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Abstract. A strong variant of continuity called ‘F -supercontinuity’
is introduced. The class of F -supercontinuous functions strictly con-
tains the class of z-supercontinuous functions (Indian J. Pure Appl.
Math. 33 (7) (2002), 1097–1108) which in turn properly contains the
class of cl-supercontinuous functions (≡ clopen maps) (Appl. Gen.
Topology 8 (2) (2007), 293–300; Indian J. Pure Appl. Math. 14 (6)
(1983), 762–772). Further, the class of F -supercontinuous functions is
properly contained in the class of R-supercontinuous functions which
in turn is strictly contained in the class of continuous functions. Basic
properties of F -supercontinuous functions are studied and their place
in the hierarchy of strong variants of continuity, which already exist in
the mathematical literature, is elaborated. If either domain or range is
a functionally regular space (Indagationes Math. 15 (1951), 359–368;
38 (1976), 281–288), then the notions of continuity, F-supercontinuity
and R-supercontinuity coincide.
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1. Introduction

Several strong variants of continuity occur in the lore of mathematical liter-
ature which arise in many branches of mathematics and applications of math-
ematics.

In many situations in topology, analysis and other disciplines continuity is
not sufficient and a strong form of continuity is required to meet the demand of
a particular situation. The strong variants of continuity with which we shall be
dealing in this paper include, among others, are strongly continuous functions
[16], perfectly continuous functions [20], clopen maps [21] (≡ cl-supercontinuous
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functions [23]), z-supercontinuous functions [8], D-supercontinuous functions
[10], D∗-supercontinuous functions [22], Dδ-supercontinuous functions [11],
strongly θ-continuous functions [19] and supercontinuous functions [18]. The
main purpose of this paper is to introduce a new class of functions called ‘F -
supercontinuous functions’, study their basic properties and discuss their place
in the hierarchy of strong variants of continuity that already exist in the math-
ematical literature. The notion of F -supercontinuous functions arise naturally
in case either domain or range is a functionally regular space ([1], [2]). It turns
out that the class of F -supercontinuous functions properly includes the class
of z-supercontinuous functions [8] and is strictly contained in the class of R-
supercontinuous functions [14] which in turn is properly contained in the class
of continuous functions. Further if either domain or range is a functionally
regular space ([1], [2]) then all the three classes of (i) F -supercontinuous func-
tions (ii) R-supercontinuous functions, and (iii) continuous functions coincide.
Moreover, if either X or Y is a completely regular space, then all these three
classes of functions are identical with the class of z-supercontinuous functions
[8]. Furthermore, if either domain or range is zero dimensional space, then all
the four above classes of functions coincide with the class of cl-supercontinuous
functions ([21], [23]).

Section 2 is devoted to the preliminaries and basic definitions. In Section 3,
we introduce the notion of ‘F -supercontinuous function’ and elaborate on its
place in the hierarchy of strong variants of continuity which already exist in
the literature. Basic properties of F -supercontinuous functions are studied in
Section 4, while properties of graph of an F -supercontinuous function are dis-
cussed in Section 5. Interplay of topological properties and F-supercontinuous
functions is investigated in Section 6 and the notion of F -quotient topology is
formulated in Section 7. Change of topology of a topological space (X, τ) into
a functionally regular topology τF and a completely regular topology τz are
considered in Section 8 wherein interrelations betweenτ , τF and τz are elab-
orated and alternative proofs of certain results in the preceding sections are
suggested.

2. Basic definitions and preliminaries

A collection β of subsets of a space X is called as open complementary system
[6] if β consists of open sets such that for every B ∈ β, there exist B1, B2, . . . ∈ β
with B = ∪{X \ Bi : i ∈ N}. A subset A of a space X is called a strongly
open Fσ-set [6] if there exists a countable open complementary system β(A)
with A ∈ β(A). The complement of a strongly open Fσ-set is called strongly
closed Gδ-set. A subset A of a space X is called a regular Gδ-set [17] if A is
an intersection of a sequence of closed sets whose interiors contain A, i.e., if

A =
∞⋂

n=1

Fn =
∞⋂

n=1

F ◦
n , where each Fn is a closed subset of X . The complement

of a regular Gδ-set is called a regular Fσ-set. An open subset A of a space X
is said to be r-open [14] if it is expressible as a union of closed sets.



F-supercontinuous functions 71

Definition 2.1. A function f : X → Y from a topological space X into a
topological space Y is said to be

(a) strongly continuous [16] if f(Ā) ⊂ f(A) for each subset A of X.
(b) perfectly continuous [20] if f−1(V ) is clopen in X for every open set

V ⊂ Y .
(c) cl-supercontinuous [23] (≡ clopen map [21]) if for each x ∈ X and each

open set V containing f(x) there is a clopen set U containing x such that
f(U) ⊂ V .

(d) z-supercontinuous [8] if for each x ∈ X and for each open set V con-
taining f(x), there exists a cozero set U containing x such that f(U) ⊂ V .

(e) Dδ-supercontinuous [11] if for each x ∈ X and for each open set V
containing f(x), there exists a regular Fσ set U containing x such that
f(U) ⊂ V .

(f) D-supercontinuous [10] if for each x ∈ X and each open set U containing
f(x) there exists an open Fσ-set V containing x such that f(V ) ⊂ U .

(g) D∗-supercontinuous [22] if for each x ∈ X and each open set U con-
taining f(x) there exists a strongly open Fσ-set V containing x such that
f(V ) ⊂ U .

(h) strongly θ-continuous [19] if for each x ∈ X and for each open set V
containing f(x), there exists an open set U containing x such that f(Ū) ⊂
V .

(i) R-supercontinuous [14] if for each x ∈ X and each open set U containing
f(x) there exists an r-open set V containing x such that f(V ) ⊂ U .

(j) supercontinuous [18] if for each x ∈ X and for each open set V containing
f(x), there exists a regular open set U containing x such that f(U) ⊂ V .

Definition 2.2. A topological space X is said to be

(i) functionally regular ([1], [2]) if for each closed set A and a point x /∈ A
there exists a continuous real-valued function f defined on X such that
f(x) /∈ f(A); or equivalently for each x ∈ X and each open set U con-
taining x there exists a zero set Z such that x ∈ Z ⊂ U .

(ii) D-regular space [6] if it has a base of open Fσ-sets.
(iii) functionally Hausdorff [25] If for x, y ∈ X, x 6= y there exists a

continuous function f : X → [0, 1] such that f(x) 6= f(y).
(iv) countably H-closed if it is Hausdorff and every countable open cover of

X has a finite subcollection whose union is dense in X.
(v) semiregular if it has a base of regular open sets.

In order to systematize the study of separation by continuous real-valued
functions, Van Est and Freudenthal [25] introduced the notion of a function-
ally regular space and showed its distinctiveness from the standard separation
axioms and other separation axioms defined by them. Further properties of
functionally regular spaces have been studied by Aull ([1], [2]).
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3. F -supercontinuous functions

An open set U in a space X is said to be F -open if for each x ∈ U , there
exists a zero set Z in X such that x ∈ Z ⊂ U , or equivalently, U is expressible
as a union of zero sets. The complement of an F -open set will be referred to
as an F -closed set.

Definition 3.1. A function f : X → Y from a topological space X into a
topological space Y is said to be F -supercontinuous if for each x ∈ X and
each open set U containing f(x) there exists an F -open set V containing x such
that f(V ) ⊂ U .

The following diagram reflects upon the place of F -supercontinuous func-
tions in the hierarchy of strong variants of continuity that already exist in the
literature. The implications are either well known or immediately follow from
definitions.

However, none of the above implications is reversible which is either well
known or follows from the following observations and examples.

Observations and Examples

3.2 If either X or Y is a functionally regular space, then every continuous
function f : X → Y is F -supercontinuous and hence R-supercontinuous.

3.3 If either X or Y is a completely regular space, then every continuous func-
tion f : X → Y is z-supercontinuous.
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3.4 Let X = Y be the regular space due to Hewitt [7] on which every continuous
real valued function is constant and let f denote the identity map defined on
X . Then f is strongly θ-continuous and so R-supercontinuous but it is not
F -supercontinuous.

3.5 Let X be a functionally regular space which is not completely regular and
let Y = X . Then the identity mapping defined on X is F -supercontinuous but
not z-supercontinuous.

3.6 Let X be the space of [3, Exercise 24, p. 139]. Then X is a Hausdorff
semiregular space which is not regular. Further, Aull pointed out that the
space X is a functionally regular space (see [1, Example 3]). Let f denote the
identity mapping defined on X . Then the function f is supercontinuous as well
as F -supercontinuous but not strongly θ-continuous.

3.7 Let us denote by X the space of Arens square [24, Example 80, p. 98].
Then X is a Hausdorff space which is not functionally Hausdorff and hence not
a functionally regular space. Also, X is semiregular but not regular. So the
identity mapping defined on X is supercontinuous but not F -supercontinuous.

3.8 Let us denote by X the space of irregular lattice topology [24, Exam-
ple 79, p. 97]. Then X is a functionally Hausdorff Lindelöf space which is not
a semiregular space. In view of [1, Theorem 3], the space X is a functionally
regular space. Let f denote the identity mapping defined on X . Then f is an
F -supercontinuous function but not supercontinuous.

3.9 Let us denote by X the real line with the smallest topology generated by
the Euclidean topology and the cocountable topology on X . The space X is
a functionally regular space, since it is a functionally Hausdorff Lindelöf space
(see [1, Theorem 3]). The space X is not D-regular, since X is not a subpara-
compact space and every Lindelöf, D-regular space is subparacompact (see [4,
Theorem 2]). Then the identity mapping defined on X is an F -supercontinuous
function but not a D-supercontinuous function.

Proposition 3.10. Let f : X → Y be a continuous function, defined on a
functionally Hausdorff Lindelöf space X. Then f is F -supercontinuous.

Proof. Since a functionally Hausdorff Lindelöf space is functionally regular (see
[1]) and since every continuous function defined on a functionally regular space
is F -supercontinuous, f is F -supercontinuous. �

Proposition 3.11. Let f : X → Y be a continuous function. If X is a
countably paracompact functionally regular space, then f is F -supercontinuous
as well as strongly θ-continuous.

Proof. Since every continuous function defined on a functionally regular space
is F -supercontinuous, so is f . Again, since every countably paracompact func-
tionally regular space is regular (see [1]), and since every continuous function
defined on a regular space is strongly θ-continuous, f is strongly θ-continuous.

�
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Proposition 3.12. Let f : X → Y be a continuous function defined on a
countably compact functionally regular space X. Then f is z-supercontinuous.

Proof. This is immediate in view of the fact that every countably compact
functionally regular space is completely regular (see [1]), and every continuous
function defined on a completely regular space is z-supercontinuous. �

Proposition 3.13. Let f : X → Y be a continuous function defined on a
countably H-closed, semiregular, functionally regular space X. Then f is z-
supercontinuous.

Proof. This is immediate from the fact that a countably H-closed, semiregular,
functionally regular space X is completely regular (see [1]). �

4. Basic properties of F-supercontinuous functions

Theorem 4.1. For a function f : X → Y from a topological space X into a
topological space Y , the following statements are equivalent:

(a) f is F -supercontinuous.
(b) The inverse image of every open subset of Y is F -open in X.
(c) The inverse image of every closed subset of Y is F -closed in X.
(d) The inverse image of every subbasic open subset of Y is F -open in X.

Proof. It is easy using definitions. �

Definition 4.2. Let X be a topological space and let A ⊂ X. A point x ∈ X
is said to be an F-adherent point of the set A if every F -open set containing
x has non-empty intersection with A. Let AF denote the set of all F -adherent
points of the set A. The set A is F -closed if and only if A = AF .

Theorem 4.3. For a function f : X → Y the following statement are equiva-
lent.

(a) f is F -supercontinuous.

(b) f(AF ) ⊂ f(A) for every A ⊂ X.
(c) (f−1(B))F ⊂ f−1(B) for every B ⊂ Y .

Proof. (a) ⇒ (b). Since f(A) is closed in Y , by Theorem 4.1 f−1(f(A)) is an F -

closed set in X . Again, since A ⊂ f−1(f(A)), AF ⊂ [f−1(f(A))]F = f−1(f(A))

and so f(AF ) ⊂ f(f−1(f(A))) ⊂ f(A).

(b) ⇒ (c). Let B ⊂ Y . Then f((f−1(B))F ) ⊂ f(f−1(B)) ⊂ B̄ and so it follows
that (f−1(B))F ⊂ f−1(B̄).
(c) ⇒ (a). Let B be any closed set in Y . Then (f−1(B))F ⊂ f−1(B). Since

f−1(B) ⊂ f−1(B) ⊂ (f−1(B))F , f−1(B) = (f−1(B))F which in turn implies
that f is F -supercontinuous. �

Definition 4.4. A filterbase F is said to F-converge to a point x, written as

F
F
→ x if every F -open set containing x contains a member of F .

Theorem 4.5. A function f : X → Y is F -supercontinuous if and only if for
each x ∈ X and each filter base F in X that F -converges to x, f(F) → f(x).
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Proof. Suppose that f is F -supercontinuous and let F be a filter base in X
that F -converges to x. To show that the filter base f(F) converges to f(x),
let W be any open set containing f(x). Then x ∈ f−1(W ) and f−1(W ) is
F -open. Since the filter base F converge to x, there exists F ∈ F such that
F ⊂ f−1(W ). Then f(F ) ⊂ f(f−1(W )) ⊂ W and so f(F) → f(x).

Conversely, let W be an open set containing f(x). Now, the filter F gener-
ated by the filterbase Bx consisting of F -open sets containing x, F -converges
to x. Since by hypothesis f(F) → f(x), there exists a member f(F ) of f(F)
such that f(F ) ⊂ W . Choose B ∈ Bx such that B ⊂ F . Since B is an F -open
set containing x and since f(B) ⊂ f(F ) ⊂ W , f is F -supercontinuous. �

Theorem 4.6. If f : X → Y is F -supercontinuous and g : Y → Z is con-
tinuous, then the composition g ◦ f is F -supercontinuous. In particular, the
composition of F -supercontinuous functions is F -supercontinuous.

In general F -supercontinuity of g ◦ f need not imply even continuity of f .
For example, let X be the real line with cofinite topology, Y be the real line
with cocompact topology and Z be the real line with indiscrete topology. Let
f : X → Y and g : Y → Z be the identity mappings. Then g ◦ f and g are
F -supercontinuous. However, f is not continuous.

It is routine to verify that F -supercontinuity is invariant under restrictions
and enlargement of range.

Definition 4.7. A function f : X → Y is said to be F-open (F-closed) if
f(A) is open (closed) in Y for every F -open (F -closed) set A in X.

Theorem 4.8. Let f : X → Y be an F -open (F -closed), F -supercontinuous
surjection and g : Y → Z be any function. Then the composition g ◦ f is F -
supercontinuous if and only if g is continuous. Further, if in addition f maps F -
open (F -closed) set to F -open (F -closed) set, then g is an F -supercontinuous
function.

Proof. Suppose that g ◦ f is F -supercontinuous. To show that g is continuous,
let W be an open (closed) subset of Z. Then by Theorem 4.1 (g ◦ f)−1(W ) =
f−1(g−1(W )) is F -open (F -closed) in X . Since f is an F -open (F -closed) sur-
jection f(f−1(g−1(W ))) = g−1(W ) is open (closed) in Y and so g is continuous.

Conversely, suppose that g is continuous and let W be an open (closed)
set in Z. Then g−1(W ) is open (closed) in Y . Since f is F -supercontinuous,
f−1(g−1(W )) = (g ◦ f)−1(W ) is F -open (F -closed) in X and so g ◦ f is F -
supercontinuous. �

For the last assertion we need only note that F -openness (F -closedness) of
g−1(W ) ensures the F -supercontinuity of g.

Theorem 4.9. Let f : X → Y be any function. Then the following statements
are true.

(a) If {Uα : α ∈ Λ} is an F -open cover of X and for each α, fα = f |Uα is
F -supercontinuous, then f is F -supercontinuous.
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(b) If {Fi : i = 1, . . . , n} is an F -closed cover of X and fi = f |Fi is F -
supercontinuous, then f is F -supercontinuous.

Proof. (a) Let V be any F -open set in Y . Then f−1(V ) = ∪{f−1
α (V ) : α ∈ Λ}.

Since each fα is F -supercontinuous, In view of Theorem 4.1 each f−1
α (V ) is F -

open in Uα and hence in X . Since any union of F -open sets is F -open, f−1(V )
is F -open.

(b) Let B be any F -closed set in Y . Then f−1(B) =
n⋃

i=1

f−1
i (B). Since each

fi is F -supercontinuous, by Theorem 4.1 each f−1
i (B) is F -closed in Fi and

hence in X . Then f−1(B) being a finite union of F -closed sets is F -closed. So
f is F -supercontinuous. �

Theorem 4.10. Let {fα : X → Xα : α ∈ Λ} be a family of functions and let
f : X →

∏
α∈Λ Xα be defined by f(x) = (fα(x)) for each x ∈ X. Then f is

F -supercontinuous if and only if each fα : X → Xα is F -supercontinuous.

Proof. Let f : X →
∏

α∈Λ Xα be F -supercontinuous. Then the composition

pα ◦ f = fα, where pα denotes the projection of
∏

α∈Λ Xα onto αth-coordinate
space Xα. So in view of Theorem 4.6 each fα is F -supercontinuous.

Conversely, suppose that each fα : X → Xα is F -supercontinuous. To
show that the function f is F -supercontinuous, it is sufficient to show that
f−1(V ) is F -open for each open set V in the product space

∏
α∈Λ Xα. Since

arbitrary unions and finite intersections of F -open sets is F -open, it suffices
to prove that f−1(S) is F -open for every subbasic open set S in the product
space

∏
α∈Λ Xα. Let Vβ ×

∏
α6=β Xα be a subbasic open set in

∏
α∈Λ Xα. Then

f−1(Vβ ×
∏

α6=β Xα) = f−1(p−1
β (Vβ)) = f−1

β (Vβ) is F -open in X . Hence f is
F -supercontinuous. �

Theorem 4.11. For each α ∈ ∆, let fα : Xα → Yα be a mapping and let
f :

∏
Xα →

∏
Yα be a mapping defined by f((xα)) = (fα(xα)) for each (xα)

in
∏

Xα. Then f is F -supercontinuous if and only if fα is F -supercontinuous
for each α ∈ ∆.

Proof. Let f :
∏

Xα →
∏

Yα be F -supercontinuous. Let Vβ be an open sub-
set of Yβ . Then Vβ × (

∏
α6=β Yα) is a subbasic open subset of the product

space
∏

Yα. Since f is F -supercontinuous, f−1(Vβ ×
∏

α6=β Yα) = f−1
β (Vβ) ×

(
∏

α6=β Xα) is F -open in
∏

Xα. Consequently, f−1
β (Vβ) is a F -open set in Xβ

and hence fβ is a F -supercontinuous.
Conversely, suppose that each fα : Xα → Yα is F -supercontinuous. Let

V = Vβ × (
∏

α6=β Yα) be a subbasic open set in
∏

Yα. Since each fα is F -

supercontinuous, and since f−1(V ) = f−1(Vβ × (
∏

α6=β Yα)) = f−1
β (Vβ) ×

(
∏

α6=β Xα), f−1(V ) is F -open, and so f is F -supercontinuous. �
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Theorem 4.12. Let f : X → Y be a function and g : X → X × Y , defined
by g(x) = (x, f(x)) for each x ∈ X, be the graph function. Then g is F -
supercontinuous if and only if f is F -supercontinuous and X is functionally
regular.

Proof. To prove necessity, suppose that g is F -supercontinuous. Then the
composition f = py ◦ g is F -supercontinuous, where py is the projection from
X × Y onto Y . Let U be any open set in X and let x ∈ U . Then U × Y is an
open set containing g(x). Since g is F -supercontinuous, there exists an F -open
set Wx containing x such that g(Wx) ⊂ U ×Y . Thus x ∈ Wx ⊂ U and since U
is a union of F -open sets, then it is F -open and so X is functionally regular.

To prove sufficiency, let x ∈ X and let W be an open set containing g(x).
There exist open sets U ⊂ X and V ⊂ Y such that (x, f(x)) ∈ U × V ⊂ W .
Since X is functionally regular, there exists an F -open set G1 in X containing
x such that x ∈ G1 ⊂ U . Since f is F -supercontinuous, there exists an F -open
set G2 in X containing x such that f(G2) ⊂ V . Let G = G1 ∩ G2. Then G is
an F -open set containing x and g(G) ⊂ U × V ⊂ W , which implies that g is
F -supercontinuous. �

The following example shows that the hypothesis that ‘X is functionally
regular’ in Theorem 4.12 cannot be omitted.

Example 4.13. Let X = Y = {a, b, c, d}. Let the topology on X be given
by τ = {φ, X, {a, b}, {d}, {a, b, d}} and let Y be equipped with indiscrete topol-
ogy. Let f : X → Y be the constant function which takes the value b. Then
f is F -supercontinuous but the graph function g : X → X × Y is not F -
supercontinuous.

Theorem 4.14. Let f, g : X → Y be F -supercontinuous functions from X
into a Hausdorff space Y . Then the equalizer E = {x ∈ X : f(x) = g(x)} of
the functions f and g is an F -closed set in X.

Proof. To show that E is F -closed, we shall show that its complement X \E is
an F -open subset of X . Let x ∈ X\E. Then f(x) 6= g(x). Since Y is Hausdorff,
there exist disjoint open sets V and W containing f(x) and g(x), respectively.
Since f and g are F -supercontinuous, f−1(V ) and g−1(W ) are F -open sets
containing x. Then U = f−1(V )∩g−1(W ) is an F -open set containing x which
is contained in X \ E and so X \ E is F -open. �

Corollary 4.15. Let X be a Hausdorff space. Then the set of fixed points of
every F -supercontinuous function f : X → X is an F -closed set.

Definition 4.16. A space X is said to be F -completely regular if for every
F -closed set A and a point x outside A there exists a continuous function
f : X → [0, 1] such that f(x) = 0 and f(A) = 1.

Theorem 4.17. Let f : X → Y be an F -supercontinuous function. If X is
F -completely regular, then f is z-supercontinuous.
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Proof. Let x ∈ X and let V be an open set containing f(x). Since f is F -
supercontinuous, there exists an F -open set U containing x such that f(U) ⊂
V . Since X is a F -completely regular space, there exists a continuous function
h : X → [0, 1] such that h(x) = 0 and h(X \U) = 1. Then h−1[0, 1) is a cozero
set containing x and contained in U and so it is mapped into V by f . This
shows that f is z-supercontinuous. �

5. Properties of the graph of an F -supercontinuous function

Let f : X → Y be an F -supercontinuous function. Since every F -superconti-
nuous function is continuous, the family {1x, f}, where 1x denotes the identity
mapping on X , separates points and separates points from closed sets. There-
fore, the mapping g : X → X ×Y defined by g(x) = (x, f(x)) is an embedding
of X into X × Y . Thus X is homeomorphic to its graph G(f) = g(x) and so
every topological property enjoyed by X is also enjoyed by its graph G(f).

The next two notions reflect upon the fact that how the graph G(f) of an
F -supercontinuous function f : X → Y is situated in the product space X×Y .

Definition 5.1. Let f : X → Y be a function from a topological space X into
a topological space Y . The graph G(f) of f is said to be

(i) F-closed with respect to X if for each (x, y) /∈ G(f), there exist open
sets U and V containing x and y, respectively such that U is F -open and
(U × V ) ∩ G(f) = φ.

(ii) F-closed with respect to X× Y if for each (x, y) /∈ G(f), there exist
F -open sets U and V containing x and y, respectively such that (U ×V )∩
G(f) = φ.

Proposition 5.2. For a topological space X the following are equivalent.

(a) X is functionally Hausdorff.
(b) Every pair of distinct points in X are contained in disjoint cozero sets.
(c) Every pair of distinct points in X are contained in disjoint F -open sets.

Proof. The implication (a)⇒(b)⇒(c) are trivial. To prove (c)⇒(a), let x, y ∈
X , x 6= y and let U and V be disjoint F -open sets containing x and y, re-
spectively. Let A and B be the zero sets in X such that x ∈ A ⊂ U and
y ∈ B ⊂ V . Let f, g be the real-valued functions defined on X such that
Z(f) = A and Z(g) = B, where Z(f) and Z(g) denote the zero sets of f and g,
respectively. Let h : X → R be the function defined by h(t) = f(t)/[f(t)+g(t)],
for t ∈ X . Then h is a continuous function defined on X such that h(x) = 0
and h(y) = 1. �

Theorem 5.3. If f : X → Y is F -supercontinuous and Y is functionally
Hausdorff, then G(f), the graph of f is F -closed with respect to X × Y .

Proof. Let x ∈ X and let y 6= f(x). Since Y is functionally Hausdorff, there
exist disjoint F -open sets V and W containing y and f(x), respectively. By
F -supercontinuity of f there exists an F -open set U containing x such that
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f(U) ⊂ W ⊂ Y \ V̄ . Consequently, U × V contains no point of G(f). Hence
G(f) is F -closed with respect to X × Y . �

The following result is immediate.

Proposition 5.4. If f : X → Y is F -supercontinuous and Y is Hausdorff,
then G(f), the graph of f is F -closed with respect to X.

6. Topological properties and F -supercontinuity

Theorem 6.1. Let f : X → Y be an F -supercontinuous open bijection. Then
X and Y are homeomorphic functionally regular spaces.

Proof. Let U be an open set in X and let x ∈ U . Since f is an open
map, f(U) is an open set containing f(x). Since f is F -supercontinuous,
there exists an F -open set G containing x such that f(G) ⊂ f(U). Now,
x ∈ f−1(f(G)) ⊂ f−1(f(U)). Since f is a bijection, f−1(f(G)) = G and
f−1(f(U)) = U . Thus x ∈ G ⊂ U . So U being a union of F -open sets is F -
open. Thus X is a functionally regular space. Since f is a homeomorphism and
functional regularity is a topological property, Y is functionally regular. �

Theorem 6.2. Let f : X → Y be an F -supercontinuous injection into a T0-
space, then X is a functionally Hausdorff space.

Proof. Let x and y be two distinct points in X . Then f(x) 6= f(y). Since
Y is a T0-space, there exists an open set V containing one of the points f(x)
or f(y) but not the other. To be precise, assume that f(x) ∈ V . Since f
is F -supercontinuous, f−1(V ) is an F -open set containing x but not y. So
there exists a zero set Zx such that x ∈ Zx ⊂ f−1(V ). Let ϕ : X → [0, 1]
be the continuous function such that Z(ϕ) = Zx the zero set of ϕ. Then
ϕ(x) = 0 6= ϕ(y). Let G and H be disjoint open sets in [0,1] containing ϕ(x)
and ϕ(y) respectively. It follows that ϕ−1(G) and ϕ−1(H) are disjoint cozero
sets in X containing x and y, respectively. So X is a functionally Hausdorff
space. �

Corollary 6.3. Let f : X → Y be a z-supercontinuous injection into a T0-
space, then X is a functionally Hausdorff space.

Definition 6.4 ([13]). A space X is said to be F -compact if every F -open
cover of X has a finite subcover.

Theorem 6.5. If f : X → Y is an F -supercontinuous surjection from an
F -compact space X onto Y , then Y is compact.

Proof. Let β = {Vα|α ∈ ∆} be an open cover of Y . In view of F -supercontinuity
of f , {f−1(Vα) : α ∈ ∆} is an F -open cover of X . Since X is F -compact, there

exists a finite subset {α1, . . . , αn} of ∆ such that
n⋃

i=1

f−1(Vαi
) = X . Since f is

surjection, {Vα1
, . . . , Vαn

} is a finite subcover of Y . �
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Definition 6.6 ([13]). A space X is said to be weakly F -normal if every
pair of disjoint F -closed sets are contained in disjoint open sets.

Theorem 6.7 ([13]). Let f : X → Y be an F -supercontinuous closed surjec-
tion. If X is a weakly F -normal space, then Y is a normal space.

7. F -quotient Topology and F -quotient spaces

Let f : X → Y be a surjection from a topological space X onto a set Y . The
quotient topology on Y is the finest topology on Y , which makes f continuous.
Several variants of quotient topology have been defined in the literature (see [8,
10, 11, 15, 22, and 23]) which in general are weaker than quotient topology and
coincide with the quotient topology if the domain is suitably augmented. For
interrelations among these variants of quotient topology we refer the interested
reader to [15]. In this section we introduce the notion of F -quotient topology
which in general lies strictly between the quotient topology and the z-quotient
topology [8].

We may recall that a set U in a space X is said to be z-open if it is expressible
as a union of cozero sets in X .

Definition 7.1. Let p : X → Y be a surjection from a topological space X
onto a set Y .

(i) The collection τ of all subsets A ⊂ Y such that p−1(A) is z-open in X is
a topology on Y and is called z-quotient topology [8] and the map p is
called the z-quotient map.

(ii) The collection τ of all subsets A ⊂ Y such that p−1(A) is F -open in X
is a topology on Y and is called F -quotient topology and the map p is
called the F -quotient map.

Clearly, z-quotient topology ⊂ F -quotient topology ⊂ quotient topology.

However, none of the above inclusions are reversible as is well exhibited by
the following examples.

Example 7.2. Let (X, τ) be the space of Example 3.8. Then X is a functionally
regular space which is not a completely regular space. Let Y = X and let p
denote the identity map defined on X. Then p is an F -supercontinuous function
which is not z-supercontinuous. The F -quotient topology on Y is identical with
τ while z-quotient topology is strictly coarser than τ .

Example 7.3. Let X be the space of all positive integers endowed with the
prime integer topology σ [24, Example 61, p. 82]. Then X is a Hausdorff space
which is not a functionally Hausdorff space and hence not a functionally regular
space. Let Y = X and let p denote the identity map defined on X. Then the
quotient topology on Y is same as prime integer topology σ but F -quotient
topology on Y is strictly coarser than σ.

Theorem 7.4. Let p : X → Y be a surjection from a topological space X onto
a topological space (Y, τ), where τ is the F -quotient topology on Y . Then p
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is F -supercontinuous. Moreover, τ is the finest topology on Y which makes
p : X → Y, F -supercontinuous.

Proof. F -supercontinuity of p is an immediate consequence of the definition of
F -quotient topology. Now let τ1 be a topology on Y such that p : X → (Y, τ1)
is F -supercontinuous. Let G be a τ1 open set in Y . By F -supercontinuity of
p, p−1(G) is F -open in X . Now by the definition of F -quotient topology, G is
τ -open and hence τ1 ⊂ τ . �

In contrast with the quotient space, the following result shows that a function
out of an F -quotient space is continuous if and only if its composition with the
F -quotient map is F -supercontinuous.

Theorem 7.5. Let p : X → Y be an F -quotient map. Then a function g :
Y → Z is continuous if and only if g ◦ p is F -supercontinuous.

Proof. Let U be an open set in Z and g ◦ p is F -supercontinuous, then (g ◦
p)−1(U) = p−1(g−1(U)), is F -open in X . Since p is an F -quotient map, g−1(U)
is open in Y . Hence, g is continuous.

The converse is immediate. �

8. Change of Topology

If the topology of domain of an F -supercontinuous function is changed in
an appropriate way, then f is simply a continuous function. For, let (X, τ) be
a topological space, and let β denote the collection of all F -open subsets of
(X, τ). Since the intersection of two F -open sets is F -open, the collection β is
a base for a topology τF on X . Indeed β = τF and τF ⊂ τ . The space (X, τ)
is functionally regular if and only if τF = τ .

Further, if Bz denotes the collection of all cozero subsets of (X, τ), then Bz

is a base for a topology τz on X . It is immediate that τz ⊂ τF ⊂ τ and the
space X is completely regular if and only if τ = τz . Thus for a completely
regular space τz = τF = τ .

Throughout the section, the symbol τF will have the same meaning as in
the above paragraph.

Remark 8.1. Any topological property which is invariant under continuous
bijection will be transferred from (X, τ) to (X, τF ). The list of such properties
is fairly long. In particular, if (X, τ) is compact Lindelöf or countably compact,
pseudocompact or quasicompact [5], D-compact or D∗-compact or Dδ-compact
[12], separable, connected or pathwise connected, then so is (X, τF ).

Theorem 8.2. A function f : (X, τ) → (Y,ℑ) is F -supercontinuous if and
only if f : (X, τF ) → (Y,ℑ) is continuous.

Many of the results studied in preceding sections follow now from above the-
orem and the corresponding standard properties of continuous functions.

Theorem 8.3. Let (X, τ) be a topological space. Then the following statements
are equivalent.
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(a) (X, τ) is functionally regular.
(b) Every continuous function from (X, τ) into a space (Y,ℑ) is F -supercontinuous.

Proof. (a) ⇒(b) is obvious.
(b)⇒(a): Take (Y,ℑ) = (X, τ). Then the identity function 1x on X is contin-
uous, and hence F -supercontinuous. Hence by Theorem 8.2, 1x : (X, τF ) →
(X, τ) is continuous. Since U ∈ τ implies 1−1

x (U) = U ∈ τF , therefore τ ⊂ τF .
Thus it follows that τ = τF , and so (X, τ) is a functionally regular. �

Definition 8.4 ([9]). A function f : X → Y from a topological space X into
a topological space Y is said to be F -continuous if for each x ∈ X and each
F -open set U containing f(x) there exists an open set V containing x such that
f(V ) ⊂ U .

Theorem 8.5. Let f : (X, τ) → (Y,ℑ) be a function. Then

(a) f is F -continuous if and only if f : (X, τ) → (Y,ℑF ) is continuous.
(b) f is F -open if and only if f : (X, τF ) → (Y,ℑ) is open.

In view of Theorems 8.2 and 8.3, Theorem 4.8 can be restated as follows. If
f : (X, τF ) → (Y,ℑ) is a continuous open surjection and g : (Y,ℑ) → (Z, v) is
a function, then g is continuous if and only if gof is continuous.

Moreover, F -quotient topology on Y determined by the surjection f : (X, τ) →
Y in Section 7 coincides with usual quotient topology on Y determined by
f : (X, τF ) → Y .
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Raümen, Indagationes Math. 15 (1951), 359–368.

Received June 2008

Accepted January 2009

J. K. Kohli (jk kohli@yahoo.com)
Department of Mathematics, Hindu College, University of Delhi, Delhi 110 007,
India.

D. Singh (dstopology@rediffmail.com)
Department of Mathematics, Sri Aurobindo College, University of Delhi-South
Campus, Delhi 110 017, India.

Jeetendra Aggarwal (jitenaggarwal@gmail.com)
Department of Mathematics, University of Delhi, Delhi 110 007, India.


