

© Universidad Politécnica de Valencia Volume 8, No. 2, 2007 pp. 239-242

Sandwich-type characterization of completely regular spaces

Javier Gutiérrez García*,§ and Tomasz Kubiak*

ABSTRACT. All the higher separation axioms in topology, except for complete regularity, are known to have sandwich-type characterizations. This note provides a characterization of complete regularity in terms of inserting a continuous real-valued function. The known fact that each continuous real valued function on a compact subset of a Tychonoff space has a continuous extension to the whole space is obtained as a corollary.

2000 AMS Classification: 54D15, 54D30, 54C30.

Keywords: Insertion; Sandwich theorem; Insertion theorem; Completely regular space; Lower semicontinuous; Upper semicontinuous; Compact.

1. Introduction

All the higher separation axioms in general topology, except for complete regularity, are known to have sandwich-type (= insertion-type) characterizations. A canonical example is provided by the Katětov-Tong-Hahn insertion theorem for normal spaces (see [6], [10], and [2]). A topological space is normal if, given two disjoint closed sets A and B, there exist two disjoint open sets U and V containing A and B respectively. Also recall that, given a topological space X, a function $f: X \to \mathbb{R}$ is lower [upper] semicontinuous if $f^{-1}(t, \infty)$ [$f^{-1}(-\infty, t)$] is open for each $t \in \mathbb{R}$.

^{*}This research was supported by the Ministry of Education and Science of Spain and FEDER under grant MTM2006-14925-C02-02.

 $[\]S$ The first named author also acknowledges financial support from the University of the Basque Country under grant UPV05/101.

Theorem (Katětov-Tong-Hahn). Let X be a topological space. Then the following are equivalent:

- (1) X is normal.
- (2) If $g, h: X \to \mathbb{R}$, g is upper semicontinuous, h is lower semicontinuous, and $g \le h$, then there exists a continuous function $f: X \to \mathbb{R}$ such that $g \le f \le h$.

More examples can be seen in [8]. In this note we give an insertion-type characterization of completely regular spaces. We note that insertion theorems usually have Urysohn-type lemmas and Tietze-type extension theorems as corollaries, and so does the insertion theorem of this note.

2. Sandwich-type characterization of completely regular spaces

We need some notation. Let $C(X,\mathbb{I})$ $[USC(X,\mathbb{I})]$ be the set of all continuous [upper semicontinuous] functions from a topological space X to $\mathbb{I}=[0,1]$. We recall that X is completely regular (no lower separation axiom assumed) if, whenever $K\subset X$ is closed and $x\in X\setminus K$, there exists an $f\in C(X,\mathbb{I})$ such that f(x)=1 and $f(K)=\{0\}$. Equivalently, X is completely regular if and only if, given an open set $U\subset X$ and $x\in U$, there is a continuous $f:X\to \mathbb{I}$ such that $1_{\{x\}}\leq f\leq 1_U$. Here and elsewhere 1_A denotes the characteristic function of a subset $A\subset X$. By using some ideas of fuzzy topology (cf. [4]) or point-free topology (cf. [5]), one has a yet more convenient formulation.

Statement A topological space X is completely regular if and only if, whenever $U \subset X$ is open, there exists an open cover \mathcal{V} of U with the property that for every $V \in \mathcal{V}$ there is an $f_V \in C(X, \mathbb{I})$ such that $1_V \leq f_V \leq 1_U$.

Proof. The only if part: by complete regularity, we have $1_{\{x\}} \leq g_x \leq 1_U$ for each $x \in U$, where $g_x \in C(X, \mathbb{I})$. Let $V_x = g_x^{-1}(\frac{1}{2}, 1]$ and $f_x = \min(1, 2g_x)$. Then $\mathcal{V} = \{V_x\}_{x \in U}$ is an open cover of U and $1_{V_x} \leq f_x \leq 1_U$. The if part is evident.

We recall that two disjoint subsets A and B of a topological space X are completely separated if there exists an $f \in C(X, \mathbb{I})$ such that $f = \mathbf{1}$ on A and $f = \mathbf{0}$ on B. Equivalently, if $1_A \leq f \leq 1_{X \setminus B}$.

To state our insertion theorem, we need a "general" property of a function $f: X \to \mathbb{I}$ holding, in particular, for $1_{\{x\}}$. The right choice is to require each $[f \geq t]$ to be compact for all t > 0. This can actually be taken as a definition, but we prefer to distinguish a class of maps for which this property becomes a characterization. In what follows, \mathbf{t} stands for the constant map on X taking the value $t \in \mathbb{I}$. All the infs and the sups of families of functions are pointwise. In particular, (inf K) $(x) = \inf\{k(x) : k \in K\}$.

Definition Given a topological space X, an $f: X \to \mathbb{I}$ is called *compact-like* if, given a $t \in \mathbb{I} \setminus \{0\}$ and $\mathcal{K} \subset USC(X,\mathbb{I})$ with $\min(f,\inf\mathcal{K}) < \mathbf{t}$, there exists a finite $\mathcal{K}_0 \subset \mathcal{K}$ such that $\min(f,\inf\mathcal{K}_0) < \mathbf{t}$.

Properties Let X be a topological space. The following hold:

- (1) $f: X \to \mathbb{I}$ is compact-like iff $[f \ge t]$ is compact for all $t \in \mathbb{I} \setminus \{0\}$.
- (2) $A \subset X$ is compact iff 1_A is compact-like.
- (3) If X is compact, then $USC(X, \mathbb{I})$ consists of compact-like functions.
- (4) If X is Hausdorff and $f: X \to \mathbb{I}$ is compact-like, then $f \in USC(X, \mathbb{I})$.

Proof. For (1): let \mathcal{U} be an open cover of $[f \geq t]$ with t > 0, then $\min(f, \inf\{1_{X \setminus U} : U \in \mathcal{U}\}) < \mathbf{t}$. But then the finite subfamily $\mathcal{U}_0 \subset \mathcal{U}$ for which $\min(f, \inf\{1_{X \setminus U} : U \in \mathcal{U}_0\}) < \mathbf{t}$ yields $[f \geq t] \subset \bigcup \mathcal{U}_0$. Conversely, let $\min(f, \inf \mathcal{K}) < \mathbf{t}$ with t > 0. Then $\varnothing = [\min(f, \inf \mathcal{K}) \geq t] = [f \geq t] \cap \bigcap_{k \in \mathcal{K}} [k \geq t]$. By the finite intersection property, there exists a finite $\mathcal{K}_0 \subset \mathcal{K}$ with $\varnothing = [f \geq t] \cap \bigcap_{k \in \mathcal{K}_0} [k \geq t] = [\min(f, \inf \mathcal{K}_0) \geq t]$. This translates into $\min(f, \inf \mathcal{K}_0) < \mathbf{t}$ and proves (1). Finally, (2) follows from (1), while (3) and (4) are obvious.

The concept of a compact-like function shows that sandwich-type characterizations of higher separation axioms, viz.: perfect normality [9], complete normality [7], normality ([6] and [10]), continue to hold for the case of complete regularity. We shall need the following general insertion theorem.

Theorem 1 (Blair [1], Lane [8]). For X a topological space and two arbitrary functions $g, h : X \to \mathbb{I}$, the following statements are equivalent:

- (1) There exists a continuous function $f: X \to \mathbb{I}$ such that $g \leq f \leq h$.
- (2) If s < t in \mathbb{I} , then $[g \ge t]$ and $[h \le s]$ are completely separated.

The equivalence $(1) \Leftrightarrow (2)$, in the theorem which follows, is well known (see 3.11(c) in [3]). We provide a short proof for completeness.

Theorem 2 For X a topological space, the following are equivalent:

- (1) X is completely regular.
- (2) [Urysohn-type lemma] Every two disjoint subsets of X, one of which is compact and the other is closed, are completely separated.
- (3) [Insertion] If $g, h: X \to \mathbb{I}$, g is compact-like, h is lower semicontinuous, and $g \le h$, then there exists a continuous function $f: X \to \mathbb{I}$ such that $g \le f \le h$.
- *Proof.* (1) \Rightarrow (2): Let $A \cap B = \emptyset$, A being compact, B being closed. By complete regularity, there exist an open cover \mathcal{U} of $X \setminus B$ and a family $\{f_U\}_{U \in \mathcal{U}} \subset C(X, \mathbb{I})$ such that $1_U \leq f_U \leq 1_{X \setminus B}$. Since A is compact, $A \subset \bigcup \mathcal{U}_0$ for a finite \mathcal{U}_0 of \mathcal{U} . Then $1_A \leq g = \sup\{f_U : U \in \mathcal{U}_0\} \leq 1_{X \setminus B}$. The continuous g completely separates A and B.
- $(2) \Rightarrow (3)$: Let $g \leq h$ be as in (3). For any $s,t \in \mathbb{I}$ with s < t one has $[g \geq t] \cap [h \leq s] = \emptyset$ where $[g \geq t]$ is compact and $[h \leq s]$ is closed. By Theorem 1, there is a continuous $f \in C(X,\mathbb{I})$ such that $g \leq f \leq h$.
- $(3) \Rightarrow (1)$: This is obvious, for if $x \in U$ with U open, then $1_{\{x\}} \leq 1_U$ where $1_{\{x\}}$ is compact-like and 1_U is lower semicontinuous.

It is a heuristic principle that a sandwich-type theorem provides an extension theorem. This is the case of our sandwich theorem. In order to avoid speaking about compact-closed sets in a completely regular space, we shall assume X to be Tychonoff (completely regular + Hausdorff).

Corollary ([3], 3.11(c)). Let X be a Tychonoff space, let $A \subset X$ be compact, and let $f: A \to \mathbb{R}$ be continuous. Then there exists a continuous function $F: X \to \mathbb{R}$ such that F(x) = f(x) for all $x \in A$.

Proof. Given a compact subset $A \subset X$ and a continuous function $f: A \to \mathbb{R}$, the set f(A) is bounded and we can assume that $f(A) \subset \mathbb{I}$. Now, define $g, h: X \to \mathbb{I}$ as follows: g = f = h on $A, g = \mathbf{0}$, and $h = \mathbf{1}$ on $X \setminus A$. Since A is closed, h is lower semicontinuous. Also, if t > 0, then $[g \ge t] = [f \ge t]$ is closed in A, hence compact in X. By Theorem 2, there exists a continuous $F: X \to \mathbb{I}$ with $g \le F \le h$. Clearly, F extends f to the whole of X.

References

- R. L. Blair, Extension of Lebesgue sets and real valued functions, Czechoslovak Math. J. 31 (1981) 63–74.
- [2] G. Buskes and A. van Rooij, Topological Spaces. From Distance to Neighborhood, Springer, New York, 1997.
- [3] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, New York, 1976.
- [4] B. Hutton, Uniformities on fuzzy topological space, J. Math. Anal. Appl. 58 (1977) 559–571.
- [5] P. T. Johnstone, Stone Spaces, Cambridge Univ. Press, Cambridge, 1982.
- [6] M. Katětov, On real-valued functions in topological spaces, Fund. Math. 38 (1951) 85–91; Correction: Fund. Math. 40 (1953) 203–205.
- [7] T. Kubiak, A strengthening of the Katetov-Tong insertion theorem, Comment. Math. Univ. Carolinae 34 (1993) 357–362.
- [8] E. P. Lane, Insertion of a continuous function, Top. Proc. 4 (1979) 463-478.
- [9] E. Michael, Continuous selections I, Ann. of Math. 63 (1956) 361–382.
- [10] H. Tong, Some characterizations of normal and perfectly normal spaces, Duke J. Math. 19 (1952) 289–292.

RECEIVED MARCH 2006 ACCEPTED MARCH 2007

JAVIER GUTIÉRREZ GARCÍA (javier.gutierrezgarcia@ehu.es) Departamento de Matemáticas, UPV-EHU, Apdo. 644, 48080 Bilbao, Spain

Tomasz Kubiak (tkubiak@amu.edu.pl) Matematyki i Informatyki, Uniwersytet im. Adama Mickiewicza, ul. Umultowska 87, 61-614 Poznań, Poland