set X is
called a supratopology on X if @, X € U and U is closed under arbitrary unions.

If U is a supratopology on X, then the pair (X, i) is called a supratopological
space.

The notions of base, first and second countablility for a supratopology may
be defined as for topological spaces [2].

If the operation ¢ € O(X,7) is monotonous, then pO(X) is a supratopology.

Theorem 1.6. [22] Let @1, € O(X, 7). Then:
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(a) ¢1,20(X), the family of all 1 2-open subsets of X, is a supratopology
on X.

(b) If po is regular w.r.t. p10(X), then the operator @i ocl defines the
topology 7y, , ={T | T C X, @12 (X \T) C X\T} = 120(X).

(¢) If @ is regular w.r.t. p10(X) and 10(X) C p20(X), then the op-
erator o1 2¢cl defines the topology 7, , = {T | T C X, p12c (X \T) =
X\T} = ¢120(X).

(d) If @2 is reqular w.r.t. p10(X), p10(X) C ¢20(X), and p2(U) €
01,20(X) for each U € p10(X), then the operator ¢ 2cl is a Kura-
towski closure operator and @1 2cl A =1, ,clA, VAC X.

Clearly if 1 € O(X, 7) is monotonous and s = ¢ then 1 :0(X) = ¢10(X)
and @1720()() = (plc(X).
The following example illustrates the wide range of well known concepts
covered by the notions defined above.
Example 1.7. For the operations
w1 =int, o =cl oint, p3 =cl, pg =scl, 5 =1, g =int ocl,
defined on a topological space we have:
@1 < 2 < 3 and @1 < g < g4 < @3.
<)01()()() =T,
©20(X) = SO(X) = the family of semi-open sets.
030(X) = p50(X) = P(X) = the power set of X.
pe = PO(X) = the family of pre-open sets.
©1,30(X) = 79 = the topology of all f-open sets.
©2,.40(X) = SO0O(X) = the family of semi-f-open sets.
©1,60(X) = 7, = the semi regularization topology of X.
©2,30(X) = 0SO(X) = the family of all §-semi-open sets.
The operations 1, ¢3 and @9, g are dual to one another.

All these operations are regular w.r.t. ¢;0(X).

2. 1,2-COUNTABLE COMPACTNESS

Definition 2.1. [21] Let 1,92 € O(X,7), X € A C P(X) and A € P(X).
Then:
(a) If each countable A-cover U of A has a finite subfamily &’ such that
A C Hp2(U) | U € U'}, then we say that A is (A - ¢a)-countably
compact relative to X (for short, a (A - p9)-C.C. set).
(b) We call a (A - 1)-C.C. set a A-C.C. set.
(c) If we take A = p10(X) in (a) we say that A is a ¢ 2-C.C. set.
If we take A = 1 20(X) in (b) we say that A is a ¢1 20(X)-C.C. set.
If X is ¢12-C.C. (¢1,20(X)-C.C.) relative to itself, then X will be
called a ¢1,2-C.C. (¢120(X)-C.C.) space.

We remark that the condition X € A is added here, and in our earlier
papers, to guarantee the existence of an A-cover or of a countable A-cover of
a subset of X. However, all the results still hold without this condition.
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One may define g o-compact, A-compact, p1,2-Lindeléf and A-Lindeldf sets
in a similar way [20, 23].

We assume that all the operations ¢;, i = 1,2,... are defined on (X, 7)
whenever they are used.

Example 2.2. Let A C X.

(1)
(2)

If o1 = int, ¢y =1, then Aisa ¢ 2-C.C. set iff A is countably compact.
If o1 =int, w2 =cl, then A is a 1 2-C.C. set iff A is feebly compact
relative to X [16], and X is ¢12-C.C. iff X is feebly compact (or,
equivalently, lightly compact). X is H(1)-closed [16] iff it is a Hausdorff
first countable ¢ o-C.C. space with respect to these operations.

If o1 =cloint, g = cl, then X is ¢; »-C.C. iff it is countably S-closed
[6].

If o1 = int, po = int ocl, then X is strongly H(1)-closed [19] iff it is
a Hausdorff first countable ¢; 2-C.C. space.

If o1 = cl oint, pp = scl, then X is ¢;2-C.C. iff it is countably
rs-compact [7].

For ¢; = int ocl oint, g2 = 2, we have p;0(X) = ¢ 20(X) =
7% Hence, X is countably a-compact [13] iff it is @1 2-C.C. iff it is
@1720(X)-CC iff it is @1O(X)-CC

Definition 2.3. Let F be a filter (or filterbase) on X, (z,,) a sequence in X
and a € X. We say that:

(a)
(b)

()
(d)

F, ¢12-accumulates to a, if a € ({p12¢l F | F € F} [20].

F, ¢1,2-converges to a, if for each U € ¢10(X, a), there exists F € F
such that F' C @o(U) [20].

(Tn), ¥1,2-accumulates to a, if for each U € ¢10(X, a) and for each n,
there exists an ng such that ng > n and x,, € p2(U).

(), p1,2-converges to a, if for each U € ¢10(X, a), there exists an ng
such that for each n (n > ng), x, € w2(U).

Example 2.4. Let F be a filter (or filterbase) on X and a € X.

(1)

(2)

If 1 =int, pg =1, then F, ¢ o-converges to a iff F converges to a in
(X,7) and F, ¢ g-accumulates to a iff F accumulates to a (or a is an
adherent point of F) in (X, 7).

If o1 = int, po = cl, then F, ¢ 2-converges to a iff F, r-converges
[10] (or equivalently ©-converges [9], almost converges [3]) to a, and
F, ¢1,2-accumulates to a iff a is an r-accumulation point [10] (or an
almost adherent point [3]) of F.

For o1 = cl oint, ¢y = cl, it can be seen that, F, ¢; 2-converges
(p1,2-accumulates) to a iff F, rc-converges (rc-accumulates) to a [9],
since {V |V €r,ae€V}={U|Ue€SOX), ac U} Atthe
same time, F, (1 2-converges (@1,2—accumulates) to a iff F, s-converges
(s-accumulates) to a [4].

If o1 = int ocl oint, @9 =1, then F, @1 o-converges (1 2-accumulates)
to a iff F, a-converges (a-accumulates) to a [14].
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(5) If o1 =cl oint, g = scl, it can be easily seen that F, ¢1 o-converges
(p1.2-accumulates) to a iff F, SR-converges (S R-accumulates) to a [5].

(6) For ¢y = cl oint, @o = int oscl, then we see that F, o1 o-converges
(p1,2-accumulates) to a iff F, RS-converges (RS-accumulates) to a [15].

(7) If o1 =int, g = int ocl then F, @1 o-converges (¢ 2-accumulates) to
a iff F, §-converges (d-accumulates) to a [19].

Similar characterizations of the various notions of convergence and accumu-
lation point for sequences and nets given in the literature can be easily given,
and we omit the details.

Theorem 2.5. Let A C X and F = {F, | n € N} be a countable filterbase
which meets A. If some sequence satisfying z,, € ((i—y Fi) N A for each n,
p1,2-accumulates to some point a € X, then the filterbase F, @1 2-accumulates
to a.

Conversely if for any sequence (x,) in A the countable filterbase F = {{x, |
m > n} | n € N} which consists of the tails of the sequence (), ¢1,2-
accumulates to some point a € X, then the sequence (x,), p1,2-accumulates
to a.

Proof. Let F = {F,, | n € N} be a countable filterbase which meets A. Then
F' ={Ni, Fi | n € N} is a decreasing countable filterbase which meets A
and generates the same filter as F. Take z,, € (), F;) N A for each n, and
let (), ¢1,2-accumulate to a. Then, for each U € ¢10(X,a) and for each n,
@ # p2(U) N (N1 F5) N A C 2(U) N (N2 Fi), hence @o(U) N Fy, # 2. So,
F, ¢1,2-accumulates to a.

Conversely let (z,) be a sequence in A, and let F = {T,, | n € N} be the
countable filterbase consisting of the tails of (z,,), which ¢; 2-accumulate to
some point a and meets A. Then for each U € ¢10(X,a) and for each n,
w2 (U) NT, # @. This means that a is a ¢ g-accumulation point of (z,). O

Corollary 2.6. Let A C X. Fach countable filterbase which meets A, ¢1.2-
accumulates to some point of A iff each sequence in A, @1 2-accumulates to
some point of A.

Theorem 2.7. Let A C X. If each countable filterbase which meets A, 1 2-
accumulates to some point of A, then A is a p12-C.C. set.

Proof. Let A C YU, U = {U, | n € I}, I countable and U, € ¢;0(X).
Assume that for each finite subset J of I we have A Z J;c; ¥2(U;). Then
AN(X\U, ey 02(Ui)) # @. The family F = {X\U,;c; p2(Ui) | J € I, J finite}
is a countable filterbase which meets A. So, AN (N{p12clF | F € F}) # .
Let F, 1 2-accumulate to a € A. There exists an ¢y € [ such that a € U;,. Now
X\ w2(Uy) € F, 02(Uiy) N (X \ v2(Ui,)) # @. This contradiction completes
the proof. |

However, the converse of the above theorem need not hold. For operations
w1 = int, w2 = cl in (X,7), each countable filterbase ¢; z-accumulates in
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(X, 7) iff (X,7) is SQ-closed [18]. Also, (X,7) is ¢12-C.C. iff it is a feebly
compact space. Herrington [11] gave an example, occurring in [8], of a regular,
feebly compact but not countably compact space. Since this space is regular,
a 1 2-accumulation point is the same as an accumulation point of a sequence
(filterbase) in (X, 7), so there is a sequence (countable filterbase) which does
not i o-accumulate to any point in X.

Clearly any ¢j o-compact set is a 1 o-Lindeldf set and a ¢ 2-C.C. set. A
set is a @1 20(X)-compact set iff it is a ¢1 2O(X)-Lindeldf set and a 1 20(X)-
C.C. set. If ¢1,20(X) has a countable base then each ¢ 20(X)-C.C. set is a
©1,20(X)-compact set.

We will define conditions (%) and (xx) on the operations ¢; and ¢y in the
following way:

(*) @2 > 101 2 >,
(%) p2(U) € p10(X) and p2(p2(U)) C ¢2(U), for each U € p;0(X).

Example 2.8.

(1) If 1 =int, ¢o = cl, then the condition (x) is satisfied.

(2) If p1 = cloint, po = scl, then the conditions (x) and (xx*) are satisfied.
(3) If o1 = int, w2 = int ocl, then the conditions (*) and (xx) are satisfied.
(4) If 1 =cl oint, gy = cl, then the conditions (x) and (xx) are satisfied.

If the condition (x*) is satisfied then a set is (7 2-compact set iff it is both a
©1,2-Lindeldf set and a ¢ 2-C.C. set.

Theorem 2.9. Let @1 be monotonous, (X,p10(X)) be a second countable
supratopological space and A C X. If A is a ¢12-C.C. set then each filterbase
which meets A, @1 2-accumulates to some point of A.

Proof. Let the supratopology ¢10(X) have a countable base, A be a ¢ 5-C.C.
set and F a filterbase which meets A.

Assume that AN (("{@1,2cl F | F € F}) = @. For any x € A, there exists a
U, € p10(X,x) and an F, € F such that p2(U,y) N F, = @. Now, U = {U, |
x € A} is a ¢1-open open cover of A. Since ¢;O(X) has a countable base, U has
a countable subfamily which covers A. Since A is a ¢ 2-C.C. set, there exists
a finite subfamily {Uy,,Us,,...,Us,} of U such that A C |J;_, p2(Us,;). Now
(Ui, 2(Uz) N (N Fry) = @, s0o AN (N, Fz;) = @. This contradiction
completes the proof. O

Corollary 2.10. Under the assumptions of Theorem 2.9., the following are
equivalent.
(a) A is a@y2-C.C. set.
(b) A is a p1,2-compact set.
(c) Each countable filterbase which meets A, 1 2-accumulates to some
point of A.

Proof. In [20], it is shown that A is a (1 o-compact set iff each filterbase which
meets A, 1 2-accumulates to some point of A. Since each p1,2-compact set is
a 1,2-C.C. set, the proof is now clear from Theorem 2.7. O
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Theorem 2.11. Let 1, o be monotonous and suppose that the conditions (x)
and (xx) hold. If the supratopology v10(X) has a countable base B(p10(X)),
then B' = {p2(U) | U € B(p10(X))} is a countable base for the supratopology

(,DLQO(X).

Proof. Under the given conditions, B = {¢2(U) | U € ¢10(X)} is a base for
the supratopology ¢120(X) and B’ C B C ¢120(X). Let V € ¢10(X)
and x € V. There exists a U € ¢10(X,x) such that ¢2(U) C V. Hence,
z €U C py(U) CV. There exists a U € B(p;0(X)) such that z € U C U.
Hence, we have & € p2(U") C ¢2(U) CV and p2(U’) € B'. O

Theorem 2.12. Let (x) and (xx) hold and let B = {p2(U) | U € p10(X)}.
Then the following are equivalent for any subset A of X.

(a) A is a @1,2-compact set.

(b) A is a B-compact set.

(c) A is both a 1 2-Lindeldf set and a @1 2-C.C. set.
(d) A is both a B-Lindelof set and a B-C.C. set.

Proof. Under the given conditions, A is a ¢ 2-compact set iff it is B-compact
set [20], A is a o1 2-Lindeldf set iff it is a B-Lindeldf set [23], A is a @1 2-C.C. set
iff it is a B-C.C. set [22]. Hence (b) <= (d) is now clear, as are the others. O

Theorem 2.13. Let 1, o be monotonous and suppose that the conditions (x)
and (xx) hold. If the supratopology p10(X) has a countable base B(p10(X)),
orif B={pa(U) |U € p10(X)} is countable, then the following are equivalent.

(a) A is apy2-C.C. set.

A is a 91 20(X)-C.C. set.
Ais a B-C.C. set.

A is a 1 2-compact set.

A is a 1 20(X)-compact set.
A is a B-compact set.

Proof. Under the conditions (%) and (%), (a) <= (c), (b)=>(c¢) and (d) <=
(e) <= (f) are given in [22] and [20] respectively. If B is a countable base
of ©10(X), then (c) = (b) is clear. In the other case, B = {po(U) | U €
B(10(X))} is a countable base of g1 50(X) and B' C B C ¢; ,0(X). Hence,
a B-C.C. set will be a B'-C.C. set and a B'-C.C. set will be a ¢; ,0(X)-C.C.
set, so we have again (¢) = (b). In each case (b) < (e) is clear. O

Theorem 2.14. Let @1 be monotonous and let a € X have a countable local
base Cy, (a) in the supratopological space (X, p10(X)).
(1) If p2 is monotonous and regular w.r.t. ©10(X), then the family F =
{p2(U) | U € Cy, (a)} is a countable filterbase and @1 2-converges to a.
(2) If p1O(X) is a topology and p10(X) C p20(X), then Cy, (a) is a
countable filterbase which 1 2-converges to a.
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Proof. (1) For U,U’ € Cy,(a), a € UNU" and U,U’" € ¢p10(X). Since ¢y
is regular w.r.t. ¢;O(X), there exists a V € ¢10(X,a) such that ¢o(V) C
©2(U) N @a(U’). There exists a V. € C,,(a) such that V. C V. Since ¢
is monotonous, we have @o(V,) C po(V) C wo(U) N @o(U’). Hence F is a
countable filterbase. Let U € ¢10(X,a). There exists a U, € C, (a) such that
U. CU. pa(Us) € F and, since ¢y is monotonous ¢o(U.) C ¢o(U). So, F is
p1,2-convergent to a.

(2) For U,U’ € Cy,(a), a € UNU' € p10(X, a). There exists a U, € Cy, (a)
such that U. C U NU’. Hence C,, (a) is a countable filterbase.

Now, let V € p10(X,a). There exists a V. € C,, (a) such that V. C V. Since
010(X) C p20(X), we have V. €V C ¢o(V). Hence Cy, (a), p1,2-converges
to a. (|

Theorem 2.15. Let ¢1, @ be monotonous, let a € X have a countable local
base Cy, (a) in (X,p10(X)) and also let @ be regular w.r.t. ¢10(X). For
A C X, a € ¢iaclA iff there exists a filter which contains A, has a countable
base and @1 2-converges to a.

Proof. Let a € ¢12clA. Then for each U € p10(X,a), p2(U)NA # @. As
in the proof of Theorem 2.14.(1), it is easly seen that F, = {p2(V)NA |V €
Cy, (a)} is a countable filterbase. The filter F generated by F; contains A, and
{p2(V) |V € Cy,,(a)} € F. Clearly F is 1 2-convergent to a.

The other part of the proof is clear from Corollary 3.4. in [20]. O

Theorem 2.16. Let 1, po be monotonous, (X, p10(X)) be a first countable
supratopological space, and define c1* : P(X) — P(X) by cl*(A) = {x | there
exists a filter that contains A, has a countable base and 1 2-converges to x},
for each A € P(X).

(1) If o is regular w.r.t. p10(X), then cl*(A) = ¢12cl A for each A €
P(X), and cl™ defines the topology 7* = {U C X | (X\U)* C X\U} =
(pLQO(X).

(2) If pa is regular w.r.t. p10(X) and p10(X) C p20(X), then cl™ defines
the topology 7™ ={U C X | (X \U)* = X\ U} = p120(X).

(3) If w2 is reqular w.r.t. ©10(X), p10(X) C p20(X), and ¢2(U) €
©1,20(X) for each U € v10(X), then the operator cl™ is a Kura-
towski closure operator defining 7 = {U C X | (X \U)* =X \U} =
<P1720(X)-

Hence, if 1, ¢ are monotonous and (X, p;0(X)) is a first countable topo-
logical space, then the ¢ o-closure operator and the topology 7, , = {U C X |
01,2cl (X \U) C X\U} = ¢120(X) can be defined using filters with countable
bases.

Proposition 2.17. If p10(X) C p20(X) (hence, if w2 > @1 or wa > 1), then
A C p12¢l A for each A € P(X).
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Proposition 2.18. If (xx) holds, then @2 (U) C 1 oint (2(U)) (i.e., p2(U) €
©120(X)) for each U € p10(X).

Proof. Let U € ¢10(X) and z € ¢o(U). Then z € ¢o(U) € ¢10(X) and
p2(p2(U)) S @2(U). So x € p12int (p2(U)). 0

Corollary 2.19. (a) Under the condition (xx), we have, @1 2¢l (X \ p2(U)) C
X\ ¢2(U) for each U € p10(X).

(b) If 910(X) C p20(X) and (xx) holds, then p1.2cl (X \ p2(U)) = X\
w2(U) for each U € ¢10(X).

Remark 2.20. a) If ¢, is the dual operation of ¢, then {X \ p2(U) | U €
p10(X)} ={5(X\U) | U € p1O0(X)} = {@2(K) | K € p1C(X)}.

b) If ¢; is monotonous (in which case p;O(X) is a supratopology), and
2(UUV) = pa(U) U (V) for each U,V € p;0(X), then for each finite
subfamily {Uy,Us, ..., U,} of ¢10(X), Ui, U; € 910(X) and o2 (U, U;) =
U1 w2(U0).

Theorem 2.21. Consider the following statements:

(i) 1 is monotonous.

(ii) 2 s monotonous.

(iil) @2 > or 2 > @1 (i.e. (x)),

(iv) VU € 10(X), 2(U) € p10(X) and p3(p2(U)) S @2(U) (i-e. (x%)).
(v) For cach U,V € 010(X). @2(U UV) = ga(U) U pa(V),

(Vi) @ is the dual of pa.

and

(a) A is a@i2-C.C. set.

(b) Fach countable filterbase F C {X \ p2(U) | U € p10(X)} which meets
A, ¢1 2-accumulates to some point of A.

(c) For each countable filterbase F C {X \ 2(U) | U € v10(X)} which
meets A, we have AN (NF) # 2.

(d) For each decreasing countable filterbase F C {X\p2(U) | U € ¢10(X)}
which meets A, we have AN (({p12¢lF | F € F}) # @.

(e) For each decreasing countable filterbase F C {X\p2(U) | U € 010(X)}
which meets A, we have AN (N F) # 2.

(f) If @ is any decreasing sequence of countable non-empty ¢1-closed sets
such that for each F € ®, AN@a(F) # @, then AN (N P) # 2.

) = (d) and (¢) = (e).

1i1) holds, then (¢) = (b) and () = (d).

iii) and (iv) hold, then (¢) <= (b) and (e¢) <= (d).
iv) holds, then (a) = (c).

) and (v) hold, then (d) = (b) and (b) = (a).
it) and (vi) hold, then (a) (f).

), (31), (v) and (vi) hold, then (f) = (a).
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Proof. (1) Immediate.
2) Clear from Proposition 2.17.
(3) Clear from Corollary 2.19.

(4) Let A be a ¢12-C.C. set, and F = {X \ 2(U;) | i € I}, U; € p10(X),
be a countable filterbase which meets A. Assume that AN ((|F) = @ and
A C Uier p2(Ui). Since, 02(U) € 010(X), pa(p2(U)) C ¢2(U), for each U €
©10(X), and A is a ¢y 2-C.C. set, there exists a finite subset J of I such that,

A C Uiy p2(2(Ui)) € Ujey p2(Us). We have AN (e, (X \ 2(Us))) = 2.
This contradiction completes the proof.

(5) Let F C {X \ v2(U) | U € ¢10(X)} be a countable filterbase which
meets A. Then F = {F, | n € N}, where F,, = X \ ¢2(U,), n € N and
Un € ¢10(X). Let F! = _, F; for each n. Then F' = {F) | n € N} is
a decreasing countable filterbase, and F), = (_; F; = (i_ (X \ v2(U;)) =
X\UL, 92(U) = X\ ga(UL, Uy). Hence, 7/ C {X \ 2(01) | U € p10(X)}.

If we assume that (d) holds then AN (N{p12cl F), | F) € F'}) # @. Since
F] C F, for each n, we have @1 ocl F), C @1 9cl Fy,. So AN (N{p1,2¢l F, | Fy, €
A £o.

Now, let us verify that (b)) = (a). Let A CJU, U C 10(X) and U = {U; |
i € I} be countable. Assume that for each finite subset J of I, A Z |, ; ¢2(U;).
Then, AN (X \ U,cy ¢2(Us)) # @. From our hypotheses, (J;c; Ui € p10(X)
and ©2(U;c; Us) = U;ey 02(Ui). So, for each finite subset J of I, we have
AN(X\@2(U;es Ui)) # @. Let F = {X\p2(U;e; Ui) | J C I, finite}. Then
FC{X \ p2(U) | U € p10(X)} and F is a countable filterbase which meets
A. There exists an a € A such that a € ({p12clF | F € F} anda U, € U
such that a € U,. Now, X \ ¢2(U,) € F and ¢2(U,) N (X \ p2(U,)) = @. This
contradiction completes the proof.

(6) Let ® be a countable decreasing sequence of nonempty ¢1-closed sets
such that for each F' € ®, AN @y(F) # @. Assume that AN () P) = @. Then,
ACU{X\F | F € ®}. Since foreach F € &, X\ F € v10(X), and Ais a @1 o-
C.C. set, there exists a finite subfamily ®" of ® such that A C [J{p2(X \ F) |
F € @'}, Since sy is monotonous, A C po((Jpeg (X \ F)). There exists an
F" € @' such that (Jpcq (X \F) = X\ F'. Then A C po( X\ F') = X\ G2 (F'),
so AN @y(F'") = @. This contradiction completes the proof.

(7) Let U = {U,, | n € N} be a countable ¢;-open cover of A. Assume that
for each finite subset J of N, A Z (J;c; w2(U;). In this case, for each finite
subset J of N, X # J,c; U; since, otherwise, we would have A C |J,.,U; C
Uics ¢2(U;) for a finite subset .J of N.

Let F,, = X \U;_, U; for each n. For each n, F,, # &, F,, € ¢;C(X) and
AN (X UL, ¢2(0h) # 2. Now
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AN(X\ U ea2(U;)) = AN (X\<P2(U Ui))

i=1

= An (& [J)
i=1

1=

=ANys (Fn)

# @.
Hence, AN (N, Fn) # 2. But N, F,, = X\ (U,~, Uy) and we obtain that
AN (X\U,~,U,) = @. This contradiction completes the proof. O

Example 2.22.
(1) If 1 = int, po = cl, then $» = int and the conditions (i), (ii), (iii),
(v) and (vi) are satisfied.
(2) If o1 = cl oint, o = scl, then conditions (i), (ii), (iii), (iv) and (vi)
are satisfied, and @5 = semi-interior is the dual of .
(3) If p1 = cl oint, ¢ = cl, then ¢y = int and all the conditions are
satisfied.

Many known results, see for example [6,11,17,18,19], and also many new
results, may now be obtained by choosing particular operations and combining
the above results with the unifications obtained in [20-23].
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