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ABSTRACT. Let P be a topological property. A space X is said to
be k-P-starcompact if for every open cover U of X, there is a subspace
A C X with P such that st*(A,U) = X. In this paper, we consider k-P-
starcompactness for some special properties P and discuss relationships
among them.
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1. INTRODUCTION

Let X be a topological space and U a collection of subsets of X. For @ #
ACX,let st(AU) =stH(AU) = J{U el : ANU # @} and st" (A, U) =
st(st™(A,U),U) for all n € N. We simply write st”(z,U) for st”({z},U). A
space X is called n-starcompact (n%—starcompact) [6] if for every open cover
U of X there is a finite subset F' of X (finite subcollection V of U) such that
st"(F,U) = X (st™(UV,U) = X). Let N=NU {n3 : n € N}. By definition,
every m-starcompact space is (n + %)—starcompact for n € N. It is known
that 1-starcompactness is equivalent to countable compactness for Hausdorff
spaces. Moreover, every n-starcompact regular space is 2%—starcompact for

n>3,n€ ﬁ?, and 2%—starcompactness is equivalent to pseudocompactness for
Tychonoff spaces [1].

Behaviours of the above mentioned star-covering properties were studied in
[1, 6, 7]. By replacing ‘finite’ with ‘countable’ in the definition, n-starcompactness
was extended to n-star-Lindeloffness in [1]. As we have seen, finiteness plays
an important role in the concept of n-starcompactness. In what follows, we
may replace finiteness with some topological properties to get some new con-
cepts. Given a topological property P, a space X is called k-P-starcompact
if for every open cover U of X, there is a subspace A C X with P such that
stf(A4,U) = X. Tkenaga [4] and Song [7] considered 1-P-starcompactness for
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P being compact. We are especially interested in k-P-starcompact spaces for
‘P being n-starcompact, and call them iterated starcompact spaces in general.
More precisely, a space X is said to be (n, k)-starcompact if for every open cover
U of X there is an n-starcompact subspace A of X such that st*(A4,U) = X.
For the sake of unification, a compact space is called %—starcompact. In fact,
the above definitions appeared in [6] but no further investigation has been done
so far. By definition, we have the following lemma.

Lemma 1.1. (i) Every (n,k)-starcompact space is (n + k)-starcompact for
neN andk €N. _
(ii) Every (n1,k)-starcompact space is (na, k)-starcompact for ni,ne € N
with n1 < ng and k € N. N
(i1i) Every (n,k1)-starcompact space is (n,ke)-starcompact for n € N and
kl,kQ € N with k1 < ko.

By applying known properties, we obtain Diagram 1 in the class of regular
spaces. For convenience, (n, k)-starcompactness is abbreviated as st™*".

st! —— st?
compact =— g3 ——> g3l st3:2
countably: st gl — L2 locally
compact compact
stlz stlzl — gtla:2
st2 ——  st2! st2:2 st23

Diagram 1 (In the class of regular spaces)

In Section 2, we provide examples to distinguish iterated starcompact prop-
erties around (1,1)-starcompactness and consider their relations with other
covering properties. Section 3 is devoted to distinguish properties weaker than
2-starcompactness. Throughout this paper, w (w1) is the first infinite (uncount-
able) cardinal and ¢ is the continuum. For any set A, the cardinality of A is
denoted by |A|. Undefined concepts and symbols can be found in [2].
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2. (1,1)-STARCOMPACT SPACES

A space X is said to be L-starcompact if for every open cover U of X
there exists a Lindelof subspace L such that st(L,U{) = X. By definition,
every (%, 1)-starcompact space is L-starcompact, (1, 1)-starcompact and 1%—
starcompact; every 1%—starcompact space is both (1%, 1)-starcompact and 2-
starcompact; and every (1,1)-starcompact space is both 2-starcompact and
(1%, 1)-starcompact. These relationships can be described in the following di-
agam.

L-starcompact

4(1,1)
\

lé—starcompact < —» 2-starcompact

(1,1)-starcompact

-starcompact §<> (1%, 1)-starcompact

Diagram 2

In this section, we shall first provide some examples to show the difference
among concepts in Diagram 2.

Lemma 2.1. [6] If a regular space X contains a closed discrete subspace Y
such that |Y| = |X| > w, then X is not 13-starcompact.

Example 2.2. There is a 2-starcompact, L-starcompact Tychonoff space which
is not (13, 1)-starcompact. Let R be a maximal almost disjoint family of infinite
subsets of w with |R| = ¢. It is proved that the Isbell-Mréwka space ¥ = wUR
is 2-starcompact in [1]. Since W is separable, it is L-starcompact. Note that
every 1%—starcompact subspace of ¥ is compact. For, if there exists a 1%—
starcompact non-compact subspace X C ¥, then | X N R| < |X| < w by
Lemma 2.1. It follows from | X NR| = |[{R1, -+, Rn}| < w that there exists
A C X Nw such that |[A| = w and AN, R; = @. This implies that X is
not pseudocompact, which is a contradiction. Enumerate R as {Rg : § < c}.
Since the intersection of every compact subspace of ¥ with R is finite, we can
enumerate all compact subsets of ¥ as K = {F, : a < ¢}. For each o < ¢,
choose 5, > a such that |Rg, N F,| < w. In addition, we may requre o < Su
whenever o < o’. Choose an open neighborhood O(Rg,) of Rg, such that
O(Rp,)NFy=0. Let I = {84 : a < c}. Then

U={{n} newlU{{Ry}URy:a€c~I}U{O(Rg,): a €c}
is an open cover of ¥. Let K be any compact subspace of ¥. Then K = F,

for some v < ¢. By the construction of U, Rg, & st(K,U). Therefore, ¥ is not
(13,1)-starcompact. O

Example 2.3. There is a (1,1)-starcompact Tychonoff space which is neither
lé—starcompact nor L-starcompact. Let 7 be a regular cardinal with 7 > wy.
Let D be the discrete space with |D| = 7 and let D* = DU{co} be the one-point
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compactification of D. Consider X = (D* x (7 + 1)) \ {{o0, 7)} as a subspace
of the usual product space D* x (7 + 1). Since D* x 7 is a countably compact
dense subspace of X, X is (1,1)-starcompact. But X is not 1%-starcompact,
since | X| = |D| and D x {7} is a closed discrete subspace of X.

Now, we will show that X is not L-starcompact. Enumerate D as {d, :
a < 7}. For each oo < 7, choose an open set Uy, = {do} x (e, 7]. Then
U={Uy:a<7U{D* x 7} is an open cover of X. Let L be any Lindelof
subspace of X. Then LN(D x {7}) must be countable. Let L' = L~ |J{LNU,, :
(do, ) € LN (D x {7})}. Without loss of generality, we may assume L’ # Q.
Since L' is closed in L, L’ is Lindelof. Note that L' C D*x7. Let m : D*x7 — 7
be the projection. Then 7(L’) is a Lindeldf subspace of the countably compact
space 7. Therefore there exists ko < 7 which is greater than all elements of
w(L), ie.,, Uy NL = @ for all « > ko. Since 7 is a regular cardinal with
7 > w and LN (D x {7}) is countable, there exists some £ < 7 such that
ko < k and U, N L = @. Because Uy is the only one element of I/ containing
dw, di & st(L,U). Therefore, X is not L-starcompact. O

Example 2.4. There is an L-starcompact and (1,1)-starcompact Tychonoff
space X which is not 1%—starcompact. Let ¥ = w U R be the Isbell-Mrowka
space, where R is a maximal almost disjoint family of infinite subsets of w with
|R| = ¢ and let D be the discrete space such that |D| = |R| and DNR = @.
Let Y = (D* x (w1 + 1)) \ {{00,w1)}, where D* = D U {c0} is the one-point
compactification of D. Take a bijection ¢ : R — D X {w;}. Let X be a quotient
space of YUY and 7 : YUY — X a quotient mapping which identifies r with
i(r) for each r € R. Then X = 7(w) Un(Y) = 7(¥) Un(D* X wy). Since X is
locally compact Hausdorff, it is Tychonoff.

First, we will show that X is (1,1)-starcompact. Let U be an open cover
of X. Note that A = w(D* X wy) is a countably compact dense subset of
7(Y). Hence m(Y) C st(A,U). Since m(w) is relatively countably compact
in 7(¥), B = w \ st(A4,U) is finite. Thus st(AUB,U) = X and AUB is a
countably compact subspace of X. Now, we will show that X is £-starcompact.
Since A is countably compact, there is a finite subset F' of A such that A C
st(F,U). Moreover, m(w) is a countable dense subset of 7(¥), thus we have
st(FUr(w),U) = X and FUr (w) is a Lindel6f subspace of X. But 7(R) is closed
and discrete in X and |7(R)| = |X|. Therefore, X is not 13-starcompact. [

Example 2.5. There is a 1%-sta7"compact, L-starcompact Hausdorff space which
is mot (1,1)-starcompact. Let X = [0,1] and let 79 be the Euclidean topology
on X. Define m = {UNF : U € 79, F is a countable subset of X}. Then
(X,71) is Hausdorff. We will show that (X,71) is 14-starcompact. Let U be
a basic open cover of (X, 7). For each U € U, select an open subset V(U)
of (X,79) and a countable subset F(U) of X such that U = V(U) \ F(U).
Then V = {V(U) : U € U} is an open cover of (X, 7p). Since (X, 7p) is com-
pact, V has a finite subcover Vy. Let Uy = {U € U : V(U) € Vy}. Then
|X N~ UUp| < w. Since every neighborhood of each point of X ~\ |JUy meets
UUo, st(UUo,U) = X. Tt is easy to prove that (X, 7) is Lindelof. Note that
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every countable subset is closed and discrete in (X, 7). So every countably
compact subspace is finite. Since (X, 71) is not countably compact (i.e., not
1-starcompact), it is not (1, 1)-starcompact. O

A space X is said to be meta-Lindeldf (para-Lindeldf) if every open cover of
X has a point (locally) countable open refinement. It is well-known that every
pseudocompact para-Lindel6f Tychonoff space is compact.

Theorem 2.6. Let X be a meta-Lindelof Ty space. If X is (1,1)-starcompact,
then it is 1%—starcompact.

Proof. Let U be an open cover of X. Since X is meta-Lindel6f, we may as-
sume that U is point countable. Since X is (1, 1)-starcompact, there exists a
countably compact subspace A of X such that st(A,U) = X. We may assume
ANU # @ for all U € U. Now, we will show that some finite subcollection V
of U covers A. Therefore st(| JV,U) = X. Suppose that it is not true, and pick
an arbitrary point zo € A. Denote by V,, the subcollection {V e U : g € V'}
of U. Since A is countably compact and V,, is countable, A \ |JVy, # O
(Otherwise, we have A C |JV,,, and thus there exists a finite subfamily of V,,
which covers A). Inductively, we can choose an infinite sequence {z, : n € w}
such that z,, € A~ ., Ve, for each n € w. But the sequence {z, : n € w}
does not have a cluster point in X. This contradicts the countable compactness
of A. Hence, there exists a finite subfamily V C U such that A C |JV, which
implies st(|JV,U) = X. O

A space X is said to be strongly collectionwise Hausdorff (collectionwise
Hausdorff) if for every closed discrete subset D of X, there exists a discrete
(pairwise disjoint) open collection {Uy : d € D} such that Uy N D = {d} for
eachd € D.

Theorem 2.7. Let X be a strongly collectionwise Hausdorff space. If X is
(1,1)-starcompact, then X is countably compact.

Proof. Suppose that D is a closed discrete subset of X with |D| = w. Since
X is strongly collectionwise Huasdorff, there exists a discrete open collection
U = {Uy : d € D} such that U; N D = {d} for every d € D. Then V =
{X \D}UU is an open cover of X. If A is a countably compact subspace of X
{UelU:UNA+#Q} is finite. Hence there exists d € D such that UsNA = Q.
Since Uy is the only element of U containing d, d & st(A, V). ]

In Theorem 2.7, strongly collectionwise Hausdorffness cannot be replaced by
collectionwise Hausdorffness. It is easy to check that the Tychonoff plank is
(%, 1)-starcompact and collectionwise Hausdorff, but not countably compact.

3. MORE EXAMPLES

In this section, we shall provide some examples to distinguish properties
weaker than 2-starcompactness.
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Lemma 3.1. If a space X is locally compact and n%—starcompact for anyn €
N, then X s (%,n)-starcompact.

Proof. Let U be an open cover of X. For each z € X, choose an open neigh-
borhood V,, of & such that V,, is compact and V,, C U for some U € Y. Then

V ={V, : 2 € X} is an open cover of X. Since X is n%—starcompact, there
exists a finite subcollection Vy of V such that st™(|J Vo, V) = X. Since [V, is
compact and st™(\JVo,U) = X, X is (3, n)-starcompact. O

Example 3.2. There exists a (%, 2)-starcompact Tychonoff space which is not
2-starcompact. Tree [8] constructed a 2%-starcompact locally compact space

which is not 2-starcompact. By Lemma 3.1, it is (%, 2)-starcompact. O

Also, the space in Example 3.2 can be considered as a candidate of a coun-
terexample between (2, 2)-starcompactness and (2, 1)-starcompactness. But it
is not easy to verify that the space is not (2, 1)-starcompact directly. So we
shall give a detail maximal family to destroy (2, 1)-starcompactness. First, we
shall outline the construction of Tree in [8].

Tree’s construction: Let C be the lexicographically ordered Cantor square.
Then C is a first-countable compact space such that dim(C') = 0 and 7w(G) = ¢
for every non-empty open subset G of C. Let X be the topological sum of
w many copies of C' and let ¥ = [J{X, : @ < ¢} be the union of ¢ many
copies of X. Then Y is a first-countable, locally compact, meta-Lindel6f, non-
pseudocompact space such that dim(Y) = 0 and mw(G) = ¢ for every non-
empty open subset G of Y.

Let B be a base of Y such that every B € B is a compact clopen subset of
some X,. Since Y is a locally compact first-countable Hausdorff space, there
exists a point-countable m-base P (see [8] for details) for Y such that

1) PCBand |P|=r¢

2) for every non-empty set B € B, {P€P: P C B} =c.

Let D(P) be a collection of all sequences S = {S,,} of pairwise disjoint open
sets from P that have no cluster point in Y. Enumerate D(P) as {T% : a < ¢}
such that JT“* C X, for each a < ¢. Inductively we can find, by 1) and 2),
R ={5%:a < S% e P} such that S¢ C T for each a, n, and S¢ = S =
a=a and n=n'.

Let A ={S“%: a < ¢} and let R’ be a maximal eventually disjoint family
of R with A C R’ (that is, if S # S’ € R/, there is n € w such that | J,~, Si N
U, Si = @). We take a basic neighborhood of S € R’ as 0,(S) = {S} U
Uisp Si- Then B' = BU{0,(S): S € R',n € w}is a base for Yt =Y UR".
Therefore Y+ is a pseudocompact, locally compact, meta-Lindelof, Tychonoff
space. But YT is not 2-starcompact. Indeed, U = {X, : a < c}U{01(S): S €
R’} is an open cover of Y such that

a) every y € YT is contained in at most countably many members of U
b) if V C U is countable, there exists S € A with O1(S)NJV = 0. O
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Lemma 3.3. Let Z C YT with |ZN A'| > wy for some A" C R, and let
Uy ={Us : S € A’} be an open (in YT ) collection such that Us N A" = {S}.
If some open (in Y) cover U 2O Uy satisfies a) and b), then Z is not 2-
starcompact.

Proof. Let O ={UNZ : U € U} be a collection of non-empty sets. Then O is an
open cover of Z and satisfies a) and b). Therefore, Z is not 2-starcompact. [

Example 3.4. There exists a (2,2)-starcompact Tychonoff space which is not
(2,1)-starcompact. We will use A and R which were consturcted in the above.
Let {Ag : f < ¢} be a partition of A such that [Ag| = w for each § < ¢
and let Rg ={S e R :US C U{Xa: Xa NUUAg # O}} for each 8 < «¢.
Then Ag € Rg € R. For each § < ¢, choose a maximal eventually disjoint
family R,/B of Rz which contains Agz. Finally, we choose a maximal eventually
disjoint family R’ of R which contains (J{R}; : # < ¢}. Then A C R’ C R and
Y+t =Y UR'is a locally compact pseudocompact Tychonoff space (and hence
(2, 2)-starcompact).

Now, we prove that Y is not (2,1)-starcompact. U = {X, : a < ¢} U
{O01(S) : S € R'} is an open cover of Y. Suppose that Z is a 2-starcompact
subspace of Y such that st(Z,U/) = Y. By Lemma 3.3, ZN.A is countable. It
follows from st(Z,U) = Y that O1(S)NZ # O for each S € R'. Because ZN.A
is countable, there exists By < ¢ such that for each 8 > By, O1(S)NZ # @ and
S & Z for all S € Ag. Hence for each S € Ag (8 > By), there exists n(S) € w
such that Fs = Sy5) N Z # O. Note that {Fs : S € Ag} is a sequence of
pairwise disjoint open subsets of Z. Since Z is a pseudocompact subspace of
Y*, there exists S? € R’ N Z which is a cluster point of {Fs : S € Ag}. Also
SP is a cluster point of TP = {Sns) : S € Ag}. Thus, S8 e R (otherwise,
S8 and T should be eventually disjoint by the maximalities of Ry and R/,
namely, S is not a cluster point of T77). Let A’ = {S® : 8 > 3y}. By Lemma
3.3, Z is not 2-starcompact. This is a contradiction. (I

Matveev [5] gave a pseudocompact Tychonoff space in which no infinite
subspace is 2-starcompact. This is an example of a pseudocompact Tychonoff
space which is not (2, 2)-starcompact.

Example 3.5. There exists a (1,2)-starcompact Hausdorff space X which is ei-
ther (2,1)-starcompact nor 2%—starcompact. Let S = R and 79 be the Euclidean
topology on R. Endow S with a new topology 1 = {U N F : U € 19, |F| < w}.
Let V7 = @(le Sa, Qo = S NQ, and P, = S, \ Q, where S, = S for
each a < w; and Q is the set of rational numbers. Then E = Ua<w1 Qa
is closed and discrete in Y. Let D be a discrete space with |D| = w; and
DNE = @, and D* = DU{o0} the one-point compactification of D. Then Y5 =
D* x (w1 + 1)\ {{c0,w1)} has a dense countably compact subset A = D* X w;.
Hence Y; is 2-starcompact. Enumerate D and F such that D = {d,; : k < w1}
and E = {g, : K < w1 }. Let X be the quotient space of Y3 UY5 which identifies
(dy,w1) with ¢, for each kK < wy.
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We firstly show that X is (1,2)-starcompact. Let U be an open cover of X.
We will prove st?(A,U) = X. Because A is dense in Ya, Yo C st(A4,U). Note
that for every open subset U of X which contains E, Y7 C clxU. Therefore,
st?(A,U) = X.

To show X is not (2,1)-starcompact, we firstly show that every 2-starcompact
subspace of X meets only finitely many P,. Suppose not. Then there is a 2-
starcompact subspace K of X such that I' = {a < w; : KNP, # @} is infinite.
Without loss of generality, we can assume Y, C K. For each a € T, pick a
point p, € K NP,. Note that for each ¢, € F, there is a unique a(x) such
that ¢. € Qqa(r)- Let U(gn) = (Page) ™ {Paw)}) U ({de} x (w1 + 1)) for each
k<wi. ThenU ={K NP, :a e TU{KNU(q) : kK <wi}U{A} is an open
cover of K. If x = p,, for some (unique) a € T, then st(z,U) = K N P,, ie.,
st(z,U)N(K NPy ) = O for all o € T with a # . If € P, and = # p,, then
st(z,U) = U{U(qx) : qx € Qu}, Le, st(z,U) N(KNPy) =@ forall o €T
with « # o/. In both cases, since K NP, is the only element of 4 containing
Dars Par € st?(x,U). If x € Q, and x = g,, for some &, then st(z,U) = U(qy),
e, st(z,U) N (K NPy) = O for all & € T with a # . Similarily, we have
Por € st?(z,U). If z € A, then [{rk < w; : # € U(q,)}| < 1. Thus st(z,U) meets
at most one P,. Hence for any finite subset F of K, st?(F,U) # K. This is
a contradiction. Now we will show that X is not (2, 1)-starcompact. For each
a < wi, choose a point p, € P,. For each ¢, € E, choose a (unique) a(k) < wq
such that g € Qq(x). Let U(gx) = (Pae) ~{Pa) }) U {dk} x (w1 +1)) for each
k<wi. ThenU ={Py:a <wi}U{U(g): k <wi}U{A} is an open cover of
X. Let K be a 2-starcompact subspace of X. ThenT' = {a < w1 : KNP, # O}
is finite. So there exists o < w; such that p, & st(K,U). Therefore, X is not
(2,1)-starcompact.

Finally, we show that X is not 2%—starcompact. For each o < wy, choose
a point po, € P,. For each ¢, € E, choose a (unique) a(x) < w; such that
0 € Qu(ry- Let U(ge) = (Page) N {Paw) ) U{dk} X (5,w1]) and let Vi, = D* x K
for each K < w1. Then U = {Py: o < w1} U{U(qw) 1 k <wi} U{Vi: Kk <wi}
is an open cover of X. Note that U satisfies the following conditions: (1)
PyoNPy =0 if a# a5 (2) Ulge) NU(qw) = O if a(k) # a(k’); (3) each V,
meets at most countably many U(q,.); and (4) P, NV,, = @ for all o, k < wy. It
follows that st(Po,U) NPy = O if o # o5 st(U(gx),U) NPy = D if (k) #
and st(V,,,U) NP, # O for at most countably many a. Hence for every finite
subcollection V of U, st(|JV,U) meets at most countably many Py, i.e., there
exists a < wy such that st(|V,U) NP, = O@. Since P, is the only element of
U containing pa, pa & st*(V,U). Therefore, X is not 24-starcompact. O

Every (2, 2)-starcompact regular space is 2%—starcompact, but the implica-
tion is not true for Hausdorff spaces. Example 3.5 is a counterexample.
Example 3.6. There ezists a (1%, 2)-starcompact Hausdorff space which is not
(1,2)-starcompact. Let X1 = R and 79 be the Euclidean topology on R. Endow
X1 with a new topology 71 = {U N F : U € 79, |F| < w}. Suppose X5 is a
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homeomorphic copy of the subspace [0,1] of X; and X; N X2 = @. For conve-
nience, we assume Xy = [0,1]. Let h : X3 — (0,1) be a homeomorphism. Let
D and E be closed discrete subsets of X7 and (0, 1) respectively satisfying the
following conditions: (1) h(D) = F; (2) D is dense in the Euclidean topology
on R; and (3) F is dense in the Euclidean topology on (0,1). Let X be the
quotient space of X1 U X» which identifies d with h(d) for each d € D. Then X
is Hausdorff. From Example 2.4, X5 is 1——starcompact and every open subset
U of X with D C U is dense in X (D is the equivalence class on X). Let
U be an open cover of X. Since st(X2,U) is open in X and D C st(Xo,U),
st?(X2,U) = X. Thus, X is (14,2)-starcompact.

Next, we show X is not (1,2)-starcompact. Every countable subset of X
is closed and discrete in X. So every countably compact subspace is finite.
Hence it is enough to show that X is not 2-starcompact. For each n € Z, let
I, = (n,n+1) and J, = (n,n + 2). We denote J;, = h(J,,) and choose a point
pn € I, ~ D for each n € L. Define U,, = J), U (Jn ~ {pn,pn+1}) for each
neZ ThenUd = {I,~D:neZU{U,:necZ}U{X,~ D} is an open
cover of X. One can prove easily that {n : st(z,U) N (I, ~ D) # @} is finite
for each x € X;. We will prove it only for z € X5 \ D. Ifx = 7m then
st(z,U) = (Xo\D)UU,. If7i < z < n + 1, then st(z,U) = (Xa\D)UU,_1UU,.
Hence {n : st(z,U) N (I, ~ D) # @} is finite for cach z € X ~ D. Thus, for
every finite subset F of X, there exists n € Z such that st(F,2)N (I, ~ D) = @.
Since I, ~ D is the only element of U containing p,,, p, & st?(F,U). O

Remark 3.7. Most of existing examples in the theory of star-covering prop-
erties are reqular and locally compact (see [1], [6], [7], and [8]). By Lemma
3.1, every locally compact 2%—starcompact space s (%, 2)-starcompact. It seems
not easy to construct reqular spaces distinguishing properties between (%,2)—
starcompactness and 2%—5tarcompactness i Diagram 1.
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