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Homeomorphisms of R and the Davey Space
SHEILA CARTER AND F. J. CRAVEIRO DE CARVALHO

ABSTRACT. Up to homeomorphism, there are 9 topologies on a three
point set {a,b,c} [4]. Among the resulting topological spaces we have
the so called Davey space, where the only non-trivial open set is, let
us say, {a}. This is an interesting topological space to the extent that
every topological space can be embedded in a product of Davey spaces
[3]. In this note we will consider the problem of obtaining the Davey
space as a quotient R/G, where G is a suitable homeomorphism group.
The present work can be regarded as a follow-up to some previous work
done by one of the authors and Bernd Wegner [1].
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1. R/G As THE DAVEY SPACE -NECESSARY CONDITIONS

We will take the topological space ({a,b,c}, ), with 7 = {@,{a}, {a,b, c}},
as a model for the Davey space and the real line will be denoted by R.

Our purpose is to obtain a group G of homeomorphisms of R whose natural
action on R gives rise to the Davey space and we start by establishing a number
of observations which guided our quest.

Below we assume that the homeomorphism group G is such that R/G is the
Davey space and 7 will stand for the projection from R to R/G.

Proposition 1.1. G is not finite.

Proof. If G were finite then, for instance, 7=1(b) would be finite and, conse-

quently, {a, ¢} would be open.
O

Proposition 1.2. 77(a) is bounded neither above nor below.

Proof. Assume that 77 !(a) is bounded above and let x be its supremum. Then

7((x,+00)) is open in R/G and, consequently must contain a.
O
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Proposition 1.3. 7=1({b,c}) is bounded neither above nor below.

Proof. Assume that z is the supremum of 7=1({b, c}). Since this set is closed
in R, = belongs to it. Let us suppose that 7(z) = b. As we will see below it
then follows that | 771(b) |< 2 which, as remarked above, is impossible.

Let y, 2z be points in 7~ 1(b) with y < 2 < . There is a homeomorphism f
in G such that f(z) = z. If f were increasing then f(z) > x. Therefore f must
be decreasing and, since y < z, f(y) > x which, again, is impossible.

O

Proposition 1.4. 771(b), 771(c) are bounded neither above nor below.

Proof. Assume that 7~1(b) is bounded above and let  be its supremum. Then
7((x,4+00)) must be {a} and z is an upper bound for 7=!(c). Consequently
771({b,c}) would be bounded above.

O

We are now in a position which allows us to conclude

Theorem 1.5. The action of G is not free.

Proof. Let n1(a) = UC“ where the C;’s are the connected components.
iel
From above it follows that, for each i, C; = (a;, b;).
Fix an ¢ and choose z, y distinct in C;. There is an f € G such that f(z) = y.
Since f maps [a;, b;] into itself, it must have a fixed point. O

It is also clear that 7=1({b,c}) is totally disconnected and that every point
in it is a limit point of that set.

Proposition 1.6. 7= 1({b,c}) is uncountable.

Proof. Write 7 !(a) = U C; and choose x,y in different components, with

iel
x < y. Then 7= 1({b,c}) N[,y is a compact, Hausdorff space having all its
elements as limits points. Therefore it is uncountable [4]. O

2. AN EXAMPLE

This section is devoted to the construction of an example of a group G such
that R/G is the Davey space. Since they are homeomorphic spaces we will use
the open interval (0, 1) instead of R.

Let C denote the intersection of the Cantor set [2], [5] with (0, 1) and consider
the partition (0,1) = AUBUC, where A = (0,1)\ C is a union of open intervals,
the “middle thirds”, B is the set of end-points of the open intervals in A and
C=C\B.

The Cantor set can be described in terms of ternary expansions. We then
have, for « € (0,1), that
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oo

x € A if and only if there is n € N such that x = E %, where, for i < n,
i=1
=0 2,x, =1and 0 < g = < 5,
T or 2, an 3 < 3m

1=n+1
n

x € B if and only if there is n € N such that z = Z E, where, for ¢ < n,

3i
i=1
z; =0 or2, x, =1 or 2.

x € C if and only if x = Z %, with ; =0 or 2, and there are arbitrarily
i=1
large ¢ and j for which z; =0, z; = 2.

Proposition 2.1. The quotient topological space originated by the partition
(0,1) = AU BUC is the Davey space.

Proof. Let X = {a,b, c} be the quotient space obtained by identifying A, B, C
to points a, b, ¢, respectively.
Since A is open in (0, 1) it follows that {a} is open in X.

n—1
i 1
Let now z € B and suppose that x = Z % + 3 where x; =0 or 2. For
i=1
n—1 . k 9 o0 9
k > n + 1, define y, € C by yk=Z§+ Z §+Z3’€TQJ Then the
i=1 i=n+1 j=1
n—1 T 0o 9
sequence (yx) converges to Z 3—2 + Z 30 which is z.
=1 1=n+1
n—1 o 2
Similarly if x = 3—2 + 3 where x; = 0 or 2, for £k > n + 1, define
i=1
2
Yr =1 + Z 3 This sequence also converges to x.
j=1

Thus every element of B belongs to the closure of C' and, since it is an
end-point of an open interval in A, it also lies in the closure of A. Hence every
open set in X containing b also contains a and ¢ and the only such open set is
X itself.

oo

"y

Next consider x € C, say = = Z 3—;, where x; = 0 or 2. There exists an
i=1

arbitrarily large ¢ for which x; = 2. Let x; be the first nonzero term and, for

k
k > 1, define yx € B by yr = Z % The sequence (yx) converges to .

Thus z lies in the closure ozf 1B and, as each yy is in the closure of A, it also
lies in the closure of A. So every open set in X containing ¢ also contains a
and b and the only such open set is X itself.

Therefore X is the Davey space. ([l
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Let G = {h : (0,1) — (0,1) | h is a homeomorphism and h(A) = A}.
If h € G then h takes an open interval in A to an open interval in A and,
consequently, the end-points to end-points. So h(B) = B and then h(C) = C.
If we prove that G acts transitively on A, B and C we may conclude that those
subsets are the orbits of the natural action of G on (0,1) and, by Proposition

1, (0,1)/G is the Davey space.

Proposition 2.2. G acts transitively on A.

Proof. We start by observing that, given any open interval («, ) in (0, 1) and
z,y € (a,p), there exists a homeomorphism h : (0,1) — (0,1) such that
h((e, B)) = (o, B), h(x) =y and h | (0,1) \ (e, B) is the identity function.
To prove transitivity on A it is therefore enough to show that, for any open
interval (o, 8) in A, with «, 3 € B, there is h € G such that h((a, 8)) = (3, 3).
Assume o = 3114— —|—3%—|—3in7 1<ii<ig<...<ip<n. Soﬁ:a—k%.
Let j1,...,4; besuchthat 1 <j; <...5i <mn, {j1,..., 5 U{i1,02,...,ix} =
{1,2,...,n =1}, I+ k=n—1. Hence

2 2 1 -2 1
a+37+...+ﬁ+3—n—;§=1—3—n and, in the construction of h, we
il 1(2+ +2+1 ) +t h 1—t,tel0,1]
will use 1 — (=— — + — =a+ —, where s =1 — .
351 3 3n o 3n 3’ ’ ’

We define h : (0,1) — (0,1) as follows:

(0, 5%] is mapped to (0, ] by h(3%§)232,w1thte(0,1],
forr=2,... .k [55+.. A+ g 4+ ...+ 7= is mapped to [ +... +
5, gt 5] by h(GE +W%+§%):3%+...+3%+%,With

[22+...+ =2, a] is mapped to
2

301 37k [
Z+...+ with ¢ € [0,

ot gl by b+ g ) =
1],

[, + 5] is mapped to [3, 2] by h(a+ 5&) = 3 + &, with ¢ € [0, 1],

t
3k+1

[a—|—3ln,o¢—|—3%] is mapped to [%,%—I—#] by h(1— (3]l 4.+ = 3” +37)) =

1= (g +...+ g + g7), with s € 0,1],
forr=2,..., 1, [1=(F +...+55),1 = (F + ... + 5725)] is mapped to
1Bt = (bt ) by B (G gt ) =
1— (2 4.+ 2+ 52), WlthS€[071]7
[~ 2.1) is mapped to [1— &,1) by (1~ 2) =1~ 2, with s € (0,1].

We have then a homeomorphism h : (0,1) — (0,1) such that h((a, f)) =

(3,2). On cach interval of its definition, h is of the form h(z) = Az + p, for

some A, p € R. Hence it takes middle thirds in (0 to middle terms in

7311)
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(0, 35), middle thirds in (311 .+ 312 =, .t 3%1 + 2-) to middle
thirds in (3—2—1—...—1—3—“ 3zt + 3T + 3Hl), for r =2,...,k, and so on for
the other intervals. So h(A) = A and h € G as required.

d

Proposition 2.3. G acts transitively on B.

Proof. The homeomorphism h constructed above maps [a, 8] to [%, %], with
h(o) = 3,h(B) = % and every element in B is such an a or f3.

Composing h with the reflection of (0,1) that sends z to 1 — z gives an
element of G that takes 8 to % Hence, for a € B, there exists g € G with

g(a) = &. Therefore G acts transitively on B.
O

Proposition 2.4. G acts transitively on C.

Proof. Since 1 € C, it suffices to show that, for v € C, there is h € G such

4
=2 1
3 4
=2
Letyzz?)T,I:{il,ig,...},J:N\I:{jl,jg,...}. Define A : (0,1)
n=1

— (0,1) as follows:

(0, 3%] is mapped to (0, Z] by h(gll) = 2, with t € (0,1],
forn=2,..., [3%4— +3%L1, 3114‘ +31n]lsmappedt0[32+34+ -+

oz et g by h(GE 4 gy T ae) = gt ar e g oo
with t € [0, 1],

n=1 n=1

forn=2,..,1- (55 +...+35),1— (3% + ...+ 7==)] is mapped to
I-CG+3+. . +5320)1-EG+Z+... +32n3)]byh(1 (g% +...+
3]712—1+32Ji)):1_(%+3%+ +3233+32n 1) Wlth86[7]

[1- 1) is mapped to [§,1) by h(1 — 2%) =1 — 22, with s € (0,1].

2
371

We have therefore defined an h € G with h(y) = 1 as required.

We can now conclude with our main result.

Theorem 2.5. There is a group G of homeomorphisms of R such that the
quotient space R/G is the Davey space.
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