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Iterated starcompact topological spaces
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Abstract. Let P be a topological property. A space X is said to
be k-P-starcompact if for every open cover U of X, there is a subspace
A ⊆ X with P such that stk(A,U) = X. In this paper, we consider k-P-
starcompactness for some special properties P and discuss relationships
among them.
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1. Introduction

Let X be a topological space and U a collection of subsets of X . For Ø 6=
A ⊆ X , let st(A,U) = st1(A,U) =

⋃
{U ∈ U : A ∩ U 6= Ø} and stn+1(A,U) =

st(stn(A,U),U) for all n ∈ N. We simply write stn(x,U) for stn({x},U). A
space X is called n-starcompact (n 1

2 -starcompact) [6] if for every open cover
U of X there is a finite subset F of X (finite subcollection V of U) such that

stn(F,U) = X (stn(
⋃
V ,U) = X). Let Ñ = N ∪ {n 1

2 : n ∈ N}. By definition,

every n-starcompact space is (n + 1
2 )-starcompact for n ∈ Ñ. It is known

that 1-starcompactness is equivalent to countable compactness for Hausdorff
spaces. Moreover, every n-starcompact regular space is 2 1

2 -starcompact for

n ≥ 3, n ∈ Ñ, and 2 1
2 -starcompactness is equivalent to pseudocompactness for

Tychonoff spaces [1].
Behaviours of the above mentioned star-covering properties were studied in

[1, 6, 7]. By replacing ‘finite’ with ‘countable’ in the definition, n-starcompactness
was extended to n-star-Lindelöffness in [1]. As we have seen, finiteness plays
an important role in the concept of n-starcompactness. In what follows, we
may replace finiteness with some topological properties to get some new con-
cepts. Given a topological property P , a space X is called k-P-starcompact
if for every open cover U of X , there is a subspace A ⊆ X with P such that
stk(A,U) = X . Ikenaga [4] and Song [7] considered 1-P-starcompactness for
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P being compact. We are especially interested in k-P-starcompact spaces for
P being n-starcompact, and call them iterated starcompact spaces in general.
More precisely, a space X is said to be (n, k)-starcompact if for every open cover
U of X there is an n-starcompact subspace A of X such that stk(A,U) = X .
For the sake of unification, a compact space is called 1

2 -starcompact. In fact,
the above definitions appeared in [6] but no further investigation has been done
so far. By definition, we have the following lemma.

Lemma 1.1. (i) Every (n, k)-starcompact space is (n + k)-starcompact for

n ∈ Ñ and k ∈ N.
(ii) Every (n1, k)-starcompact space is (n2, k)-starcompact for n1, n2 ∈ Ñ

with n1 ≤ n2 and k ∈ N.
(iii) Every (n, k1)-starcompact space is (n, k2)-starcompact for n ∈ Ñ and

k1, k2 ∈ N with k1 ≤ k2.

By applying known properties, we obtain Diagram 1 in the class of regular
spaces. For convenience, (n, k)-starcompactness is abbreviated as stn,k.
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Diagram 1 (In the class of regular spaces)

In Section 2, we provide examples to distinguish iterated starcompact prop-
erties around (1, 1)-starcompactness and consider their relations with other
covering properties. Section 3 is devoted to distinguish properties weaker than
2-starcompactness. Throughout this paper, ω (ω1) is the first infinite (uncount-
able) cardinal and c is the continuum. For any set A, the cardinality of A is
denoted by |A|. Undefined concepts and symbols can be found in [2].
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2. (1, 1)-starcompact Spaces

A space X is said to be L-starcompact if for every open cover U of X

there exists a Lindelöf subspace L such that st(L,U) = X . By definition,
every (12 , 1)-starcompact space is L-starcompact, (1, 1)-starcompact and 1 1

2 -

starcompact; every 1 1
2 -starcompact space is both (1 1

2 , 1)-starcompact and 2-
starcompact; and every (1, 1)-starcompact space is both 2-starcompact and
(1 1

2 , 1)-starcompact. These relationships can be described in the following di-
agam.
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Diagram 2

In this section, we shall first provide some examples to show the difference
among concepts in Diagram 2.

Lemma 2.1. [6] If a regular space X contains a closed discrete subspace Y

such that |Y | = |X | ≥ ω, then X is not 1 1
2 -starcompact.

Example 2.2. There is a 2-starcompact, L-starcompact Tychonoff space which
is not (1 1

2 , 1)-starcompact. LetR be a maximal almost disjoint family of infinite
subsets of ω with |R| = c. It is proved that the Isbell-Mrówka space Ψ = ω∪R
is 2-starcompact in [1]. Since Ψ is separable, it is L-starcompact. Note that
every 1 1

2 -starcompact subspace of Ψ is compact. For, if there exists a 1 1
2 -

starcompact non-compact subspace X ⊆ Ψ, then |X ∩ R| < |X | ≤ ω by
Lemma 2.1. It follows from |X ∩ R| = |{R1, · · · , Rn}| < ω that there exists
A ⊆ X ∩ ω such that |A| = ω and A ∩

⋃n

i=1 Ri = Ø. This implies that X is
not pseudocompact, which is a contradiction. Enumerate R as {Rβ : β < c}.
Since the intersection of every compact subspace of Ψ with R is finite, we can
enumerate all compact subsets of Ψ as K = {Fα : α < c}. For each α < c,
choose βα > α such that |Rβα

∩Fα| < ω. In addition, we may requre βα < βα′

whenever α < α′. Choose an open neighborhood O(Rβα
) of Rβα

such that
O(Rβα

) ∩ Fα = Ø. Let I = {βα : α < c}. Then

U = {{n} : n ∈ ω} ∪ {{Rα} ∪Rα : α ∈ cr I} ∪ {O(Rβα
) : α ∈ c}

is an open cover of Ψ. Let K be any compact subspace of Ψ. Then K = Fα

for some α < c. By the construction of U , Rβα
6∈ st(K,U). Therefore, Ψ is not

(1 1
2 , 1)-starcompact. �

Example 2.3. There is a (1, 1)-starcompact Tychonoff space which is neither
1 1
2 -starcompact nor L-starcompact. Let τ be a regular cardinal with τ ≥ ω1.

LetD be the discrete space with |D| = τ and letD∗ = D∪{∞} be the one-point
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compactification of D. Consider X = (D∗ × (τ + 1))r {〈∞, τ〉} as a subspace
of the usual product space D∗ × (τ + 1). Since D∗ × τ is a countably compact
dense subspace of X , X is (1, 1)-starcompact. But X is not 1 1

2 -starcompact,
since |X | = |D| and D × {τ} is a closed discrete subspace of X .

Now, we will show that X is not L-starcompact. Enumerate D as {dα :
α < τ}. For each α < τ , choose an open set Uα = {dα} × (α, τ ]. Then
U = {Uα : α < τ} ∪ {D∗ × τ} is an open cover of X . Let L be any Lindelöf
subspace of X . Then L∩(D×{τ}) must be countable. Let L′ = Lr

⋃
{L∩Uα :

〈dα, τ〉 ∈ L ∩ (D × {τ})}. Without loss of generality, we may assume L′ 6= Ø.
Since L′ is closed in L, L′ is Lindelöf. Note that L′ ⊆ D∗×τ . Let π : D∗×τ → τ

be the projection. Then π(L′) is a Lindelöf subspace of the countably compact
space τ . Therefore there exists κ0 < τ which is greater than all elements of
π(L′), i.e., Uα ∩ L′ = Ø for all α ≥ κ0. Since τ is a regular cardinal with
τ ≥ ω1 and L ∩ (D × {τ}) is countable, there exists some κ < τ such that
κ0 < κ and Uκ ∩ L = Ø. Because Uκ is the only one element of U containing
dκ, dκ 6∈ st(L,U). Therefore, X is not L-starcompact. �

Example 2.4. There is an L-starcompact and (1, 1)-starcompact Tychonoff
space X which is not 1 1

2 -starcompact. Let Ψ = ω ∪ R be the Isbell-Mrówka
space, where R is a maximal almost disjoint family of infinite subsets of ω with
|R| = c and let D be the discrete space such that |D| = |R| and D ∩ R = Ø.
Let Y = (D∗ × (ω1 + 1)) r {〈∞, ω1〉}, where D∗ = D ∪ {∞} is the one-point
compactification of D. Take a bijection i : R → D×{ω1}. Let X be a quotient
space of Ψ∪ Y and π : Ψ∪ Y → X a quotient mapping which identifies r with
i(r) for each r ∈ R. Then X = π(ω) ∪ π(Y ) = π(Ψ) ∪ π(D∗ × ω1). Since X is
locally compact Hausdorff, it is Tychonoff.

First, we will show that X is (1, 1)-starcompact. Let U be an open cover
of X . Note that A = π(D∗ × ω1) is a countably compact dense subset of
π(Y ). Hence π(Y ) ⊆ st(A,U). Since π(ω) is relatively countably compact
in π(Ψ), B = ω r st(A,U) is finite. Thus st(A ∪ B,U) = X and A ∪ B is a
countably compact subspace of X . Now, we will show that X is L-starcompact.
Since A is countably compact, there is a finite subset F of A such that A ⊆
st(F,U). Moreover, π(ω) is a countable dense subset of π(Ψ), thus we have
st(F∪π(ω),U) = X and F∪π(ω) is a Lindelöf subspace ofX . But π(R) is closed
and discrete in X and |π(R)| = |X |. Therefore, X is not 1 1

2 -starcompact. �

Example 2.5. There is a 1 1
2 -starcompact, L-starcompact Hausdorff space which

is not (1, 1)-starcompact. Let X = [0, 1] and let τ0 be the Euclidean topology
on X . Define τ1 = {U r F : U ∈ τ0, F is a countable subset of X}. Then
(X, τ1) is Hausdorff. We will show that (X, τ1) is 1 1

2 -starcompact. Let U be
a basic open cover of (X, τ1). For each U ∈ U , select an open subset V (U)
of (X, τ0) and a countable subset F (U) of X such that U = V (U) r F (U).
Then V = {V (U) : U ∈ U} is an open cover of (X, τ0). Since (X, τ0) is com-
pact, V has a finite subcover V0. Let U0 = {U ∈ U : V (U) ∈ V0}. Then
|X r

⋃
U0| ≤ ω. Since every neighborhood of each point of X r

⋃
U0 meets⋃

U0, st(
⋃

U0,U) = X . It is easy to prove that (X, τ1) is Lindelöf. Note that



Iterated starcompact topological spaces 5

every countable subset is closed and discrete in (X, τ1). So every countably
compact subspace is finite. Since (X, τ1) is not countably compact (i.e., not
1-starcompact), it is not (1, 1)-starcompact. �

A space X is said to be meta-Lindelöf (para-Lindelöf ) if every open cover of
X has a point (locally) countable open refinement. It is well-known that every
pseudocompact para-Lindelöf Tychonoff space is compact.

Theorem 2.6. Let X be a meta-Lindelöf T1 space. If X is (1, 1)-starcompact,
then it is 1 1

2 -starcompact.

Proof. Let U be an open cover of X . Since X is meta-Lindelöf, we may as-
sume that U is point countable. Since X is (1, 1)-starcompact, there exists a
countably compact subspace A of X such that st(A,U) = X . We may assume
A ∩ U 6= Ø for all U ∈ U . Now, we will show that some finite subcollection V
of U covers A. Therefore st(

⋃
V ,U) = X . Suppose that it is not true, and pick

an arbitrary point x0 ∈ A. Denote by Vx0
the subcollection {V ∈ U : x0 ∈ V }

of U . Since A is countably compact and Vx0
is countable, A r

⋃
Vx0

6= Ø
(Otherwise, we have A ⊆

⋃
Vx0

, and thus there exists a finite subfamily of Vx0

which covers A). Inductively, we can choose an infinite sequence {xn : n ∈ ω}
such that xn ∈ A r

⋃
i<n Vxi

for each n ∈ ω. But the sequence {xn : n ∈ ω}
does not have a cluster point in X . This contradicts the countable compactness
of A. Hence, there exists a finite subfamily V ⊆ U such that A ⊆

⋃
V , which

implies st(
⋃

V ,U) = X . �

A space X is said to be strongly collectionwise Hausdorff (collectionwise
Hausdorff ) if for every closed discrete subset D of X , there exists a discrete
(pairwise disjoint) open collection {Ud : d ∈ D} such that Ud ∩ D = {d} for
each d ∈ D.

Theorem 2.7. Let X be a strongly collectionwise Hausdorff space. If X is
(1, 1)-starcompact, then X is countably compact.

Proof. Suppose that D is a closed discrete subset of X with |D| = ω. Since
X is strongly collectionwise Huasdorff, there exists a discrete open collection
U = {Ud : d ∈ D} such that Ud ∩ D = {d} for every d ∈ D. Then V =
{XrD}∪U is an open cover of X . If A is a countably compact subspace of X ,
{U ∈ U : U ∩A 6= Ø} is finite. Hence there exists d ∈ D such that Ud∩A = Ø.
Since Ud is the only element of U containing d, d 6∈ st(A,V). �

In Theorem 2.7, strongly collectionwise Hausdorffness cannot be replaced by
collectionwise Hausdorffness. It is easy to check that the Tychonoff plank is
(12 , 1)-starcompact and collectionwise Hausdorff, but not countably compact.

3. More Examples

In this section, we shall provide some examples to distinguish properties
weaker than 2-starcompactness.
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Lemma 3.1. If a space X is locally compact and n 1
2 -starcompact for any n ∈

N, then X is (12 , n)-starcompact.

Proof. Let U be an open cover of X . For each x ∈ X , choose an open neigh-
borhood Vx of x such that Vx is compact and Vx ⊆ U for some U ∈ U . Then
V = {Vx : x ∈ X} is an open cover of X . Since X is n 1

2 -starcompact, there

exists a finite subcollection V0 of V such that stn(
⋃

V0,V) = X . Since
⋃
V0 is

compact and stn(
⋃

V0,U) = X , X is (12 , n)-starcompact. �

Example 3.2. There exists a (12 , 2)-starcompact Tychonoff space which is not

2-starcompact. Tree [8] constructed a 2 1
2 -starcompact locally compact space

which is not 2-starcompact. By Lemma 3.1, it is (12 , 2)-starcompact. �

Also, the space in Example 3.2 can be considered as a candidate of a coun-
terexample between (2, 2)-starcompactness and (2, 1)-starcompactness. But it
is not easy to verify that the space is not (2, 1)-starcompact directly. So we
shall give a detail maximal family to destroy (2, 1)-starcompactness. First, we
shall outline the construction of Tree in [8].

Tree’s construction: Let C be the lexicographically ordered Cantor square.
Then C is a first-countable compact space such that dim(C) = 0 and πw(G) = c

for every non-empty open subset G of C. Let X be the topological sum of
ω many copies of C and let Y =

⋃
{Xα : α < c} be the union of c many

copies of X . Then Y is a first-countable, locally compact, meta-Lindelöf, non-
pseudocompact space such that dim(Y ) = 0 and πw(G) = c for every non-
empty open subset G of Y .

Let B be a base of Y such that every B ∈ B is a compact clopen subset of
some Xα. Since Y is a locally compact first-countable Hausdorff space, there
exists a point-countable π-base P (see [8] for details) for Y such that

1) P ⊆ B and |P| = c;
2) for every non-empty set B ∈ B, |{P ∈ P : P ⊆ B}| = c.

Let D(P) be a collection of all sequences S = {Sn} of pairwise disjoint open
sets from P that have no cluster point in Y . Enumerate D(P) as {Tα : α < c}
such that

⋃
Tω·α ⊆ Xα for each α < c. Inductively we can find, by 1) and 2),

R = {Sα : α < c, Sα
n ∈ P} such that Sα

n ⊆ Tα
n for each α, n, and Sα

n = Sα′

n′ ⇒
α = α′ and n = n′.

Let A = {Sω·α : α < c} and let R′ be a maximal eventually disjoint family
of R with A ⊆ R′ (that is, if S 6= S′ ∈ R′, there is n ∈ ω such that

⋃
i≥n Si ∩⋃

i≥n S
′
i = Ø). We take a basic neighborhood of S ∈ R′ as On(S) = {S} ∪⋃

i≥n Si. Then B′ = B ∪ {On(S) : S ∈ R′, n ∈ ω} is a base for Y + = Y ∪ R′.

Therefore Y + is a pseudocompact, locally compact, meta-Lindelöf, Tychonoff
space. But Y + is not 2-starcompact. Indeed, U = {Xα : α < c}∪{O1(S) : S ∈
R′} is an open cover of Y + such that

a) every y ∈ Y + is contained in at most countably many members of U
b) if V ⊆ U is countable, there exists S ∈ A with O1(S) ∩

⋃
V = Ø. �
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Lemma 3.3. Let Z ⊆ Y + with |Z ∩ A′| ≥ ω1 for some A′ ⊆ R′, and let
U0 = {US : S ∈ A′} be an open (in Y +) collection such that US ∩ A′ = {S}.
If some open (in Y +) cover U ⊇ U0 satisfies a) and b), then Z is not 2-
starcompact.

Proof. LetO = {U∩Z : U ∈ U} be a collection of non-empty sets. ThenO is an
open cover of Z and satisfies a) and b). Therefore, Z is not 2-starcompact. �

Example 3.4. There exists a (2, 2)-starcompact Tychonoff space which is not
(2, 1)-starcompact. We will use A and R which were consturcted in the above.
Let {Aβ : β < c} be a partition of A such that |Aβ | = ω for each β < c

and let Rβ = {S ∈ R :
⋃
S ⊆

⋃
{Xα : Xα ∩

⋃⋃
Aβ 6= Ø}} for each β < c.

Then Aβ ⊆ Rβ ⊆ R. For each β < c, choose a maximal eventually disjoint
family R′

β of Rβ which contains Aβ . Finally, we choose a maximal eventually

disjoint family R′ of R which contains
⋃
{R′

β : β < c}. Then A ⊆ R′ ⊆ R and

Y + = Y ∪R′ is a locally compact pseudocompact Tychonoff space (and hence
(2, 2)-starcompact).

Now, we prove that Y + is not (2, 1)-starcompact. U = {Xα : α < c} ∪
{O1(S) : S ∈ R′} is an open cover of Y +. Suppose that Z is a 2-starcompact
subspace of Y + such that st(Z,U) = Y +. By Lemma 3.3, Z∩A is countable. It
follows from st(Z,U) = Y + that O1(S)∩Z 6= Ø for each S ∈ R′. Because Z∩A
is countable, there exists β0 < c such that for each β ≥ β0, O1(S)∩Z 6= Ø and
S 6∈ Z for all S ∈ Aβ . Hence for each S ∈ Aβ (β ≥ β0), there exists n(S) ∈ ω

such that FS = Sn(S) ∩ Z 6= Ø. Note that {FS : S ∈ Aβ} is a sequence of
pairwise disjoint open subsets of Z. Since Z is a pseudocompact subspace of
Y +, there exists Sβ ∈ R′ ∩ Z which is a cluster point of {FS : S ∈ Aβ}. Also
Sβ is a cluster point of T β = {Sn(S) : S ∈ Aβ}. Thus, Sβ ∈ R′

β (otherwise,

Sβ and T β should be eventually disjoint by the maximalities of R′
β and R′,

namely, Sβ is not a cluster point of T β). Let A′ = {Sβ : β ≥ β0}. By Lemma
3.3, Z is not 2-starcompact. This is a contradiction. �

Matveev [5] gave a pseudocompact Tychonoff space in which no infinite
subspace is 2-starcompact. This is an example of a pseudocompact Tychonoff
space which is not (2, 2)-starcompact.

Example 3.5. There exists a (1,2)-starcompact Hausdorff space X which is ei-
ther (2,1)-starcompact nor 2 1

2 -starcompact. Let S = R and τ0 be the Euclidean
topology on R. Endow S with a new topology τ1 = {U r F : U ∈ τ0, |F | ≤ ω}.
Let Y1 =

⊕
α<ω1

Sα, Qα = Sα ∩ Q, and Pα = Sα r Qα, where Sα = S for
each α < ω1 and Q is the set of rational numbers. Then E =

⋃
α<ω1

Qα

is closed and discrete in Y1. Let D be a discrete space with |D| = ω1 and
D∩E = Ø, andD∗ = D∪{∞} the one-point compactification ofD. Then Y2 =
D∗× (ω1+1)r {〈∞, ω1〉} has a dense countably compact subset A = D∗×ω1.
Hence Y2 is 2-starcompact. Enumerate D and E such that D = {dκ : κ < ω1}
and E = {qκ : κ < ω1}. Let X be the quotient space of Y1 ∪Y2 which identifies
〈dκ, ω1〉 with qκ for each κ < ω1.
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We firstly show that X is (1,2)-starcompact. Let U be an open cover of X .
We will prove st2(A,U) = X . Because A is dense in Y2, Y2 ⊆ st(A,U). Note
that for every open subset U of X which contains E, Y1 ⊆ clXU . Therefore,
st2(A,U) = X .

To showX is not (2,1)-starcompact, we firstly show that every 2-starcompact
subspace of X meets only finitely many Pα. Suppose not. Then there is a 2-
starcompact subspace K of X such that Γ = {α < ω1 : K∩Pα 6= Ø} is infinite.
Without loss of generality, we can assume Y2 ⊆ K. For each α ∈ Γ, pick a
point pα ∈ K ∩ Pα. Note that for each qκ ∈ E, there is a unique α(κ) such
that qκ ∈ Qα(κ). Let U(qκ) = (Pα(κ) r {pα(κ)}) ∪ ({dκ} × (ω1 + 1)) for each
κ < ω1. Then U = {K ∩ Pα : α ∈ Γ} ∪ {K ∩ U(qκ) : κ < ω1} ∪ {A} is an open
cover of K. If x = pα for some (unique) α ∈ Γ, then st(x,U) = K ∩ Pα, i.e.,
st(x,U)∩ (K ∩Pα′) = Ø for all α′ ∈ Γ with α 6= α′. If x ∈ Pα and x 6= pα, then
st(x,U) =

⋃
{U(qκ) : qκ ∈ Qα}, i.e., st(x,U) ∩ (K ∩ Pα′) = Ø for all α′ ∈ Γ

with α 6= α′. In both cases, since K ∩ Pα′ is the only element of U containing
pα′ , pα′ 6∈ st2(x,U). If x ∈ Qα and x = qκ for some κ, then st(x,U) = U(qκ),
i.e., st(x,U) ∩ (K ∩ Pα′) = Ø for all α′ ∈ Γ with α 6= α′. Similarily, we have
pα′ 6∈ st2(x,U). If x ∈ A, then |{κ < ω1 : x ∈ U(qκ)}| ≤ 1. Thus st(x,U) meets
at most one Pα. Hence for any finite subset F of K, st2(F,U) 6= K. This is
a contradiction. Now we will show that X is not (2, 1)-starcompact. For each
α < ω1, choose a point pα ∈ Pα. For each qκ ∈ E, choose a (unique) α(κ) < ω1

such that qκ ∈ Qα(κ). Let U(qκ) = (Pα(κ)r{pα(κ)})∪({dκ}×(ω1+1)) for each
κ < ω1. Then U = {Pα : α < ω1} ∪ {U(qκ) : κ < ω1} ∪ {A} is an open cover of
X . Let K be a 2-starcompact subspace of X . Then Γ = {α < ω1 : K∩Pα 6= Ø}
is finite. So there exists α < ω1 such that pα 6∈ st(K,U). Therefore, X is not
(2,1)-starcompact.

Finally, we show that X is not 2 1
2 -starcompact. For each α < ω1, choose

a point pα ∈ Pα. For each qκ ∈ E, choose a (unique) α(κ) < ω1 such that
qκ ∈ Qα(κ). Let U(qκ) = (Pα(κ)r{pα(κ)})∪({dκ}×(κ, ω1]) and let Vκ = D∗×κ

for each κ < ω1. Then U = {Pα : α < ω1} ∪ {U(qκ) : κ < ω1} ∪ {Vκ : κ < ω1}
is an open cover of X . Note that U satisfies the following conditions: (1)
Pα ∩ Pα′ = Ø if α 6= α′; (2) U(qκ) ∩ U(qκ′) = Ø if α(κ) 6= α(κ′); (3) each Vκ

meets at most countably many U(qκ); and (4) Pα∩Vκ = Ø for all α, κ < ω1. It
follows that st(Pα,U) ∩ Pα′ = Ø if α 6= α′; st(U(qκ),U) ∩ Pα′ = Ø if α(κ) 6= α′

and st(Vκ,U) ∩ Pα 6= Ø for at most countably many α. Hence for every finite
subcollection V of U , st(

⋃
V ,U) meets at most countably many Pα, i.e., there

exists α < ω1 such that st(
⋃
V ,U) ∩ Pα = Ø. Since Pα is the only element of

U containing pα, pα 6∈ st2(
⋃
V ,U). Therefore, X is not 2 1

2 -starcompact. �

Every (2, 2)-starcompact regular space is 2 1
2 -starcompact, but the implica-

tion is not true for Hausdorff spaces. Example 3.5 is a counterexample.

Example 3.6. There exists a (1 1
2 , 2)-starcompact Hausdorff space which is not

(1, 2)-starcompact. Let X1 = R and τ0 be the Euclidean topology on R. Endow
X1 with a new topology τ1 = {U r F : U ∈ τ0, |F | ≤ ω}. Suppose X2 is a
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homeomorphic copy of the subspace [0, 1] of X1 and X1 ∩X2 = Ø. For conve-
nience, we assume X2 = [0, 1]. Let h : X1 → (0, 1) be a homeomorphism. Let
D and E be closed discrete subsets of X1 and (0, 1) respectively satisfying the
following conditions: (1) h(D) = E; (2) D is dense in the Euclidean topology
on R; and (3) E is dense in the Euclidean topology on (0, 1). Let X be the
quotient space of X1∪X2 which identifies d with h(d) for each d ∈ D. Then X

is Hausdorff. From Example 2.4, X2 is 1 1
2 -starcompact and every open subset

U of X with D̃ ⊂ U is dense in X (D̃ is the equivalence class on X). Let

U be an open cover of X . Since st(X2,U) is open in X and D̃ ⊆ st(X2,U),
st2(X2,U) = X . Thus, X is (1 1

2 , 2)-starcompact.
Next, we show X is not (1, 2)-starcompact. Every countable subset of X

is closed and discrete in X . So every countably compact subspace is finite.
Hence it is enough to show that X is not 2-starcompact. For each n ∈ Z, let
In = (n, n+1) and Jn = (n, n+2). We denote J ′

n = h(Jn) and choose a point
pn ∈ In r D for each n ∈ Z. Define Un = J ′

n ∪ (Jn r {pn, pn+1}) for each

n ∈ Z. Then U = {In r D̃ : n ∈ Z} ∪ {Un : n ∈ Z} ∪ {X2 r D̃} is an open

cover of X . One can prove easily that {n : st(x,U) ∩ (In r D̃) 6= Ø} is finite

for each x ∈ X1. We will prove it only for x ∈ X2 r D̃. If x = ñ+ 1, then

st(x,U) = (X2rD̃)∪Un. If ñ < x < ñ+ 1, then st(x,U) = (X2rD̃)∪Un−1∪Un.

Hence {n : st(x,U) ∩ (In r D̃) 6= Ø} is finite for each x ∈ X2 r D̃. Thus, for

every finite subset F of X , there exists n ∈ Z such that st(F,U)∩(InrD̃) = Ø.

Since In r D̃ is the only element of U containing pn, pn 6∈ st2(F,U). �

Remark 3.7. Most of existing examples in the theory of star-covering prop-
erties are regular and locally compact (see [1], [6], [7], and [8]). By Lemma
3.1, every locally compact 2 1

2 -starcompact space is (12 , 2)-starcompact. It seems

not easy to construct regular spaces distinguishing properties between (12 , 2)-

starcompactness and 2 1
2 -starcompactness in Diagram 1.
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