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Abstract. In this paper we prove several generalizations of the
Banach fixed point theorem for partial metric spaces (in the sense of
O’Neill) given in [14], obtaining as a particular case of our results the
Banach fixed point theorem of Matthews ([12]), and some well-known
classical fixed point theorems when the partial metric is, in fact, a
metric.

2000 AMS Classification: 54H25, 54E50, 54E99, 68Q55.

Keywords: dualistic partial metric, partial metric, complete, quasi-metric,
fixed point.

1. Introduction and preliminaries

In recent years many works on domain theory have been made in order to
equip semantics domain with a notion of distance. In particular, Matthews
([12]) introduced the notion of a partial metric space as a part of the study
of denotational semantics of dataflow networks, showing that the Banach con-
traction mapping theorem can be generalised to the partial metric context
for applications in program verification. The existence of several connections
between partial metrics and topological aspects of domain theory have been
lately pointed by other authors as O’Neill ([15]), Bukatin and Scott ([3], [4]),
Waszkiewicz ([23], [24]), Schellekens ([20], [21]), Escardo ([8]), Matthews ([12])
and Romaguera and Schellekens ([19], [18]).

Throughout this paper the letters R, R+, N will denote the set of real num-
bers, of nonnegative real numbers and natural numbers, respectively.

Le us recall that a partial metric on a (nonempty) set X is a function p :
X ×X → R

+ such that for all x, y, z ∈ X :
(i) x = y ⇔ p(x, x) = p(x, y) = p(y, y);
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(ii) p(x, x) ≤ p(x, y);
(iii) p(x, y) = p(y, x);
(iv) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

A partial metric space is a pair (X, p) such that X is a nonempty set and p
is a partial metric on X.

As we indicated above, O’Neill ([15]) studied several connections between
valuations and partial metrics so that he proposed one significant change to
Matthews’ definition of the partial metrics, such a change consists of extending
their range from R

+ to R. According to [14], the partial metrics in the O’Neill
sense will be called dualistic partial metrics and a pair (X, p) such that X is a
(nonempty) set and p is a dualistic partial metric on X will be called a dualistic

partial metric space.

A paradigmatic example of a dualistic partial metric space is the pair (R, p),
where p(x, y) = x ∨ y for all x, y ∈ R.

Each dualistic partial metric p on X generates a T0 topology T (p) on X

which has as a base the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where
Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

From this fact it immediately follows that a sequence (xn)n∈N in a dualistic
partial metric space (X, p) converges to a point x ∈ X if and only if p(x, x) =
limn→∞p(x, xn).

Following [15] (compare [12]), a sequence (xn)n∈N in a dualistic partial metric
space (X, p) is called a Cauchy sequence if there exists limn,m→∞p(xn, xm).

A dualistic partial metric space (X, p) is said to be complete if every Cauchy
sequence (xn)n∈N in X converges, with respect to T (p), to a point x ∈ X such
that p(x, x) = limn,m→∞p(xn, xm).

As usual a function f : R → R is monotone non-decreasing (or monotone
or increasing) if x ≥ y implies f(x) ≥ f(y).

Recently, an extension of the Banach contraction mapping theorem have
been proved in the dualistic partial metric context (see [14]) in such a way that
the Matthews contraction mapping theorem can be deduced as a special case
of such a result. In this paper we extend the notion of contraction between
partial metric spaces to the dualistic partial metric context, and present two
generalizations and one “local version” of the Banach fixed point theorem given
in ([14]), which recuperate the several well-known classical fixed point theorems
when the dualistic partial metric converts into a metric.

2. Contractions on dualistic partial metric spaces

For the following discussion we recall some basics correspondences between
dualistic partial metrics and quasi-metric spaces.

Our basic references for quasi-metric spaces are [9] and [11].
In our context by a quasi-metric on a set X we mean a nonnegative real-

valued function d on X ×X such that for all x, y, z ∈ X :
(i) d(x, y) = d(y, x) = 0 ⇔ x = y

(ii) d(x, y) ≤ d(x, z) + d(z, y).
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A quasi-metric space is a pair (X, d) such that X is a (nonempty) set and d
is a quasi-metric on X.

Each quasi-metric d on X generates a T0-topology T (d) on X which has as
a base the family of open d-balls {Bd(x, ε) : x ∈ X, ε > 0}, where Bd(x, ε) =
{y ∈ X : d(x, y) < ε} for all x ∈ X and ε > 0.

If d is a quasi-metric on X , then the function ds defined on X × X by
ds(x, y) = max{d(x, y), d(y, x)}, is a metric on X.

Next we prove a local version of the Banach fixed point theorem for dualistic
partial metric spaces (Theorem 2.3 below) obtaining as a particular case of our
result the classical local version of Banach’s fixed point theorem for metric
spaces (see [1] and [7]).

The proof of the following auxiliary results can be found in [14] (compare
[12], [15] and [13]).

Lemma 2.1. If (X, p) is a dualistic partial metric space, then the function

dp : X ×X → R
+ defined by dp(x, y) = p(x, y) − p(x, x) is a quasi-metric on

X such that T (p) = T (dp).

As a consequence of Lemma 2.1 a mapping between dualistic partial metric
spaces (X, p) and (Y, q) is continuous if it is continuous between the associated
quasi-metic spaces.

Lemma 2.2. Let (X, p) be a dualistic partial metric space. Then the following

assertions are equivalent:

(1) (X, p) is complete

(2) The induced metric space (X, (dp)
s) is complete.

Furthermore limn→∞(dp)
s(a, xn) = 0 if and only if p(a, a) = limn→∞p(a, xn) =

limn,m→∞p(xn, xm).

In [14] it was proved the following Banach fixed point theorem which gener-
alies the fixed point theorem for partial metrics of Matthews given in [12].

Theorem 2.3 (Banach fixed point theorem). Let f be a mapping from a com-

plete dualistic partial metric space (X, p) into itself such that there is a real

number c with 0 ≤ c < 1, satisfying

(*) |p(f(x), f(y))| ≤ c |p(x, y)| ,

for all x, y ∈ X. Then f has a unique fixed point.

Corollary 2.4 (Matthews). Let f be a mapping from a complete partial metric

space (X, p) into itself such that there is a real number c with 0 ≤ c < 1,
satisfying

p(f(x), f(y)) ≤ cp(x, y),

for all x, y ∈ X. Then f has a unique fixed point.

On the other hand, it was showed in [14] that the contractive condition in
the statement of Theorem 2.3 can not be replaced by the contractive condition
of Corollary 2.4.
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In the sequel a mapping defined from a dualistic partial metric space into
itself satisfying the condition (*) will be called a contraction with contraction

constant c.
The following well-known local version of the Banach fixed point theorem

(Proposition 2.5 below) is a useful result with many applications. In particular
it allows to show that the property of having a fixed point is invariant by
homotopy for contractions and nonexpansive maps in metric spaces and, as
consequence, it is applied to solve practice second order homogeneous Dirichlet
problems ([1], [7]). Next we extend such this result to the dualistic partial
metric case.

Proposition 2.5. Let (X, d) be a complete metric space and let x0 ∈ X and r >

0. Suppose that f : Bd(x0, r) → X is a contraction with contraction constant L

such that d(f(x0), x0) < (1−L)r. Then f has a unique fixed point in Bd(x0, r).

Let (X, d) be a quasi-metric space. From now on by Y
d
we denote the

clousure of Y ⊆ X with respect to T (d).

Remark 2.6. Observe that, in general, the set Bp(0, ε) = {y ∈ X : p(x, y) ≤
ε + p(x, x)} is not closed with respect to T (p). Indeed, consider the dualistic
partial metric space (R, p) where the dualistic partial metric p is defined by
p(x, y) = x∨y. It is clear that Bp(0, 1) = (−∞, 1] and R\Bp(0, 1) = (1,+∞). So

Bp(0, 1) is not a closed set in (R, p).

Proposition 2.7. Let (X, p) be a complete dualistic partial metric space, x0 ∈
X and r > 0. Suppose that f : Bp(x0, r) → X is a contraction with contraction

constant c such that

|p(f(x0), x0)| < (1 − c)r − 2|p(x0, x0)| − |p(f(x0), f(x0))|.

for all x, y ∈ Bp(x0, r). Then f has a unique fixed point in Bp(x0, r).

Proof. It is clear that there exists r0 with 0 ≤ r0 < r such that

|p(f(x0), x0)| ≤ (1− c)r0 − 2|p(x0, x0)| − |p(f(x0), f(x0))|.

Next we show thatBp(x0, r0)
(dp)

s

= Bp(x0, r0). To see this let x ∈ Bp(x0, r0)
(dp)

s

and (xn)n∈N ⊂ Bp(x0, r0) such that limn→∞(dp)
s(x, xn) = 0. Then, given ε >

0, there exists n0 ∈ N with p(x0, xn)−p(x0, x0) ≤ r0 and p(xn, x)−p(xn, xn) < ε

whenever n ≥ n0.Now we only have to show that p(x, x0)− p(x0, x0) ≤ r0. In-
deed,

p(x, x0)− p(x0, x0) ≤ p(x, xn) + p(xn, x0)− p(xn, xn)− p(x0, x0)

< ε+ r0.

Consequently p(x, x0)−p(x0, x0) ≤ r0 andBp(x0, r0)
(dp)

s

⊆ Bp(x0, r0). Whence

Bp(x0, r0)
(dp)

s

= Bp(x0, r0).
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We will show that actually f : Bp(x0, r0) → Bp(x0, r0). To this end note
that

|p(f(x), f(x0))| − |p(x0, x0)| ≤ |p(f(x), f(x0))| − c|p(x0, x0)|

≤ c · (|p(x, x0)| − |p(x0, x0)|)

≤ c · (p(x, x0)− p(x0, x0)) ≤ cr0

for all x ∈ Bp(x0, r0). Hence

p(f(x), x0)− p(x0, x0) ≤ dp(x0, f(x0)) + dp(f(x0), f(x))

≤ |p(f(x), f(x0))|+ |p(f(x0), x0)|+ |p(f(x0), f(x0))|+ |p(x0, x0)|

≤ cr0 + (1− c)r0 = r0,

for all x ∈ Bp(x0, r0). Therefore f(Bp(x0, r0)) ⊆ Bp(x0, r0).
Now we can apply Theorem 2.3 to deduce that f has a fixed point in

Bp(x0, r0) ⊂ Bp(x0, r).
Finally we want to show the uniqueness. Suppose that there exist x, y ∈

Bp(x0, r) such that f(x) = x, f(y) = y and x 6= y. Since f is a contraction in
Bp(x0, r) we have that p(x, y) = p(x, x) = p(y, y) = 0 because of

|p(a, b)| = |p(f(a), f(b))| ≤ c|p(a, b)|

for all a, b ∈ {x, y}, which implies that x = y.This concludes the proof. �

Clearly Proposition 2.5 is a particular case of Proposition 2.7 because of
|p(x0, x0)| = |p(f(x0), f(x0))| = 0 when the dualistic partial metric is, in fact,
a metric.

3. Generalized Banach’s fixed point theorems for complete

dualistic partial metric spaces

In the last years many authors have obtained generalizations of the Banach
fixed point theorem in complete metric spaces ([2], [5], [6], [10], [16], [17])
Recently, and motivated in part by the applications to Computer Science, some
generalizations of a Banach fixed point theorem have been obtained for quasi-
metric and partial metric spaces (see for instance [12], [14], [22]). In this section
our interest is focused on giving two Banach fixed point type theorems where
the contractive condition is weakened.

One way of extending the Banach theorem arises in a natural way from
approximation problems, where the contractive condition depends on a distin-
guished real function.

Proposition 3.1 ([7]). Let (X, d) be a complete metric space and let

d(f(x), f(y)) ≤ Φ(d(x, y)) for all x, y ∈ X, where Φ : [0,∞) → [0,∞) is any

monotone non-decresing function with limn→∞Φn(t) = 0 for any fixed t > 0.
Then f has a unique fixed point.

The following result generalizes the preceding one.
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Theorem 3.2. Let f be a mapping of a complete dualistic partial metric space

(X, p) into itself such that

|p(f(x), f(y))| ≤ Φ(|p(x, y)|) for all x, y ∈ X,

where Φ : [0,+∞) → [0,+∞) is any monotone non-decreasing function with

limn→∞Φn(t) = 0 for each fixed t > 0. Then f has a unique fixed point.

Proof. First note that if t > 0 then Φ(t) < t, because if t ≤ Φ(t) then Φ(t) ≤
Φ(Φ(t)) and therefore t ≤ Φ2(t). Thus, it is easy to prove, by induction, that
t ≤ Φn(t) for n ≥ 1. It follows that t ≤ limn→∞Φn(t) = 0, a contradiction.

Fix x ∈ X. It is clear that for each n ∈ N we have

|p(fn(x), fn(x))| ≤ Φn(|p(x, x)|) and
∣

∣p(fn(x), fn+1(x))
∣

∣ ≤ Φn(|p(x, f(x))|).

Let α := max{|p(x, x)|, |p(x, f(x))|}. Since, by Lemma 2.1,

dp(f
n(x), fn+1(x)) = p(fn(x), fn+1(x)) − p(fn(x), fn(x)),

we deduce that

dp(f
n(x), fn+1(x)) ≤ |p(fn(x), fn+1(x))|+ |p(fn(x), fn(x))|

≤ Φn(|p(x, f(x))|) + Φn(|p(x, x)|)

≤ 2Φn(α+ 1).

Now let n, k ∈ N. Then

dp(f
n(x), fn+k(x)) ≤ dp(f

n(x), fn+1(x)) + ...+ dp(f
n+k−1(x), fn+k(x))

≤ Φn(|p(x, f(x))|) + Φn(|p(x, x)|) + ...

...+Φn+k−1(|p(x, f(x))|) + Φn+k−1(|p(x, x)|).

Thus

dp(f
n(x), fn+k(x)) ≤ 2Φn(α+ 1) + ...+ 2Φn+k−1(α+ 1).

Similarly we show that

dp(f
n+1(x), fn(x)) ≤ 2Φn(α+ 1),

and thus

dp(f
n+k(x), fn(x)) ≤ 2Φn+k−1(α+ 1) + ...+ 2Φn(α+ 1).

Therefore (fn(x))n∈N is a Cauchy sequence in the metric space (X, (dp)
s),

which is complete by Lemma 2.2. So there is a ∈ X such that limn→∞(dp)
s(a, fn(x)) =

0 and p(a, a) = limn→∞p(a, f
n(x)) = limn,m→∞p(f

n(x), fm(x)).
We want to show that a is the unique fixed point of f. First we claim that

a is a fixed point of f. Clearly we have that

limn,m→∞dp(f
n(x), fm(x)) = 0.

Moreover limn→∞p(f
n(x), fn(x)) = 0, since

|p(fn(x), fn(x))| ≤ Φn(|p(x, x)|) ≤ Φn(|p(x, x)| + 1)
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and limn→∞Φn(|p(x, x)|+1) = 0. Thus we deduce that limn,m→∞p(f
n(x), fm(x)) =

0. Consequently by Lemma 2.2, p(a, a) = 0. Whence

|p(f(a), f(a))| ≤ Φ(|p(a, a)|) = Φ(0) ≤ Φ(ε) < ε.

It follows that |p(f(a), f(a))| = 0, because the last inequality holds for all ε > 0.
On the other hand, since limn→∞p(a, f

n(x)) = p(a, a) = 0 we have

|p(fn+1(x), f(a))| ≤ Φ(|p(fn(a), a)|) ≤ Φ(ε) < ε

eventually. Thus Lemma 2.2 shows that f(a) is a limit point of (fn(x))n∈N in
(X, (dp)

s). Then a = f(a).
Finally we show that a is the unique fixed point of f . To this end let b ∈ X

such that f(b) = b and b 6= a. Then p(a, a) = p(b, b) = p(f(a), f(b)) = 0, since
otherwise we have that the following inequality holds

|p(x, y)| = |p(f(x), f(y))| ≤ Φ(|p(x, y)|) < |p(x, y)|

for any x, y ∈ {a, b}. The proof is concluded. �

Remark 3.3. Observe that Theorem 2.3 follows as a special case of the pre-
ceding result if we choose Φ(t) = ct with 0 ≤ c < 1.

We will say that a dualistic partial metric space (X, p) is bounded if there
exists k > 0 such that |p(x, y)| < k for every x, y ∈ X. Moreover, we define
the diameter of a subset Y ⊆ X as δp(Y ) = sup{|p(x, y)| : x, y ∈ Y } if
the supremum exists and δp(Y ) = +∞ otherwise. Note that these notions
coincide with the classical notions of bounded metric space and diameter of
a metric space, respectively. Furthermore δp(Y ) ≤ δ(dp)s(Y ) + δwp

(Y ), where
δwp

(Y ) = sup{|p(x, x)| : x ∈ Y } if it exists and δwp
(Y ) = +∞ otherwise.

Another way of attempting an extension of the Banach fixed point theorem
does not rely on measuring the difference between p(f(x), f(y)) and p(x, y),
but, similarly to the metric case, the required condition relies on the behaviour
of the induced quasi-metric dp. The below technical results are useful to prove
the desired theorem.

Lemma 3.4. Let (X, p) be a dualistic partial metric space and Y ⊆ X. Then

δ(dp)s(Y ) ≤ 4δp(Y ).

Proof. It is easily seen that δwp
(Y ) ≤ δp(Y ). Furthermore

(dp)
s(x, y) ≤ dp(x, y) + dp(y, x) = 2p(x, y)− p(x, x)− p(y, y),

whence we have

(dp)
s(x, y) ≤ 2|p(x, y)|+ |p(x, x)| + |p(y, y)|.

Immediately we deduce that δ(dp)s(Y ) ≤ 4δp(Y ). �

Lemma 3.5. Let (X, p) be a complete dualistic partial metric space and let

ϕ : X → R
+ be an arbitrary non-negative function. Assume that

inf{ϕ(x) + ϕ(y) : |p(x, y)|+ |p(x, x)| + |p(y, y)| ≥ a} = µ(a) > 0 for all a > 0.
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Then each sequence (xn)n∈N for which limn→∞ϕ(xn) = 0 converges with repect

to T ((dp)
s) to the same point of X.

Proof. Let An = {x ∈ X : ϕ(x) ≤ ϕ(xn)}. Clearly An is a non-empty set and
any finite family of such subsets has a non-empty intersection.

We show that limn→∞δ(dp)s(An) = 0. To this end, let ε > 0. Then there

exists n0 ∈ N such that ϕ(xn) <
1
2µ(ε) for all n ≥ n0. Thus, ϕ(x)+ϕ(y) < µ(ε)

whenever x, y ∈ An and n ≥ n0. Hence, by hypothesis |p(x, y)| < ε. Therefore
δp(An) < ε for all n ≥ n0. Consequently limn→∞δp(An) = 0. By Lemma 3.4

we obtain that limn→∞δ(dp)s(An) = 0, which gives limn→∞δ(dp)s(An
(dp)

s

) = 0

because of δ(dp)s(An
(dp)

s

) = δ(dp)s(An). We conclude from Cantor’s inter-

section theorem that there exists a unique x ∈ ∩+∞

n=1An
(dp)

s

. Furthermore,

limn→∞(dp)
s(x, xn) = 0, since xn ∈ An

(dp)
s

for each n ∈ N. Whence we follow
that p(x, x) = limn→∞ p(x, xn) = limn→∞ p(xn, xn).

Note that we have actually proved that for any sequence (xn)n∈N such that
limn→∞ϕ(xn) = 0 there exists a limit point x ∈ X with respect to T ((dp)

s).
Let (yn)n∈N be any other sequence such that limn→∞ϕ(yn) = 0 and let

y ∈ X its limit point.
Since limn→∞ϕ(xn) = limn→∞ϕ(yn) = 0 we get that, given ε > 0, there

exists n1 ∈ N such that ϕ(xn) <
1
2µ(ε), ϕ(yn) <

1
2µ(ε) whenever n ≥ n1. In

consequence |p(xn, yn)|+ |p(xn, xn)|+ |p(yn, yn)| < ε whenever n ≥ n1, because
otherwise

µ(ε) = inf{ϕ(x) + ϕ(y) : |p(x, y)|+ |p(x, x)|+ |p(y, y)| ≥ ε}

≤ ϕ(xn) + ϕ(yn) < µ(ε),

which is a contradiction.
We show that x = y. Indeed,

(dp)
s(x, y) ≤ (dp)

s(x, xn) + (dp)
s(xn, yn) + (dp)

s(yn, y)

≤ 2ε+ (dp)
s(xn, yn)

≤ 2ε+ 2|p(xn, yn)|+ |p(xn, xn)|+ |p(yn, yn)| < 4ε.

So x = y, since the preceding inequality is true for every ε > 0. This com-
pletes the proof. �

Theorem 3.6. Let (X, p) be a complete dualistic partial metric space (X, p)
and let f : X → X be a continuous mapping from (X, (dp)

s) to (X, (dp)
s)

such that the functions ϕ(x) = dp(x, f(x)) and ψ(x) = dp(f(x), x) satisfy the

following conditions:

(1) inf{ϕ(x) + ϕ(y) + ψ(x) + ψ(y) : |p(x, y)| + |p(x, x)| + |p(y, y)| ≥ a} =
µ(a) > 0 for all a > 0

(2) infx∈X(ϕ(x) + ψ(x)) = 0.

Then f has a unique fixed point.

Proof. First we construct a sequence (xn)n∈N ⊂ X such that limn→∞ϕ(xn) +
ψ(xn) = 0. Let ε > 0 be given then there exists xε ∈ X such that ϕ(xε) +
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ψ(xε) < ε. Put xn = x1/n for each n ∈ N. Thus the sequence (xn)n∈N satisfies
the following:

For every ε ≥ 1, ϕ(xn) + ψ(xn) < 1 ≤ ε whenever n > 2.
For every ε < 1, there always exists n0 ∈ N such that ϕ(xn)+ψ(xn) <

1
n0

< ε

for all n ≥ n0.

It follows that limn→∞ϕ(xn) + ψ(xn) = 0 as we claim.
Since limn→∞ϕ(xn)+ψ(xn) = 0, by Lemma 3.5 there exists a unique x ∈ X

such that limn→∞(dp)
s(x, xn) = 0. Then

ϕ(x) − ϕ(xn) = p(x, f(x)) − p(x, x)− p(xn, f(xn)) + p(xn, xn)

< ε+ p(x, f(x)) − p(xn, f(xn))

< 2ε+ p(xn, f(x)) − p(xn, f(xn))

≤ 2ε+ p(f(xn), f(x)) − p(f(xn), f(xn)) < 3ε.

Similarly is showed that ϕ(xn) − ϕ(x) < 3ε eventually. Hence, we conclude
that ϕ(x) = limn→∞ϕ(xn).

On the other hand,

limn→∞ϕ(xn) ≤ limn→∞(ϕ(xn) + ψ(xn)) = 0.

Thus we have ϕ(x) = 0 and p(x, f(x)) = p(x, x).
Furthermore,

ψ(x)− ψ(xn) = p(x, f(x)) − p(f(x), f(x)) − p(xn, f(xn)) + p(f(xn), f(xn))

< ε+ p(x, f(x)) − p(xn, f(xn))

< 2ε+ p(xn, f(x)) − p(xn, f(xn))

≤ 2ε+ p(f(xn), f(x)) − p(f(xn), f(xn)) < 3ε.

Again we similarly show that ψ(xn)− ψ(x) < 3ε eventually.
So ψ(x) = limn→∞ψ(xn) ≤ limn→∞(ϕ(xn) + ψ(xn)) = 0. Whence we de-

duce that p(x, f(x)) = p(f(x), f(x)) = p(x, x). By condition (i) of the definition
of a dualistic partial metric x = f(x), and f has a fixed point.

Next we show the uniqueness. To this end we consider y ∈ X such that
y 6= x and f(y) = y. Then we would have α := |p(x, y)|+|p(x, x)|+|p(y, y)| 6= 0,
because otherwise p(x, y) = p(x, x) = p(y, y) = 0 and x = y. It follows that

0 < µ(α) = inf{ϕ(x) + ϕ(y) + ψ(x) + ψ(y) : |p(x, y)|+ |p(x, x)| + |p(y, y)| ≥ α}

≤ ϕ(x) + ϕ(y) + ψ(x) + ψ(y) = 0,

a contradiction. So that x = y. �

As a consequence we obtain the following classical result which can be found
in [7].

Corollary 3.7. Let f be a mapping from a complete metric space (X, d) into

itself and ϕ : X → R
+ the non-negative function defined by ϕ(x) = d(x, f(x)).

Assume that

inf{ϕ(x) + ϕ(y) : d(x, y) ≥ a} = µ(a) > 0 for all a > 0
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and that infx∈Xd(x, f(x)) = 0. Then f has a unique fixed point.

Remark 3.8. Observe that Theorem 2.3 follows from Theorem 3.6. It is easy
to see that

p(x, y)− p(f(x), f(y)) ≤ dp(f(x), x) + dp(f(y), y)

= ψ(x) + ψ(y),

and

p(f(x), f(y))− p(x, y) ≤ dp(x, f(x)) + dp(y, f(y))

= ϕ(x) + ϕ(y).

Thus |p(x, y)− p(f(x), f(y))| ≤ ϕ(x) + ϕ(y) + ψ(x) + ψ(y).
Moreover

|p(x, x)| − |p(f(x), f(x))| ≤ |p(x, x)− p(f(x), f(x))|

≤ dp(x, f(x)) + dp(f(x), x)

= ϕ(x) + ψ(x)

and

|p(y, y)| − |p(f(y), f(y))| ≤ |p(y, y)− p(f(y), f(y))|

≤ dp(y, f(y)) + dp(f(y), y)

= ϕ(y) + ψ(y).

Now if |p(f(x), f(y))| ≤ c|p(x, y)| for any 0 ≤ c < 1, bearing in mind the
preceding inequalities, we follow that

(1− c)(|p(x, y)| + |p(x, x)|+ |p(y, y)|) ≤ 2(ϕ(x) + ϕ(y) + ψ(x) + ψ(y)).

Therefore the condition (1) of Theorem 3.6 is satisfied.
Finally from the contractive condition we have, for each x ∈ X, that

limn→∞(dp)
s(fn(x), fn+1(x)) = 0 (see proof of Theorem 2.3 in [14]). Conse-

quently infx∈X(ϕ(x) + ψ(x)) = 0 because

infx∈X(ϕ(x) + ψ(x)) ≤ ϕ(fn(x)) + ψ(fn(x))

= dp(f
n(x), fn+1(x)) + dp(f

n+1(x), fn(x))

≤ 2(dp)
s(fn(x), fn+1(x)).
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