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The topological structure of (homogeneous)
spaces and groups with countable cs*-character
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ABSTRACT. In this paper we introduce and study three new cardi-
nal topological invariants called the cs*-, cs-, and sb-characters. The
class of topological spaces with countable cs*-character is closed under
many topological operations and contains all N-spaces and all spaces
with point-countable cs*-network. Our principal result states that
each non-metrizable sequential topological group with countable cs*-
character has countable pseudo-character and contains an open k-
subgroup. This result is specific for topological groups: under Martin
Axiom there exists a sequential topologically homogeneous k.,-space X
with Ro = s} (X) < ¥(X).
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INTRODUCTION

In this paper we introduce and study three new local cardinal invariants of
topological spaces called the sb-character, the cs-character and cs*-character,
and describe the structure of sequential topological groups with countable cs*-
character. All these characters are based on the notion of a network at a point x
of a topological space X, under which we understand a collection A/ of subsets
of X such that for any neighborhood U C X of z there is an element N € N/
with © € N C U, see [Lin].

A subset B of a topological space X is called a sequential barrier at a point
x € X if for any sequence (Tp)new C X convergent to x, there is m € w
such that z, € B for all n > m, see [Lin]. It is clear that each neighborhood
of a point = € X is a sequential barrier for z while the converse in true for
Fréchet-Urysohn spaces.
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Under a sb-network at a point x of a topological space X we shall understand
a network at x consisting of sequential barriers at . In other words, a collection
N of subsets of X is a sb-network at z if for any neighborhood U of x there is
an element N C U of N such that for any sequence (z,,) C X convergent to
x the set N contains almost all elements of (z,,). Changing two quantifiers in
this definition by their places we get a definition of a cs-network at x.

Namely, we define a family N of subsets of a topological space X to be a cs-
network (resp. a cs*-network) at a point 2 € X if for any neighborhood U C X
of z and any sequence (z,) C X convergent to = there is an element N € A
such that N C U and N contains almost all (resp. infinitely many) members
of the sequence (x,). A family A of subsets of a topological space X is called a
cs-network (resp. cs*-network) if it is a cs-network (resp. cs*-network) at each
point « € X, see [Na].

The smallest size |[N| of an sb-network (resp. cs-network, cs*-network) A
at a point x € X is called the sb-character (resp. cs-character, cs*-character)
of X at the point  and is denoted by sb, (X, ) (resp. csy (X, ), cs} (X, x)).
The cardinals sby (X) = sup,cx sby(X,z), csy(X) = sup,ex csy(X, ) and
csy(X) = sup,ey csy (X, z) are called the sb-character, cs-character and cs*-
character of the topological space X, respectively. For the empty topological
space X = @ we put shy(X) = cs,(X) = cs}(X) = 1. As expected the
character x(X) of a topological space X is the smallest cardinal x such that
each point z € X has a neighborhood base of size < k.

In the sequel we shall say that a topological space X has countable sb-
character (resp. cs-, cs*-character) if sby(X) < Rg (resp. ¢s,(X) < N,
csy(X) < Ng). In should be mentioned that under different names, topological
spaces with countable sb- or cs-character have already occured in topological
literature. In particular, a topological space has countable cs-character if and
only if it is csf-countable in the sense of [Lin]; a (sequential) space X has
countable sb-character if and only if it is universally csf-countable in the sense
of [Lin] (if and only if it is weakly first-countable in the sense of [Ar;] if and
only if it is O-metrizable in the sense of Nedev [Ne]). From now on, all the
topological spaces considered in the paper are Tj-spaces. At first we consider
the interplay between the characters introduced above.

Proposition 1. Let X be a topological space. Then
(1) es(X) < esy(X) < sby(X) < x(X);
(2) x(X) =sby(X) if X is Fréchet-Urysohn;
(3) esp(X) < o iff esy(X) < Ng iff sby(X) < Vo iff esp(X) = 1 iff

sy (X) = 1 iff sby (X) = 1 iff each convergent sequence in X is trivial;
(4) shy(X) < 29,
(5) esy(X) < esp(X) ssup{|[r]=¥| 1 k < sy (X)) < (cs;(X))NO where
(k]S ={A Ck:|Al <N}

Here “iff” is an abbreviation for “if and only if”. The Arens’ space So
and the sequential fan S, give us simple examples distinguishing between
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some of the characters considered above. We recall that the Arens’ space
Sy is the set {(0,0),(%,0),(%,-1) : n,m € N} C R? carrying the strongest
topology inducing the original planar topology on the convergent sequences
Co = {(0,0),(£,0) : n € N} and Cy, = {(£,0),(%,-5) : m € N}, n € \.
The quotient space S, = S3/Cy obtained from the Arens’ space Se by iden-
tifying the points of the sequence Cy is called the sequential fan, see [Lin].
The sequential fan S, is the simplest example of a non-metrizable Fréchet-
Urysohn space while S5 is the simplest example of a sequential space which is
not, Fréchet-Urysohn.

We recall that a topological space X is sequential if a subset A C X if closed
if and only if A is sequentially closed in the sense that A contain the limit
point of any sequence (a,) C A, convergent in X. A topological space X is
Fréchet-Urysohn if for any cluster point a € X of a subset A C X there is a
sequence (an) C A, convergent to a.

Observe that Ry = cs} (92) = cs,(92) = sby(S2) < x(S2) = 0 while Ry =
sy (Sw) = csy(Sw) < sby(Sw) = x(Sw) = 0. Here 0 is the well-known in
Set Theory small uncountable cardinal equal to the cofinality of the partially
ordered set N endowed with the natural partial order: (z,) < (y,) iff 2, < yn
for all n, see [Va]. Besides 0, we will need two other small cardinals: b defined
as the smallest size of a subset of uncountable cofinality in (N“, <), and p equal
to the smallest size |F| of a family of infinite subsets of w closed under finite
intersections and having no infinite pseudo-intersection in the sense that there
is no infinite subset I C w such that the complement I \ F is finite for any
F € F, see [Va], [vD]. It is known that N3 < p < b <0 < ¢ where ¢ stands
for the size of continuum. Martin Axiom implies p = b =9 = ¢, [MS]. On the
other hand, for any uncountable regular cardinals A < k there is a model of
ZFC with p=b =20 = X and ¢ = &, see [vD, 5.1].

Unlike to the cardinal invariants cs,, sb, and x which can be distinguished
on simple spaces, the difference between the cardinal invariants cs, and csj is
more subtle: they cannot be distinguished in some models of Set Theory!

Proposition 2. Let X be a topological space. Then CS;(X) = ¢sy (X)) provided
one of the following conditions is satisfied:

(1) sy (X) <p;

(2) kY < cesi(X) for any cardinal k < cs(X);

(3) p=c and \* < Kk for any cardinals A < K > ¢;

(4) p = c (this is so under MA) and X is countable;

(5) the Generalized Continuum Hypothesis holds.

Unlike to the usual character, the cs*-, cs-, and sb-characters behave nicely
with respect to many countable topological operations.

Among such operation there are: the Tychonov product, the box-product,
producing a sequentially homeomorphic copy, taking image under a sequentially
open map, and forming inductive topologies.

As usual, under the boz-product O;c7X; of topological spaces X;, i € Z,

we understand the Cartesian product [],.; X; endowed with the box-product
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topology generated by the base consisting of products ], ; U; where each U;
is open in X;. In contrast, by [[,.; Xi we denote the usual Cartesian product
of the spaces X;, endowed with the Tychonov product topology.

We say that a topological space X carries the inductive topology with respect
to a cover C of X if a subset F' C X is closed in X if and only if the intersection
FNC is closed in C for each element C € C. For a cover C of X let ord(C) =
sup,cx ord(C, z) where ord(C,z) = {C € C : = € C}|. A topological space
X carrying the inductive topology with respect to a countable cover by closed
metrizable (resp. compact, compact metrizable) subspaces is called an M,,-
space (resp. a k,-space, MK,,-space).

A function f : X — Y between topological spaces is called sequentially
continuous if for any convergent sequence (z,) in X the sequence (f(z,)) is
convergent in Y to f(limx,); f is called a sequential homeomorphism if f is
bijective and both f and f~! are sequentially continuous. Topological spaces
X, Y are defined to be sequentially homeomorphic if there is a sequential homeo-
morphism h : X — Y. Observe that two spaces are sequentially homeomorphic
if and only if their sequential coreflexions are homeomorphic. Under the se-
quential coreflexion 0 X of a topological space X we understand X endowed
with the topology consisting of all sequentially open subsets of X (a subset U
of X is sequentially open if its complement is sequentially closed in X; equiv-
alently U is a sequential barrier at each point = € U). Note that the identity
map id : ¢ X — X is continuous while its inverse is sequentially continuous, see
[Lin].

A map f: X — Y is sequentially open if for any point o € X and a sequence
S C Y convergent to f(zg) there is a sequence T' C X convergent to zp and
such that f(T) C S. Observe that a bijective map f is sequentially open if its
inverse f~! is sequentially continuous.

The following technical Proposition is an easy consequence of the corre-
sponding definitions.

Proposition 3. (1) If X is a subspace of a topological space Y, then
esy(X) < esy(Y), sy (X) < esy (Y) and sby (X) < sb(Y).

(2) If f: X =Y is a surjective continuous sequentially open map between
topological spaces, then cs}(Y) < cs}(X) and sby(Y) < sby(X).

(3) If f: X =Y is a surjective sequentially continuous sequentially open
map between topological spaces, then min{cs} (Y), N1} < min{cs} (X), N},
min{cs, (Y),N;} < min{ecs, (X), N1}, and
min{sb, (Y),R;} < min{sb, (X),N;}.

(4) If X and Y are sequentially homeomorphic topological spaces, then
min{cs} (X), N1} = min{cs, (X),N;} = min{cs, (Y), R} =
= min{cs} (Y), N1}, and min{sb,(Y),N;} = min{sb, (X), N1 }.

(5) For any topological space X min{sb, (X),N;} = min{sb, (¢X),N;} <
sby (0X) > sby(X) and csy(X) < csy(0X) > min{cs, (0X), R} =
min{cs, (X), N1} = min{cs} (X),N;} = min{cs} (0 X), N, } <cs}(0X) >

sy (X).
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(6) If X = [];ez Xi is the Tychonov product of topological spaces X;, i € Z,
then csy(X) < D ez esy(Xi), esy(X) < Y icr o8y (Xi) and sby(X) <
2 iez Shx(Xi).-

(7) If X = O;ezX; is the boz-product of topological spaces X;, 1 € Z, then
s} (X) < D ez esi(Xi) and esy (X) <3707 es, (X).

(8) If a topological space X carries the inductive topology with respect to a
cover C of X, then cs}(X) < ord(C) - supgec csy (C).

(9) If a topological space X carries the inductive topology with respect to a
point-countable cover C of X, then csy(X) < supgee csy(C).

(10) If a topological space X carries the inductive topology with respect to a

point-finite cover C of X, then sby (X) < suppee sby(C).

Since each first-countable space has countable cs*-character, it is natural to
think of the class of topological spaces with countable cs*-character as a class
of generalized metric spaces. However this class contains very non-metrizable
spaces like BN, the Stone-Cech compactification of the discrete space of positive
integers. The reason is that SN contains no non-trivial convergent sequence. To
avoid such pathologies we shall restrict ourselves by sequential spaces. Observe
that a topological space is sequential provided X carries the inductive topology
with respect to a cover by sequential subspaces. In particular, each M,-space
is sequential and has countable cs*-character. Our principal result states that
for topological groups the converse is also true. Under an M,,-group (resp.
MK,,-group) we understand a topological group whose underlying topological
space is an M,,-space (resp. MK,-space).

Theorem 1. Fach sequential topological group G with countable cs*-character
is an M, -group. More precisely, either G is metrizable or else G contains an
open MIC,,-subgroup H and is homeomorphic to the product H x D for some
discrete space D.

For M,-groups the second part of this theorem was proven in [Ba;]. Theo-
rem 1 has many interesting corollaries.

At first we show that for sequential topological groups with countable cs*-
character many important cardinal invariants are countable, coincide or take
some fixed values. Let us remind some definitions, see [En;]. For a topological
space X recall that

o the pseudocharacter 1(X) is the smallest cardinal x such that each
one-point set {x} C X can be written as the intersection {x} = Nl of
some family U of open subsets of X with [U| < x;

e the cellularity ¢(X) is the smallest cardinal k such that X contains no
family U of size |U| > & consisting of non-empty pairwise disjoint open
subsets;

o the Lindeldf number (X)) is the smallest cardinal « such that each open
cover of X contains a subcover of size < k;

e the density d(X) is the smallest size of a dense subset of X;
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o the tightness t(X) is the smallest cardinal s such that for any subset
A C X and a point a € A from its closure there is a subset B C A of
size |B| < k with a € B;

e the extent e(X) is the smallest cardinal x such that X contains no
closed discrete subspace of size > k;

e the compact covering number kc(X) is the smallest size of a cover of X
by compact subsets;

e the weight w(X) is the smallest size of a base of the topology of X;

e the network weight nw(X) is the smallest size |N| of a topological
network for X (a family A of subsets of X is a topological network if
for any open set U C X and any point z € U there is N € N with
x €N CU);

e the k-network weight knw(X) is the smallest size [N of a k-network
for X (a family N of subsets of X is a k-network if for any open set
U C X and any compact subset K C U there is a finite subfamily
M C N with K c UM c U).

For each topological space X these cardinal invariants relate as follows:
max{c(X),(X),e(X)} < nw(X) < knw(X) < w(X).

For metrizable spaces all of them are equal, see [Eny, 4.1.15].

In the class of k-spaces there is another cardinal invariant, the k-ness intro-
duced by E. van Douwen, see [vD, §8]. We remind that a topological space
X is called a k-space if it carries the inductive topology with respect to the
cover of X by all compact subsets. It is clear that each sequential space is a
k-space. The k-ness k(X) of a k-space is the smallest size || of a cover K of
X by compact subsets such that X carries the inductive topology with respect
to the cover K. It is interesting to notice that k(N*) = d while £(Q) = b, see
[vD]. Proposition 3(8) implies that cs} (X) < k(X) - 9(X) > ke(X) for each
k-space X. Observe also that a topological space X is a k,-space if and only
if X is a k-space with k(X)) < No.

Besides cardinal invariants we shall consider an ordinal invariant, called
the sequential order. Under the sequential closure A®) of a subset A of a
topological space X we understand the set of all limit point of sequences (a,) C
A, convergent in X. Given an ordinal a define the a-th sequential closure A(®)
of A by transfinite induction: A(®) = U5<Q(A('8))(l). Under the sequential
order so(X) of a topological space X we understand the smallest ordinal «
such that At = A(®) for any subset A € X. Observe that a topological
space X is Fréchet-Urysohn if and only if so(X) < 1; X is sequential if and
only if clx (A) = A®°X)) for any subset A C X.

Besides purely topological invariants we shall also consider a cardinal invari-
ant, specific for topological groups. For a topological group G let ib(G), the
boundedness index of G be the smallest cardinal x such that for any nonempty
open set U C G there is a subset F' C G of size |F| < k such that G = F - U.
It is known that ib(G) < min{c(G),l(G),e(G)} and w(G) = ib(G) - x(G) for
each topological group, see [Tk].
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Theorem 2. Fach sequential topological group G with countable cs*-character
has the following properties: Y(G) < Ro, sby(G) = x(G) € {1,R¢,d}, ib(G) =
c(G) =d(G) = l(G) = e(G) = nw(G) = knw(G), and so(G) € {1,w1}.

We shall derive from Theorems 1 and 2 an unexpected metrization theorem
for topological groups. But first we need to remind the definitions of some of
a;-spaces, ¢ = 1,...,6 introduced by A.V. Arkhangelski in [Ars], [Ary]. We
also define a wider class of ay-spaces.

A topological space X is called

e an aj-space if for any sequences S,, C X, n € w, convergent to a point
x € X there is a sequence S C X convergent to x and such that S, \ S
is finite for all n;

e an ay-space if for any sequences S, C X, n € w, convergent to a
point = € X there is a sequence S C X convergent to x and such that
Sn NS # @ for infinitely many sequences Sy,;

e an az-space if for any sequences S,, C X, n € w, convergent to a point
x € X there is a sequence S C X convergent to some point y of X and
such that S, N.S # @ for infinitely many sequences S,,;

Under a sequence converging to a point x of a topological space X we un-
derstand any countable infinite subset S of X such that S\ U if finite for any
neighborhood U of x. Each a;-space is ay and each ay-space is a7. Quite often
a7-spaces are oy, see Lemma 7. Observe also that each sequentially compact
space is a. It can be shown that a topological space X is an ar-space if and
only if it contains no closed copy of the sequential fan S, in its sequential
coreflexion 0 X. If X is an ay-space, then ¢X contains no topological copy of
Se-

We remind that a topological group G is Weil complete if it is complete in its
left (equivalently, right) uniformity. According to [PZ, 4.1.6], each k,-group is
Weil complete. The following metrization theorem can be easily derived from
Theorems 1, 2 and elementary properties of MK,,-groups.

Theorem 3. A sequential topological group G with countable cs*-character is
metrizable if one of the following conditions is satisfied:

(1) so(G) < wi;

)
) ib(G) < k(G);

) G is Fréchet-Urysohn;

) G is an ar-space;

) G contains no closed copy of S, or Sa;
) G is not Weil complete;

) G is Baire;

)

According to Theorem 1, each sequential topological group with countable
cs*-character is an M,-group. The first author has proved in [Bag] that the
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topological structure of a non-metrizable punctiform M,,-group is completely
determined by its density and the compact scatteredness rank.

Recall that a topological space X is punctiform if X contains no compact
connected subspace containing more than one point, see [Eng, 1.4.3]. In par-
ticular, each zero-dimensional space is punctiform.

Next, we remind the definition of the scatteredness height. Given a topolog-
ical space X let X(;) C X denote the set of all non-isolated points of X. For
each ordinal « define the a-th derived set X(,) of X by transfinite induction:
X(a) = Np<a(X(p)) ). Under the scatteredness height sch(X) of X we under-
stand the smallest ordinal a such that X (1) = X(4). A topological space X is
scattered if X ,) = @ for some ordinal a. Under the compact scatteredness rank
of a topological space X we understand the ordinal scr(X) = sup{sch(K) : K
is a scattered compact subspace of X }.

Theorem 4. Two non-metrizable sequential punctiform topological groups G,
H with countable cs*-character are homeomorphic if and only if d(G) = d(H)
and scr(G) = scr(H).

This theorem follows from Theorem 1 and Main Theorem of [Bag] asserting
that two non-metrizable punctiform M,,-groups G, H are homeomorphic if and
only if d(G) = d(H) and scr(G) = scr(H). For countable k,-groups this fact
was proven by E.Zelenyuk [Ze;].

The topological classification of non-metrizable sequential locally convex
spaces with countable cs*-character is even more simple. Any such a space
is homeomorphic either to R* or to R x @ where @ = [0,1]* is the Hilbert
cube and R is a linear space of countable algebraic dimension, carrying the
strongest locally convex topology. It is well-known that this topology is induc-
tive with respect to the cover of R> by finite-dimensional linear subspaces. The
topological characterization of the spaces R* and R* x () was given in [Sa]. In
[Bag] it was shown that each infinite-dimensional locally convex MIC,-space is
homeomorphic to R>® or R x ). This result together with Theorem 1 implies
the following classification

Corollary 1. FEach non-metrizable sequential locally convex space with count-
able cs™-character is homeomorphic to R or R x Q.

As we saw in Theorem 2, each sequential topological group with countable
cs*-character has countable pseudocharacter. The proof of this result is based
on the fact that compact subsets of sequential topological groups with countable
cs*-character are first countable. This naturally leads to a conjecture that
compact spaces with countable cs*-character are first countable. Surprisingly,
but this conjecture is false: assuming the Continuum Hypothesis N. Yakovlev
[Ya] has constructed a scattered sequential compactum which has countable
sb-character but fails to be first countable. In [Ny;] P.Nyikos pointed out that
the Yakovlev construction still can be carried under the assumption b = c.
More precisely, we have
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Proposition 4. Under b = ¢ there is a reqular locally compact locally countable
space Y whose one-point compactification Y is sequential and satisfies Ry =

sby (aY) < ¢(aY) =c.

We shall use the above proposition to construct examples of topologically
homogeneous spaces with countable cs-character and uncountable pseudochar-
acter. This shows that Theorem 2 is specific for topological groups and cannot
be generalized to topologically homogeneous spaces. We remind that a topo-
logical space X is topologically homogeneous if for any points z,y € X there is
a homeomorphism h : X — X with h(z) = y.

Theorem 5.

(1) There is a topologically homogeneous countable regular k,-space X;
with Vg = sby (X71) = ¢¥(X1) < x(X71) =0 and so(X1) = w;

(2) Under b = ¢ there is a sequential topologically homogeneous zero-dimen-
sional ky-space Xo with Rg = cs, (X2) < ¢¥(X2) =¢;

(3) Under b = ¢ there is a sequential topologically homogeneous totally
disconnected space X3 with Ro = sby (X3) < ¥(X3) = c.

We remind that a space X is totally disconnected if for any distinct points
x,y € X there is a continuous function f: X — {0,1} such that f(z) # f(y),
see [Eng].

Remark 1. The space X; from Theorem 5(1) is the well-known Arkhangelski-
Franklin example [AF] (see also [Co, 10.1]) of a countable topologically homoge-
neous k,-space, homeomorphic to no topological group (this also follows from
Theorem 2). On the other hand, according to [Zes], each topologically ho-
mogeneous countable regular space (in particular, X;) is homeomorphic to a
quasitopological group, that is a topological space endowed with a separately
continuous group operation with continuous inversion. This shows that Theo-
rem 2 cannot be generalized onto quasitopological groups (see however [Zd] for
generalizations of Theorems 1 and 2 to some other topologo-algebraic struc-
tures).

Next, we find conditions under which a space with countable cs*-character
is first-countable or has countable sb-character. Following [Ars] we define a
topological space X to be c-sequential if for each closed subspace Y C X and
each non-isolated point y of Y there is a sequence (y,) C Y \ {y} convergent
to y. It is clear that each sequential space is c-sequential. A point = of a
topological space X is called regular Gs if {x} = NB for some countable family
B of closed neighborhood of z in X, see [Lin].

First we characterize spaces with countable sb-character (the first three items
of this characterization were proved by Lin [Lin, 3.13] in terms of (universally)
cs f-countable spaces).

Proposition 5. For a Hausdorff space X the following conditions are equiva-
lent:

(1) X has countable sb-character;
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(2) X is an aj-space with countable cs*-character;
(3) X is an ay-space with countable cs*-character;
(4) esy(X) < Vg and shy (X) <p.
Moreover, if X is c-sequential and each point of X is reqular Gg, then the
conditions (1)-(4) are equivalent to:
(5) sy (X) <R and sby (X) <.

Next, we give a characterization of first-countable spaces in the same spirit
(the equivalences (1) < (2) < (5) were proved by Lin [Lin, 2.8]).

Proposition 6. For a Hausdorff space X with countable cs*-character the
following conditions are equivalent:

(1) X is first-countable;
(2) X is Fréchet-Urysohn and has countable sb-character;
(3) X is Fréchet-Urysohn az-space;
(4) x(X) <p and X has countable tightness.
Moreover, if each point of X s regular Gs, then the conditions (1)-(4) are
equivalent to:
(5) X is a sequential space containing no closed copy of So or S,;
(6) X is a sequential space with x(X) < 0.

For Fréchet-Urysohn (resp. dyadic) compacta the countability of the cs*-
character is equivalent to the first countability (resp. the metrizability). We
remind that a compact Hausdorff space X is called dyadic if X is a continuous
image of the Cantor discontinuum {0, 1}* for some cardinal .

Proposition 7.

(1) A Fréchet-Urysohn countably compact space is first-countable if and
only if it has countable cs*-character.

(2) A dyadic compactum is metrizable if and only if its has countable cs*-
character.

In light of Proposition 7(1) one can suggest that cs}(X) = x(X) for any
compact Fréchet-Urysohn space X. However that is not true: under CH,
csy(aD) # x(aD) for the one-point compactification aD of a discrete space
D of size |D| = Ny. Surprisingly, but the problem of calculating the cs*- and
cs-characters of the spaces aD is not trivial and the definitive answer is known
only under the Generalized Continuum Hypothesis. First we note that the
cardinals cs} (aD) and cs,(aD) admit an interesting interpretation which will
be used for their calculation.

Proposition 8. Let D be an infinite discrete space. Then
(1) esy(aD) = min{w(X) : X is a (regular zero-dimensional) topological
space of size | X| = |D| containing no no-trivial convergent sequence};
(2) csy(aD) = min{w(X) : X is a (regular zero-dimensional) topological
space of size | X| = |D| containing no countable non-discrete subspace}.
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For a cardinal x we put logx = min{\ : k < 2*} and cof([k]<¥) be the
smallest size of a collection C C [k]<“ such that each at most countable subset
S C k lies in some element C' € C. Observe that cof ([£]=*) < k“ but sometimes
the inequality can be strict: 1 = cof([Rg]=¥) < Rg and R; = cof ([R;]=¥) < R}°.
In the following proposition we collect all the information on the cardinals
csy(aD) and csy(aD) we know.

Proposition 9. Let D be an uncountable discrete space. Then
(1) Ry -log|D| < est(aD) < csy(aD) < min{|D],2% - cof([log |D[]=¥)}
while sby (aD) = x(aD) = |D|;
(2) csy(aD) = csy(aD) =Ny -log |D| under GCH.
In spite of numerous efforts some annoying problems concerning cs*- and
cs-characters still rest open.

Problem 1. Is there a (necessarily consistent) example of a space X with
sy (X) # csy (X)? In particular, is csy(ac) # csy(ac) in some model of ZFC?
In light of Proposition 8 it is natural to consider the following three cardinal
characteristics of the continuum which seem to be new:
w; = min{w(X) : X is a topological space of size | X| = ¢ containing no
non-trivial convergent sequence};
wy = min{w(X) : X is a topological space of size |X| = ¢ containing no
non-discrete countable subspace};
w3 = min{w(X) : X is a P-space of size | X| = c}.
As expected, a P-space is a Tj-space whose any Gg-subset is open. Observe
that w; = cs;(ac) while wy = cs,(ac). It is clear that N; < w; < oy <

w3 < ¢ and hence the cardinals to;, 7 = 1,2, 3, fall into the category of small
uncountable cardinals, see [Val.

Problem 2. Are the cardinals to;, i = 1,2,3, equal to (or can be estimated
via) some known small uncountable cardinals considered in Set Theory? Is
07 < g < tog in some model of ZFC?

Our next question concerns the assumption b = ¢ in Theorem 5.

Problem 3. Is there a ZFC-example of a sequential space X with sby (X) <
Y(X) or at least sy (X) < ¢(X)?

Propositions 1 and 5 imply that sb, (X) € {1,Ro}Ud, ¢ for any c-sequential
topological space X with countable cs*-character. On the other hand, for a
sequential topological group G with countable cs*-character we have a more
precise estimate sb, (G) € {1, Ng,0}.

Problem 4. Is sb, (X) € {1,R¢,0} for any sequential space X with countable
cs*-character?

As we saw in Proposition 7, x(X) < g for any Fréchet-Urysohn compactum
X with cs, (X) < Ro.
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Problem 5. Is sb, (X) < Ng for any sequential (scattered) compactum X with
csy (X) <R ?

Now we pass to proofs of our results.

ON SEQUENCE TREES IN TOPOLOGICAL GROUPS

Our basic instrument in proofs of main results is the concept of a sequence
tree. As usual, under a tree we understand a partially ordered subset (T, <)
such that for each ¢t € T the set | ¢t = {r € T : ¢ < t} is well-ordered
by the order <. Given an element ¢t € T let 1t = {r € T : 7 > t} and
succ(t) = min(1 ¢ \ {¢}) be the set of successors of ¢ in T. A maximal linearly
ordered subset of a tree T is called a branch of T. By maxT we denote the set
of maximal elements of a tree T

Definition 1. Under a sequence tree in a topological space X we understand
a tree (T, <) such that
o T C X,
e T has no infinite branch;
e for each t ¢ maxT the set min(1 ¢\ {¢}) of successors of ¢ is countable
and converges to t.

Saying that a subset S of a topological space X converges to a point t € X
we mean that for each neighborhood U C X of ¢ the set S\ U is finite.

The following lemma is well-known and can be easily proven by transfinite
induction (on the ordinal s(a, A) = min{a : a € A} for a subset A of a
sequential space and a point a € A from its closure)

Lemma 1. A point a € X of a sequential topological space X belongs to the
closure of a subset A C X if and only if there is a sequence tree T C X with
minT = {a} and maxT C A.

For subsets A, B of a group G let A=! = {x=!: 2 € A} C G be the inversion
of Ain G and AB = {ay :x € A, y € B} C G be the product of A, B in G.
The following two lemmas will be used in the proof of Theorem 1.

Lemma 2. A sequential subspace F C X of a topological group G is first
countable if the subspace F~'F C G has countable sb-character at the unit e
of the group G.

Proof. Our proof starts with the observation that it is sufficient to consider the
case e € F' and prove that F' has countable character at e.

Let {S, : n € w} be a decreasing sb-network at e in F~'F. First we
show that for every n € w there exists m > n such that S2, N (F~1F) C S,.
Otherwise, for every m € w there would exist T.,,,ym € Sm with Tpym €
(F7LF)\ S,,. Taking into account that lim,, e Tm = liMyy, 00 Ym = €, we get
limy, 00 TmYm = €. Since S, is a sequential barrier at e, there is a number m
with ., ym € Sn, which contradicts to the choice of the points z.,, Y-

Now let us show that for all n € w the set S,, N F' is a neighborhood of e in
F. Suppose, conversely, that e € clp(F'\ Sy,) for some ng € w.
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By Lemma 1 there exists a sequence tree T C F', minT = {e} and maxT C
F\ Sp,. To get a contradiction we shall construct an infinite branch of T'. Put
xo = e and let mo be the smallest integer such that S?no NE-YF CS,,.

By induction, for every i > 1 find a number m; > m;_; with S2, NF~'F C
Sm;_, and a point x; € succ(x;—1) N (x;—1.5m,). To show that such a choice
is always possible, it suffices to verify that x;_1 ¢ maxT. It follows from the
inductive construction that z;_1 € F N (Spmy -+ Sm,_,) C FNSZ C Sy, and
thus z;,—1 ¢ max T because maxT C F\ S,.

Therefore we have constructed an infinite branch {z; : i € w} of the sequence
tree T' which is not possible. This contradiction finishes the proof. O

Lemma 3. A sequential ar-subspace F' of a topological group G has countable
sb-character provided the subspace F~'F C G has countable cs-character at
the unit e of G.

Proof. Suppose that F' C G is a sequential ar-space with cs, (F~1F,e) < Ny.
We have to prove that sb, (F,z) < Ny for any point x € F. Replacing F
by Fz~!, if necessary, we can assume that z = e is the unit of the group
G. Fix a countable family A of subsets of G closed under group products
in G, finite unions and finite intersections, and such that F~'F € A and
AIFT'F = {AN(F7'F) : A € A} is a cs-network at e in F~'F. We claim
that the collection A|F = {ANF : A€ A} is a sb-network at e in F.

Assuming the converse, we would find an open neighborhood U C G of e
such that for any element A € A with ANF C U the set AN F fails to be a
sequential barrier at e in F'.

Let A={Ac A: AC FNU} ={A, :n €w}and B, =, Ar. Let
m_1 =0and U_; C U be any closed neighborhood of e in G. By induction, for
every k € w find a number my > mg_1, a closed neighborhood Uy, C Ug_1 of e
in G, and a sequence (2 ;)icw convergent to e so that the following conditions
are satisfied:

(i) {:E;m- NS w} CUg_1NF \ B, 1

(ii) the set Fy, = {zn,;:n <k, i € w}\ By, is finite;

(iii) U N (Fr U {xi,j 11,7 < k}) = @ and U,? CUg_1.

The last condition implies that UgU; - -- Uy C U for every k > 0.

Consider the subspace X = {xy,; : k,i € w} of F and observe that it is
discrete (in itself). Denote by X the closure of X in F' and observe that X \ X
is closed in F. We claim that e is an isolated point of X \ X. Assuming the
converse and applying Lemma 1 we would find a sequence tree T C X such
that min 7' = {e}, maxT C X, and succ(e) C X \ X.

By induction, construct a (finite) branch (¢;)i<p+1 of the tree T' and a se-
quence {C; : i < n} of elements of the family A such that tg = e, |succ(t;) \
t;Ci| < Ng and C; C U; N (F~LF), tiy1 € succ(t;) Nt;C;, for each i < n. Note
that the infinite set o = succ(t,) N¢,Cy, C X converges to the point ¢, # e.

On the other hand, ¢ C t,C, C t,_1C,_1C, C -+ C tqCy---C, C
Up---U, C U. It follows from our assumption on A that Cy---C,, € A and
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thus (Cy---Cy) N F C By, for some k. Consequently, o C X N B,,, and
o C{xj;:j <k, i€ w} by theitem (i) of the construction of X. Since e is
a unique cluster point of the set {z;; : j <k, i € w}, the sequence o cannot
converge to t,, # e, which is a contradiction.

Thus e is an isolated point of X \ X and consequently, there is a closed
neighborhood W of e in G such that the set V = ({e} UX)NW is closed in F.

For every n € w consider the sequence S, = W N {z,; : i € w} convergent
to e. Since F is an ar-space, there is a convergent sequence S C F' such that
SN S, # < for infinitely many sequences S,,. Taking into account that V is a
closed subspace of F' with [V N S| = Ry, we conclude that the limit point lim S
of S belongs to the set V. Moreover, we can assume that S C V. Since the
space X is discrete, lim S € V' \ X = {e}. Thus the sequence S converges to
e. Since A’ is a cs-network at e in F, there is a number n € w such that A,
contains almost all members of the sequence S. Since S,,, N (S, U A,) = @ for
m > k > n, the sequence S cannot meet infinitely many sequences S,,. But
this contradicts to the choice of S. (|

Following [vD, §8] by L we denote the countable subspace of the plane R?:
L = {(0,0),(%,-L):n,me N} Cc R%

n’ nm
The space L is locally compact at each point except for (0,0). Moreover,
according to Lemma 8.3 of [vD], a first countable space X contains a closed
topological copy of the space L if and only if X is not locally compact.
The following important lemma was proven in [Ba;| for normal sequential
groups.

Lemma 4. If a sequential topological group G contains a closed copy of the
space L, then G is an ar-space.

Proof. Let h : L — G be a closed embedding and let g = h(0,0), zpm =
h(%, #) for n,m € N. To show that G is an «ay-space, for every n € N
fix a sequence (Yn,m)men C G, convergent to the unit e of G. Denote by
* : G X G — G the group operation on G.

It is easy to verify that for every n the subspace D,, = {Zpn m *yn,m : m € N}
is closed and discrete in G. Hence there exists k,, € N such that g # Ty m*Yn,m

for all m > k,,. Consider the subset
A=A{Znm*Ynm:n>0, m>k,}

and using the continuity of the group operation, show that zog & A is a cluster
point of A in G. Consequently, the set A is not closed and by the sequentiality
of G, there is a sequence S C A convergent to a point a ¢ A. Since every
space D,, is closed and discrete in G, we may replace S by a subsequence, and
assume that |S N D,| <1 for every n € N. Consequently, S can be written as
S = {@n;m; * Yn;m, © & € w} for some number sequences (m;) and (n;) with
ni41 > n; for all 4. It follows that the sequence (2, m,)icw converges to o
and consequently, the sequence T' = {yp, m, }icw converges to zy ' * a. Since
T N {Yni,m }pmen # & for every i, we conclude that G is an az-space. O
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Lemma 4 allows us to prove the following unexpected

Lemma 5. A non-metrizable sequential topological group G with countable cs-
character has a countable cs-network at the unit, consisting of closed countably
compact subsets of G.

Proof. Given a non-metrizable sequential group G with countable cs-character
we can apply Lemmas 2-4 to conclude that G contains no closed copy of the
space L. Fix a countable cs-network N at e, closed under finite intersections
and consisting of closed subspaces of G. We claim that the collection C C N
of all countably compact subsets N € A forms a cs-network at e in G.

To show this, fix a neighborhood U C G of e and a sequence (z,,) C G
convergent to e. We must find a countably compact set M € N with M C U,
containing almost all points x,. Let A = {Ay : k € w} be the collection of
all elements N C U of A/ containing almost all points z,,. Now it suffices to
find a number n € w such that the intersection M = ., Ar is countably
compact. Suppose to the contrary, that for every n € w the set Ni<n Ak is
not countably compact. Then there exists a countable closed discrete subspace
Koy C Ag with Ky & e. Fix a neighborhood Wy of e with Wy N Ky = @. Since
N is a cs-network at e, there exists k1 € w such that Ay, C Wj.

It follows from our hypothesis that there is a countable closed discrete sub-
space Ky C ﬂk<k1 Ay with K7 3 e. Proceeding in this fashion we construct
by induction an increasing number sequence (kn)new C w, asequence (Kp)new
of countable closed discrete subspaces of G, and a sequence (W,,)ne. of open
neighborhoods of e such that K,, C mk<kn A, WoNK, =@,and Ag, ., C W,
for all n € w. B

It follows from the above construction that {e} U, ., Kn is a closed copy
of the space L which is impossible. ([l

n+1

PRrROOFSs OF MAIN RESULTS

Proof of Proposition 1. The first three items can be easily derived from
the corresponding definitions. To prove the fourth item observe that for any
cs*-network A at a point z of a topological space X, the family N’ = {UF :
F C N} is an sb-network at x.

The proof of fifth item is more tricky. Fix any cs*-network A at a point
r € X with [NV] < cs3(X). Let A = cof(|\V]) be the cofinality of the cardinal
INV| and write N' = |, ., No where N, C N and [N, | < |N] for any ordinals
a < B < A. Consider the family M = {UC : C € [N,]=¥, a < A} and observe
that |M| < X -sup{|[s]=¥| : k < |N|} where [k]S¥ = {A C k: |A] < Ng}. Tt
remains to verify that M is a cs-network at x.

Fix a neighborhood U C X of z and a sequence S C X convergent to x.
For every a < A choose a countable subset C, C N, such that UC, C U and
SN (UCy) = SN(U{N € N, : N C U}). It follows that UC, € M. Let
So = SN (UC,) and observe that S, C Sg for a < 8 < A. To finish the proof it
suffices to show that S\ S, is finite for some o < A. Then the element UC, C U
of M will contain almost all members of the sequence S.
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Separately, we shall consider the cases of countable and uncountable A. If A
is uncountable, then it has uncountable cofinality and consequently, the transfi-
nite sequence (Sy)a<x eventually stabilizes, i.e., there is an ordinal & < A such
that Sg = S, for all 8 > a. We claim that the set S\ S, is finite. Otherwise,
S\ S, would be a sequence convergent to z and there would exist an element
N € N with N C U and infinite intersection NN (S\ S,). Find now an ordinal
B > « with N € N3 and observe that SN N C Sg = S, which contradicts to
the choice of N.

If X is countable and S \ S, is infinite for any o < A, then we can find
an infinite pseudo-intersection 7' C S of the decreasing sequence {S \ Sq}a<a-
Note that T'N S, is finite for every e < A. Since sequence T' converges to x,
there is an element N € N such that N C U and N NT is infinite. Find oo < A
with N € N, and observe that NNS C S,. Then NNT ¢ NNTNS, C TNS,
is finite, which contradicts to the choice of N.

Proof of Proposition 2. Let X be a topological space and fix a point z € X.

(1) Suppose that cs} (X) < p and fix a cs*-network NV at the point = such
that |NV| < p. Without loss of generality, we can assume that the family A is
closed under finite unions. We claim that A is a cs-network at x. Assuming
the converse we would find a neighborhood U C X of x and a sequence S C X
convergent to x such that S\ IV is infinite for any element N € N with N C U.
Since N is closed under finite unions, the family ¥ = {S\N : N e N, N C U}
is closed under finite intersections. Since |F| < |A]| < p, the family F has an
infinite pseudo-intersection T' C S. Consequently, TNN is finite for any N € N
with N C U. But this contradicts to the facts that T’ converges to x and N is
a cs*-network at x.

The items (2) and (3) follow from Propositions 1(5) and 2(1). The item
(4) follows from (1,2) and the inequality x(X) < ¢ holding for any countable
topological space X.

Finally, to derive (5) from (3) use the well-known fact that under GCH,
ARo < i for any infinite cardinals A < k, see [HJ, 9.3.8].

Proof of Theorem 1. Suppose that G is a non-metrizable sequential group
with countable cs*-character. By Proposition 2(1), cs, (G) = cs}(G) < No.

First we show that each countably compact subspace K of G is first-coun-
table. The space K, being countably compact in the sequential space G, is
sequentially compact and so are the sets K~'K and (K 'K)"1(K~!'K) in G.
The sequential compactness of K 'K implies that it is an ay-space. Since
esy (KT'K) YK 1K) < ¢s,(G) < Rg we may apply Lemmas 3 and 2 to
conclude that the space K ~' K has countable sb-character and K has countable
character.

Next, we show that G contains an open MK ,-subgroup. By Lemma 5, G has
a countable cs-network K comnsisting of countably compact subsets. Since the
group product of two countably compact subspaces in G is countably compact,
we may assume that K is closed under finite group products in G. We can also
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assume that K is closed under the inversion, i.e. K~! € K for any K € K.
Then H = UK is a subgroup of G. It follows that this subgroup is a sequential
barrier at each of its points, and thus is open-and-closed in G. We claim that
the topology on H is inductive with respect to the cover K. Indeed, consider
some U C H such that UNK is open in K for every K € K. Assuming that U
is not open in H and using the sequentiality of H, we would find a point x € U
and a sequence (Zn)new C H \ U convergent to z. It follows that there are
elements K1, Ko € K such that x € Ky and K5 contains almost all members
of the sequence (x_lxn). Then the product K = K; K5 contains almost all x,,
and the set U N K, being an open neighborhood of z in K, contains almost all
members of the sequence (), which is a contradiction.

As it was proved before each K € K is first-countable, and consequently
H has countable pseudocharacter, being the countable union of first countable
subspaces. Then H admits a continuous metric. Since any continuous metric
on a countably compact space generates its original topology, every K € K is
a metrizable compactum, and consequently H is an MIC,-subgroup of G.

Since H is an open subgroup of GG, G is homeomorphic to H x D for some
discrete space D.

Proof of Theorem 2. Suppose G is a non-metrizable sequential topological
group with countable cs*-character. By Theorem 1, G contains an open MIC,,-
subgroup H and is homeomorphic to the product H x D for some discrete
space D. This implies that G has point-countable k-network. By a result
of Shibakov [Shi], each sequential topological group with point-countable k-
network and sequential order < w; is metrizable. Consequently, so(G) = ws.
It is clear that ¥(G) = ¢Y(H) < Ro, x(G) = x(H), sby(G) = sby(H) and
ib(G) = ¢(G) = d(G) = I(G) = e(G) = nw(G) = knw(G) = |D| - No.

To finish the proof it rests to show that sby (H) = x(H) = 0. It follows
from Lemmas 2 and 3 that the group H, being non-metrizable, is not a7 and
thus contains a copy of the sequential fan S,,. Then ? = x(S.,) = sby(Su) <
sby (H) < x(H). To prove that x(H) < 9 we shall apply a result of K. Sakai
[Sa] asserting that the space R> x @ contains a closed topological copy of each
MK,,-space and the well-known equality x(R* x Q) = x(R*>) = 0 (following
from the fact that R> carries the box-product topology, see [Sch, Ch.II, Ex.12]).

Proof of Theorem 5. First we describe two general constructions producing
topologically homogeneous sequential spaces. For a locally compact space Z
let «Z = Z U {0} be the one-point extension of Z endowed with the topology
whose neighborhood base at co consists of the sets «Z\ K where K is a compact
subset of Z. Thus for a non-compact locally compacts space Z the space aZ
is noting else but the one-point compactification of Z. Denote by 2« = {0, 1}
the Cantor cube.
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Consider the subsets
E(Z) ={(c, (zi)icw) € 2° X (aZ)¥ : z; = oo for all but finitely many indices i};
O0(Z) ={(c, (zi)iew) € 2% x (aZ)¥ : In € w such that z; # oo iff i < n}.

Observe that ©(Z) C Z(2).

Endow the set Z(Z) (resp. ©(Z)) with the strongest topology generating
the Tychonov product topology on each compact subset from the family K=
(resp. Kg), where
Kz = {2¥x]],c,, Ci : C; are compact subsets of aZ and almost all C; = {c0}};
Ko = {2% x ], Ci : Fio € w such that C;, = aZ, C; = {oc} for all i > i

and C; is a compact subsets of Z for every i < ig}.

Lemma 6. Suppose Z is a zero-dimensional locally metrizable locally compact
space. Then

(1) The spaces Z(Z) and ©(Z) are topologically homogeneous;

(2) E(Z) is a regular zero-dimensional k,-space while ©(Z) is a totally
disconnected k-space;

(3) If Z is Lindeldf, then Z(Z) and ©(Z) are zero-dimensional MK,,-
spaces with
V(E(2)) = x(0(2)) < 0;

(4) E(Z) and ©(Z) contain copies of the space aZ while ©(Z) contains a
closed copy of Z;

(5) e52(2(2) = 51(6(2)) = 53, (aZ), e5x(E(2)) = e5,(O(2)) = csy(aZ),
shy(©(2)) = sby(aZ), and H(E(Z)) = ¥(O(Z)) = (aZ);

(6) The spaces Z2(Z) and O(Z) are sequential if and only if aZ is sequential;

(7) If Z is not countably compact, then =(Z) contains a closed copies of
Sy and S, and ©(Z) contains a closed copy of Sa.

Proof. (1) First we show that the space Z(Z) is topologically homogeneous.

Given two points (¢, (2)icw), (/s (2])icw) of 2(Z) we have to find a homeo-
morphism h of Z(Z) with h(c, (2i)icw) = (¢, (#})icw). Since the Cantor cube
2% is topologically homogeneous, we can assume that ¢ # ¢’. Fix any disjoint
closed-and-open neighborhoods U, U’ of the points ¢, ¢’ in 2¢, respectively.

Consider the finite sets I = {i € w : z; # oo} and I' = {i € w : 2] # oo}.
Using the zero-dimensionality and the local metrizability of Z, for each i € I
(resp. ¢ € I') fix an open compact metrizable neighborhood U; (resp. UJ)
of the point z (resp. z;) in Z. By the classical Brouwer Theorem [Ke, 7.4],
the products U x [[,.; Us and U’ x [[,c; U{, being zero-dimensional compact
metrizable spaces without isolated points, are homeomorphic to the Cantor
cube 2. Now the topological homogeneity of the Cantor cube implies the
existence of a homeomorpism f : U x [[,c; Ui — U’ x [[,c; Uj such that
F(e, (z)ier) = (¢, (2D)ier). Let

W ={(z, (zi)icw) € E(Z) :x €U, z; €U, for all i € I'} and

W' ={(, (2})icw) €E(Z) : 2’ €U, 2, € U] for alli € I'}.
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It follows that W, W’ are disjoint open-and-closed subsets of Z(Z). Let x :
w\ I’ = w\ I be a unique monotone bijection.

Now consider the homeomorphism f : W — W’ assigning to a sequence
(x, (:)icw) € W the sequence (z', (})icw) € W’ where

(@, (})ier) = f(z, (i)icr) and &} = ;) for i ¢ I'.
Finally, define a homeomorphism h of Z(Z) letting

x ifx ¢ WUW’;

h(z) =< f(x) if x € W,
fYz) fzew

and observe that h(c, (2i)icw) = (¢, (#})icw) which proves the topological ho-
mogeneity of the space Z(7).

Replacing Z(Z) by ©(Z) in the above proof, we shall get a proof of the
topological homogeneity of ©(Z).

The items (2-4) follow easily from the definitions of the spaces Z(Z) and
O(Z), the zero-dimensionality of aZ, and known properties of k,-spaces, see
[FST] (to find a closed copy of Z in ©(Z) consider the closed embedding e :
Z—=0(Z),e:zw— (z,20,2,00,00,...), where zg is any fixed point of Z).

To prove (5) apply Proposition 3(6,8,9,10). (To calculate the cs*-, cs-, and
sb-characters of ©(Z), observe that almost all members of any sequence (a,) C
O(Z) convergent to a point a = (¢, (z;)) € ©(Z) lie in the compactum 2% x
Hiew C;, where C; is a clopen neighborhood of z; if z; # oo, C; = aZ if
i=min{j € w: z; = oo} and C; = {0} otherwise. By Proposition 3(6), the
cs*-, cs-, and sb-characters of this compactum are equal to the corresponding
characters of aZ.)

(6) Since the spaces Z(Z) and ©(Z) contain a copy of aZ, the sequentiality
of Z(Z) or ©(Z) implies the sequentiality of aZ. Now suppose conversely that
the space aZ is sequential. Then each compactum K € Kg U Kg is sequential
since a finite product of sequential compacta is sequential, see [Eny, 3.10.I(b)].
Now the spaces £(Z) and ©(Z) are sequential because they carry the inductive
topologies with respect to the covers K=, Kg by sequential compacta.

(7) If Z is not countably compact, then it contains a countable closed discrete
subspace S C Z which can be thought as a sequence convergent to oo in aZ. It
is easy to see that Z(S) (resp. O(9)) is a closed subset of =(Z) (resp. ©(Z7)).
Now it is quite easy to find closed copies of Sy and S, in E(S) and a closed
copy of Sz in O(S5). O

With Lemma 6 at our disposal, we are able to finish the proof of Theo-
rem 5. To construct the examples satisfying the conditions of Theorem 5(2,3),
assume b = ¢ and use Proposition 4 to find a locally compact locally count-
able space Z whose one-point compactification aZ is sequential and satisfies
Rg = sby(aZ) < ¢Y(aZ) = ¢. Applying Lemma 6 to this space Z, we conclude
that the topologically homogeneous k-spaces Xy = Z(Z) and X3 = ©(Z) give
us required examples.
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The example of a countable topologically homogeneous k,-space X; with
sby (X1) = ¥(X1) < x(Xi1) can be constructed by analogy with the space
O(N) (with that difference that there is no necessity to involve the Cantor
cube) and is known in topology as the Ankhangelski-Franklin space, see [AF].
We briefly remind its construction. Let Sy = {O,% : n € N} be a conver-
gent sequence and consider the countable space X7 = {(2;)icw € S§ : In €
w such that z; # 0 iff i« < n} endowed with the strongest topology inducing the
product topology on each compactum [], ., C; for which there is n € w such
that C,, = So, C; = {0} if i > n, and C; = {z;} for some z; € Sy \ {0} if
i < n. By analogy with the proof of Lemma 6 it can be shown that X; is a
topologically homogeneous k,,-space with Rg = sb, (X1) = ¢(X1) < x(X1) =0
and so(X7) = w.

Proof of Proposition 5. The equivalences (1) < (2) < (3) were proved by
Lin [Lin, 3.13] in terms of (universally) csf-countable spaces. To prove the
other equivalences apply

Lemma 7. A Hausdorff topological space X is an ay-space provided one of the
following conditions is satisfied:

(1) X is a Fréchet-Urysohn az-space;

(2) X is a Fréchet-Urysohn countably compact space;

(3) sby(X) <p;

(4) sby (X) <0, each point of X is reqular Gs, and X is c-sequential.
Proof. Fix any point z € X and a countable family {S,}ne, of sequences
convergent to = in X. We have to find a sequence S C X \ {z} convergent to
2 and meeting infinitely many sequences S,,. Using the countability of the set
Unew Sn find a decreasing sequence (Up)new of closed neighborhoods of x in
X such that (,c, Un) N (U,e,, Sn) = {z}. Replacing each sequence S, by
its subsequence S,, N U, if necessary, we can assume that S, C U,.

(1) Assume that X is a Fréchet-Urysohn ar-space. Let A = {a € X : a is
the limit of a convergent sequence S C X meeting infinitely many sequences
Sp}. It follows from our assumption on (S,) and (U,) that A C [, c,, Un-

It suffices to consider the non-trivial case when = ¢ A. In this case x is a
cluster point of A (otherwise X would be not a7). Since X is Fréchet-Urysohn,
there is a sequence (a,) C A convergent to z. By the definition of A, for every
n € w there is a sequence T,, C X convergent to a and meeting infinitely many
sequences S,. Without loss of generality, we can assume that T,, C U, Si
(because a € A\ {z} and thus a ¢ (J,., Sn). It is easy to see that z is
a cluster point of the set |J,.,, Tn. Since X is Fréchet-Urysohn, there is a
sequence T C | J,,., Tn convergent to x.

Now it remains to show that the set 7" meets infinitely many sequences S,.
Assuming the converse we would find n € w such that T C J,.,, Sn. Then
T C U<, T, which is not possible since |J,,, 7} is a compact set failing to
contain the point . -
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(2) If X is Fréchet-Urysohn and countably compact, then it is sequentially
compact and hence a7, which allows us to apply the previous item.

(3) Assume that sby (X) < p and let N be a sb-network at z of size |N| < p.
Without loss of generality, we can assume that the family A is closed under
finite intersections. Let S = {J, ¢, Sn and Fn, = NN (U;», Si) for N € N
and n € w. It is easy to see that the family F = {Fy, : N € N, n € w}
consists of infinite subsets of S, has size |F| < p, and is closed under finite
intersection. Now the definition of the small cardinal p implies that this family
F has an infinite pseudo-intersection 7" C S. Then T is a sequence convergent
to x and intersecting infinitely many sequences S,,. This shows that X is an
Qg-space.

(4) Assume that the space X is c-sequential, each point of X is regular
Gy, and sb,(X) < 0. In this case we can choose the sequence (U,) to satisfy
Mpew Un = {x}. Fix an sb-network N at x with |N| < 9. For every n € w
write Sy, = {zn,; : ¢ € N}. For each sequential barrier N € N find a function
fn : w — N such that z,,; € N for every n € w and i > fy(n). The family
of functions {fy : N € N} has size < 0 and hence is not cofinal in N¢.
Consequently, there is a function f : w — N such that f £ fn for each N € V.
Now consider the sequence S = {z,, ¢() : 7 € w}. We claim that x is a cluster
point of S. Indeed, given any neighborhood U of z, find a sequential barrier
N € N with N C U. Since f £ fn, there is n € w with f(n) > fy(n). It
follows from the choice of the function fy that x, ;) € N CU.

Since S\ U, is finite for every n, {z} = (), Un is a unique cluster point
of S and thus {z} U S is a closed subset of X. Now the c-sequentiality of X
implies the existence of a sequence T" C S convergent to x. Since T meets
infinitely many sequences S,,, the space X is ay. (|

Proof of Proposition 6. Suppose a space X has countable cs*-character.
The implications (1) = (2,3,4,5) are trivial. The equivalence (1) < (2) fol-
lows from Proposition 1(2). To show that (3) = (2), apply Lemma 7 and
Proposition 5(3 = 1).

To prove that (4) = (2) it suffices to apply Proposition 5(4 = 1) and observe
that X is Fréchet-Urysohn provided x(X) < p and X has countable tightness.
This can be seen as follows.

Given a subset A C X and a point a € A from its closure, use the count-
able tightness of X to find a countable subset N C A with a € N. Fix any
neighborhood base B at x of size |B| < p. We can assume that B is closed
under finite intersections. By the definition of the small cardinal p, the family
{BNN : B € B} has infinite pseudo-intersection S C N. It is clear that S C A
is a sequence convergent to x, which proves that X is Fréchet-Urysohn.

(5) = (2). Assume that X is a sequential space containing no closed copies
of S, and S5 and such that each point of X is regular Gs. Since X is sequential
and contains no closed copy of Sz, we may apply Lemma 2.5 [Lin] to conclude
that X is Fréchet-Urysohn. Next, Theorem 3.6 of [Lin] implies that X is an
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ag-space. Finally apply Proposition 5 to conclude that X has countable sb-
character and, being Fréchet-Urysohn, is first countable.

The final implication (6) = (2) follows from (5) = (2) and the well-known
equality x(S.) = x(S2) = .

Proof of Proposition 7.

The first item of this proposition follows from Proposition 6(3 = 1) and
the observation that each Fréchet-Urysohn countable compact space, being
sequentially compact, is ar.

Now suppose that X is a dyadic compact with cs}(X) < No. If X is not
metrizable, then it contains a copy of the one-point compactification aD of an
uncountable discrete space D, see [Eny, 3.12.12(i)]. Then cs} (aD) < cs} (X) <
Ng and by the previous item, the space aD, being Fréchet-Urysohn and com-
pact, is first-countable, which is a contradiction.

Proof of Proposition 8. Let D be a discrete space.

(1) Let & = csy(aD) and A; (A2) is the smallest weight of a (regular zero-
dimensional) space X of size |X| = |D|, containing no non-trivial convergent
sequence. To prove the first item of proposition 8 it suffices to verify that
A2 < k < A1. To show that Ay < &, fix any cs*-network N at the unique
non-isolated point oo of aD of size |N| < k. The algebra A of subsets of D
generated by the family {D\ N : N € N'} is a base of some zero-dimensional
topology 7 on D with w(D,7) < k. We claim that the space D endowed with
this topology contains no infinite convergent sequences. To get a contradiction,
suppose that S C D is an infinite sequence convergent to a point a € D \ S.
Then S converges to oo in aD and hence, there is an element N € A such that
N C aD\{a} and NNS is infinite. Consequently, U = D\ N is a neighborhood
of a in the topology 7 such that S\ U is infinite which contradicts to the fact
that S converges to a. Now consider the equivalence relation ~ on D: =z ~ y
provided for every U € 7 (x € U) < (y € U). Since the space (D, 7) has no
infinite convergent sequences, each equivalence class [z]. C D is finite (because
it carries the anti-discrete topology). Consequently, we can find a subset X C D
of size |X| = |D| such that x # y for any distinct points x,y € X. Clearly
that 7 induces a zero-dimensional topology on X. It rests to verify that this
topology is T1. Given any two distinct point z,y € X use z 4 y to find an
open set U € A such that either z € U and y ¢ U or 2 ¢ U and y € U. Since
D\ U € A, in both cases we find an open set W € A such that € W but
y ¢ W. It follows that X is a Tj-space containing no non-trivial convergent
sequence and thus A2 < w(X) < |A| < |N| < k.

To show that x < Ay, fix any topology 7 on D such that w(D,7) < A1 and
the space (D, 7) contains no non-trivial convergent sequences. Let B be a base
of the topology 7 with |B|] < A1, closed under finite unions. We claim that
the collection N' = {aD \ B : B € B} is a cs*-network for aD at co. Fix
any neighborhood U C aD of co and any sequence S C D convergent to oo.
Write {z1,...,2,} = @D \ U and by finite induction, for every i < n find a
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neighborhood B; € B of x; such that S\ Uj<i B; is infinite. Since B is closed
under finite unions, the set N = aD\ (B U---U B,,) belongs to the family A/
and has the properties: N C U and N N S is infinite, i.e., A is a cs*-network
at oo in aD. Thus k < [N| < |B| < A;. This finishes the proof of (1).

An obvious modification of the above argument gives also a proof of the item

2).

Proof of Proposition 9. Let D be an uncountable discrete space.

(1) The inequalities ®; - log |D| < cs} (aD) < csy(aD) follows from Propo-
sitions 7(1) and 1(2,4) yielding |D| = x(aD) = sby(aD) < 2°%D) The
inequality cs, (aD) < ¢ cof([log | D|]=*) follows from proposition 8(2) and the
observation that the product {0,1}°¢IP! endowed with the Ro-box product
topology has weight < ¢ - cof ([log |D|]=%). Under the Ng-boz product topology
on {0, 1}* we understand the topology generated by the base consisting of the
sets {f € {0,1}": f|C = g|C} where g € {0,1}* and C is a countable subset
of k.

The item (2) follows from (1) and the equality ®;-log x = 2%¢-min{, (log k)*}
holding under GCH for any infinite cardinal x, see [HJ, 9.3.8]
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