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Every infinite group can be generated by
P-small subset
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ABSTRACT. For every infinite group G and every set of generators
S of GG, we construct a system of generators in S which is small in the
sense of Prodanov.

2000 AMS Classification: 20D30, 20F05.

Keywords: Group, large set, small set, P-small set.

A subset B of a group G is called large if G = F - B = B - F for some finite
subset F' of G. A subset S of a group G is called small if the subset G\F' - S - F
is large for every finite subset F' of G.

V. Malykhin and R. Moresco [4] posed the following question: can ever infi-
nite group by generated by small subset? This question was answered positively
in [6] (see also [7, Theorem 13.1], some partial results were obtain also in [2]).

Following [2, §2.1] we call a subset S of a group G left small in the sense
of Prodanov (briefly left P-small) if there exist an injective sequence (an)n<w
such that the family {a, - S : n < w} consists of pairwise disjoint subsets.
Analogously, right small in the sense of Prodanov (briefly right P-small) is
introduced. The set S is called P-small when it is both left P-small and right
P-small. Clearly, all these notions coincide in the abelian case. That was the
case considered by Prodanov [5], who introduced the notion by noticing that if
for a subset A of an abelian group G the difference set A — A is not not large,
then A is P-small.

By [3, Theorem 4.2], every P-small subset of Abelian group is small, but
there are small subsets of Abelian groups which are not P-small. On the other
hand, the free group of rank 2 contains P-small subsets which are not small.
It was proved in [2, Theorem 3.6] that every abelian group has a P-small set
of generators. Furthermore, every free group (more generally, every group ad-
mitting an infinite abelian quotient) and every infinite symmetric group admit
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a P-small set of generators [2, Proposition 3.7, Theorem 3.11]. In this paper
we offer a common generalization of all preceding results in our theorem below
by proving that every set of generators of an infinite group contains a P-small
subset of generators.

For a subset A of a group G we denote by (A) the subgroup generated by
A.

Theorem 1. Let G be an infinite group, A C G, G = (A). Then there exists
a small and P-small subset X of G such that (X) = G and X C A.

Proof. If G is finitely generated, the statement is trivial since every set of
generators of G contains a finite set of generators. We can take an arbitrary
finite system X, X C A of generators of G and choose inductively the sequences
(Yn)n<w; (#n)n<w such that

Yn X Nym - X =0, X -2,NX -2, =9

for all n,m such that n < m < w.

Assume that G is not finitely generated and fix some minimal well-ordering
{ga : @ < Kk} of AU{e}, go = e, e is the identity of G. Put Gy = {e} and
Zo = g1. Suppose that, for some ordinal A < k, the elements {z, : @ < A}
and the subgroup {G, : @ < A} have been chosen. If A is a limit ordinal,
we put Gy = [J,o) Ga, take the first element gg such that gg ¢ G\ and put
) = gg. If A is a non-limit ordinal, we denote by G the subgroup generated
by Ga—1U{zr_1}, take the first element gg such that gg ¢ G and put z» = gg.
After k steps we get the subset X = {z,, : @ < k} and the properly increasing
chain {G, : a < K} of subgroups of G such that X C A, G = (X) and
Zo € Do := Gay1 \ Gq for every a < k. By [5, Theorem 13.1], X is small.

To show that X is P-small, we build a sequence sequences (¥ )n<, of ele-
ments of G such that

Yn XNy X =02 (1)
for every i < n. To this end we use the following easy to see properties of the
sets D:

(a) G =Uqcp Do is a partition with D, NGy = & whenever A < a < k;
(b) Go Dy =D, -Gy = D, for every a < k;
(€) |Dm| > |Gm| = 2™, for all m < w.
For every m < w let X,,, = {0, 21, ..., Tm }.
Put yo = e. Suppose that, for some natural number n, the elements
Y0, Y1, -+, Yn—1 have been chosen so that {yo,y1, ..., yn—1} C G and

for all 7, j such that i < j <n — 1.
To determine y,,, we take a natural number m such that {yo,y1, ..., yn—1} C
G, and

2™ > n(m+1)2
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By (c¢) and by the inequality [{y0, 41, s Yn—1} * Xm - X1 | < n(m +1)% we
can take the element y, € D,, such that

Yo, y1, s Yn—1} - Xon Ny - X = @.
By the choice of y,,, we have
YnXm NYi - X =2

for every i < n. If k,l < w, k > m, then y;z, € Dy, for every j < n. Hence
YnTr = Y;2; with k,1 > m yields k = [ and n = j. Now assume that y;x, = y;2
holds with k > m, 4,5 < n and | < m. Then according to (a) and (b) this is
not possible as yy, -z € Dy, while y; - 21 € Grq1. Analogously, yy - zk = y; -
is not possible with k¥ < m and | > m. This proves that

yn'){myi')(:g

for every i < m. After w steps we get the sequence (yn)n<, such that the
family {y, - X : n < w} consists of pairwise disjoint subsets. Applying these
arguments to the set X 1, we get the sequence (z,)new such that the family
{X -2z, : n € w} consists of pairwise disjoint subsets. Hence, X is P-small. O

Question 2. Let G be an infinite group of cardinality . Does there exist a
subset X of G and a k-sequence (Yo )a<r such that the family {y, - X : a € K}
consists of pairwise disjoint subsets and G = (X)?

If G is Abelian the answer is positive (see the proof of Theorem 3.6 from

[2]).
Finally, we offer also the following

Question 3.

(a) Let X be a subset of G such that, for every natural number n there exits
a subset Y, of G such that |Y,| = n and the family {y- X : y € Y, } is
disjoint. Is X left P-small ?

(b) By [7, Theorem 12.10], every infinite group can be partitioned into
countably many small subsets. Can every infinite group be partitioned
into countably many P-small subsets?

(c) Let G be an infinite group. Does there exist a system S of generators
of G such that G # (S - S™1)" for every natural number n?

NOTE ADDED IN NOVEMBER 2006. Recently T. Banakh and N. Lyaskovska
answered negatively item (a) of Question 3.
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