

On set star-Lindelöf spaces

SUMIT SINGH ®

Department of Mathematics, Dyal Singh College, University of Delhi, Lodhi Road, New Delhi-110003, India. (sumitkumar405@gmail.com)

Communicated by F. Mynard

Abstract

A space X is said to be set star-Lindelöf if for each nonempty subset A of X and each collection $\mathcal U$ of open sets in X such that $\overline A \subseteq \bigcup \mathcal U$, there is a countable subset $\mathcal V$ of $\mathcal U$ such that $A \subseteq \operatorname{St}(\bigcup \mathcal V, \mathcal U)$. The class of set star-Lindelöf spaces lie between the class of Lindelöf spaces and the class of star-Lindelöf spaces. In this paper, we investigate the relationship between set star-Lindelöf spaces and other related spaces by providing some suitable examples and study the topological properties of set star-Lindelöf spaces.

2020 MSC: 54D20; 54E35.

KEYWORDS: Menger; star-Lindelöf; strongly star-Lindelöf; set star-Lindelöf; covering; star-Covering; topological space.

1. Introduction and Preliminaries

Arhangel'skii [1] defined a cardinal number sL(X) of X: the minimal infinite cardinality τ such that for every subset $A \subset X$ and every open cover \mathcal{U} of \overline{A} , there is a subfamily $\mathcal{V} \subset \mathcal{U}$ such that $|\mathcal{V}| \leq \tau$ and $A \subseteq \overline{\bigcup \mathcal{V}}$. If $sL(X) = \omega$, then the space X is called sLindel"of space. Following this idea, Kočinac and Konca [7] introduced and studied the new types of selective covering properties called set-covering properties (for a similar studies, see [4, 14, 15, 16, 17]). A space X is said to have the set-Menger [7] property if for each nonempty subset A of X and each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of collections of open sets in X such that for each $n \in \mathbb{N}$, $\overline{A} \subseteq \bigcup \mathcal{U}_n$, there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, \overline{A} is a finite subset of \mathcal{U}_n and $\overline{A} \subseteq \bigcup_{n \in \mathbb{N}} \bigcup \mathcal{V}_n$. The author [13] noticed

that the set-Menger property is nothing but another view of Menger covering property. Recently, the author [12] defined and studied set starcompact and set strongly starcompact spaces (also see [8]).

In this paper, we consider the classes of set star-Lindelöf spaces and set strongly star-Lindelöf spaces already introduced in [9] and recently studied in [4]. Note that in fact in the class of T_1 spaces, set strongly star-Lindelöfness is equivalent to the property having countable extent [[4], Proposition 3.1]. If A is a subset of a space X and U is a collection of subsets of X, then $\operatorname{St}(A,\mathcal{U})=\bigcup\{U\in\mathcal{U}:U\cap A\neq\varnothing\}$. We usually write $\operatorname{St}(x,\mathcal{U})=\operatorname{St}(\{x\},\mathcal{U})$.

Throughout the paper, by "a space" we mean "a topological space", \mathbb{N} , \mathbb{R} and \mathbb{Q} denotes the set of natural numbers, set of real numbers, and set of rational numbers, respectively, the cardinality of a set is denoted by |A|. Let ω denote the first infinite cardinal, ω_1 the first uncountable cardinal, \mathfrak{c} the cardinality of the set of all real numbers. An open cover \mathcal{U} of a subset $A \subset X$ means elements of \mathcal{U} open in X such that $A \subseteq \bigcup \mathcal{U} = \bigcup \{U : U \in \mathcal{U}\}$.

We first recall the classical notions of spaces that are used in this paper.

Definition 1.1 ([5]). A space X is said to be

- (1) starcompact if for each open cover \mathcal{U} of X, there is a finite subset \mathcal{V} of \mathcal{U} such that $X = \operatorname{St}(\bigcup \mathcal{V}, \mathcal{U})$.
- (2) strongly starcompact if for each open cover \mathcal{U} of X, there is a finite subset F of X such that $X = \operatorname{St}(F, \mathcal{U})$.

Definition 1.2 ([12, 8]). A space X is said to be

- (1) set starcompact if for each nonempty subset A of X and each collection \mathcal{U} of open sets in X such that $\overline{A} \subseteq \bigcup \mathcal{U}$, there is a finite subset \mathcal{V} of \mathcal{U} such that $A \subseteq \operatorname{St}(\bigcup \mathcal{V}, \mathcal{U})$.
- (2) set strongly starcompact if for each nonempty subset A of X and each collection \mathcal{U} of open sets in X such that $\overline{A} \subseteq \bigcup \mathcal{U}$, there is a finite subset F of \overline{A} such that $A \subseteq \operatorname{St}(F,\mathcal{U})$.

Definition 1.3. A space X is said to be

- (1) star-Lindelöf [5] if for each open cover \mathcal{U} of X, there is a countable subset \mathcal{V} of \mathcal{U} such that $X = \operatorname{St}(\bigcup \mathcal{V}, \mathcal{U})$.
- (2) strongly star-Lindelöf [5] if for each open cover \mathcal{U} of X, there is a countable subset F of X such that $X = \operatorname{St}(F, \mathcal{U})$.

Note that the star-Lindelöf spaces have a different name such as 1-star-Lindelöf and $1\frac{1}{2}$ -star-Lindelöf in different papers (see [5, 10]) and the strongly star-Lindelöf space is also called star countable in [10, 21]. It is clear that, every strongly star-Lindelöf space is star-Lindelöf.

Recall that a collection $\mathcal{A} \subseteq P(\omega)$ is said to be almost disjoint if each set $A \in \mathcal{A}$ is infinite and the sets $A \cap B$ are finite for all distinct elements $A, B \in \mathcal{A}$. For an almost disjoint family \mathcal{A} , put $\psi(\mathcal{A}) = \mathcal{A} \bigcup \omega$ and topologize $\psi(\mathcal{A})$ as follows: for each element $A \in \mathcal{A}$ and each finite set $F \subset \omega$, $\{A\} \bigcup (A \setminus F)$ is a basic open neighborhood of A and the natural numbers are isolated. The

spaces of this type are called Isbell-Mrówka ψ -spaces [2, 11] or $\psi(\mathcal{A})$ space. For other terms and symbols, we follow [6].

The following result was proved in [8].

Theorem 1.4 ([8]). Every countably compact space is set strongly starcompact.

Note that in the class of Hausdorff spaces strongly starcompactness, set strongly starcompactness and countable compactness are equivalent [4, Proposition 2.2].

2. SET STAR-LINDELÖF AND RELATED SPACES

In this section, we give some examples showing the relationship among set star-Lindelöf spaces, set strongly star-Lindelöf spaces, and other related spaces. First we define our main definition.

Definition 2.1. A space X is said to be

- (1) set star-Lindelöf if for each nonempty subset A of X and each collection \mathcal{U} of open sets in X such that $A \subseteq \bigcup \mathcal{U}$, there is a countable subset \mathcal{V} of \mathcal{U} such that $A \subseteq St(\bigcup \mathcal{V}, \mathcal{U})$.
- (2) set strongly star-Lindelöf if for each nonempty subset A of X and each collection \mathcal{U} of open sets in X such that $\overline{A} \subseteq \bigcup \mathcal{U}$, there is a countable subset F of \overline{A} such that $A \subseteq \operatorname{St}(F, \mathcal{U})$.

Note that in the class of T_1 spaces the set strongly star-Lindelöfness is equivalent to the property to have a countable extent [4, Proposition 3.1]. Note that there is a misprint in the statement of the definition of relatively* set star strongly-compact in [4]: the authors write that set F is a finite subset of A but the original definition asks that F is contained in \overline{A} and Bonanzinga and Maesano use exactly this last fact during all the paper.

We have the following diagram from the definitions and [4, Proposition 3.1]. However, the following examples show that the converse of these implications are not true.

 $set\ strongly\ starcompact
ightarrow set\ starcompact$ $\begin{array}{c} \downarrow & \downarrow \\ Lindel of \rightarrow countable \ extent \leftrightarrow^{T_1} set \ strongly \ star - Lindel of \rightarrow set \ star - Lindel of \\ \downarrow & \downarrow \\ strongly \ star - Lindel of \rightarrow star - Lindel of \end{array}$

Example 2.2. (i) The discrete space ω has countable extent but it is not set starcompact space.

- (ii) The space $[0, \omega_1)$ has countable extent but it is not Lindelöf.
- (iii) Let Y be a discrete space with cardinality \mathfrak{c} . Let $X = Y \cup \{y^*\}$, where $y^* \notin Y$ topologized as follows: each $y \in Y$ is an isolated point and a set U

containing y^* is open if and only if $X \setminus U$ is countable. Then X has countable extent but it is not countably compact.

Bonanzinga [3] proved that every Isbell-Mrówka space is a Tychonoff strongly star-Lindelöf space with uncountable extent (hence, it is not set strongly star-Lindelöf). Note that in [3] strongly star-Lindelöf is called star-Lindelöf.

The following lemma was proved by Song [18].

Lemma 2.3 ([18, Lemma 2.2]). A space X having a dense Lindelöf subspace is star-Lindelöf.

The following example shows that the Lemma 2.3 does not hold if we replace star-Lindelöf space by a set star-Lindelöf space.

Example 2.4. There exists a Tychonoff space X having a dense Lindelöf subspace such that X is not set star-Lindelöf.

Proof. Let $D(\mathfrak{c}) = \{d_{\alpha} : \alpha < \mathfrak{c}\}$ be a discrete space of cardinality \mathfrak{c} and let $Y = D(\mathfrak{c}) \cup \{d^*\}$ be one-point compactification of $D(\mathfrak{c})$. Let

$$X = (Y \times [0, \omega)) \cup (D(\mathfrak{c}) \times \{\omega\})$$

be the subspace of the product space $Y \times [0, \omega]$. Then $Y \times [0, \omega)$ is a dense Lindelöf subspace of X and by Lemma 2.3, X is star-Lindelöf.

In [4, Proposition 3.4] shows that if X is a space such that there exists a closed and discrete subspace D of X having uncountable cardinality and a disjoint family $\mathcal{U} = \{O_a : a \in D\}$ of open neighborhoods of points $a \in D$, then X is not set star-Lindelöf. So, we conclude that X is not set star-Lindelöf. \square

Bonanzinga and Maesano [4, Example 3.5] constructed an example of a Tychonoff separable (hence set star-Lindelöf) non set strongly star-Lindelöf space.

Remark 2.5. (1) In [12], Singh gave an example of a Tychonoff set starcompact space X that is not set strongly starcompact.

(2) It is known that there are star-Lindelöf spaces that are not strongly star-Lindelöf (see [5, Example 3.2.3.2] and [5, Example 3.3.1]).

Now we give some conditions under which star-Lindelöfness coincides with set star-Lindelöfness and strongly star-Lindelöfness coincide with set strongly star-Lindelöfness.

Recall that a space X is paraLindelöf if every open cover \mathcal{U} of X has a locally countable open refinement.

Song and Xuan [19] proved the following result.

Theorem 2.6 ([19, Theorem 2.24]). Every regular paraLindelöf star-Lindelöf spaces are Lindelöf.

We have the following theorem from Theorem 2.6 and the diagram.

Theorem 2.7. If X is a regular paraLindelöf space, then the following statements are equivalent:

- (1) X is Lindelöf;
- (2) X is set strongly star-Lindelöf;
- (3) $e(X) = \omega$;
- (4) X is set star-Lindelöf;
- (5) X is strongly star-Lindelöf;
- (6) X is star-Lindelöf.

A space is said to be metaLindelöf if every open cover of it has a pointcountable open refinement.

Bonanzinga [3] proved the following result.

Theorem 2.8 ([3]). Every strongly star-Lindelöf metaLindelöf spaces are Lindelöf.

We have the following theorem from Theorem 2.8 and the diagram.

Theorem 2.9. If X is a metaLindelöf space, then the following statements are equivalent:

- (1) X is Lindelöf:
- (2) X is set strongly star-Lindelöf;
- (3) $e(X) = \omega$;
- (4) X is strongly star-Lindelöf.

3. Properties of set star-Lindelöf spaces

In this section, we study the topological properties of set star-Lindelöf spaces.

Theorem 3.1. If X is a set star-Lindelöf space, then every open and closed subset of X is set star-Lindelöf.

Proof. Let X be a set star-Lindelöf space and $A \subseteq X$ be an open and closed set. Let B be any subset of A and U be a collection of open sets in (A, τ_A) such that $Cl_A(B) \subseteq \bigcup \mathcal{U}$. Since A is open, then \mathcal{U} is a collection of open sets in X. Since A is closed, $Cl_A(B) = Cl_X(B)$. Applying the set star-Lindelöfness property of X, there exists a countable subset \mathcal{V} of \mathcal{U} such that $B \subseteq St(\bigcup \mathcal{V}, \mathcal{U})$. Hence A is a set star-Lindelöf.

Consider the Alexandorff duplicate $A(X) = X \times \{0,1\}$ of a space X. The basic neighborhood of a point $\langle x, 0 \rangle \in X \times \{0\}$ is of the form $(U \times \{0\}) \mid J(U \times \{0\}) \mid J(U$ $\{1\} \setminus \{\langle x, 1 \rangle\}$), where U is a neighborhood of x in X and each point $\langle x, 1 \rangle \in$ $X \times \{1\}$ is an isolated point.

Theorem 3.2. If X is a T_1 -space and A(X) is a set star-Lindelöf space. Then $e(X) < \omega_1$.

Proof. Suppose that $e(X) \geq \omega_1$. Then there exists a discrete closed subset B of X such that $|B| \geq \omega_1$. Hence $B \times \{1\}$ is an open and closed subset of A(X) and every point of $B \times \{1\}$ is an isolated point. Thus A(X) is not set star-Lindelöf by Theorem 3.1.

Theorem 3.3. Let X be a space such that the Alexandorff duplicate A(X) of X is set star-Lindelöf. Then X is a set star-Lindelöf space.

Proof. Let B be any nonempty subset of X and U be an open cover of \overline{B} . Let $C = B \times \{0\}$ and

$$A(\mathcal{U}) = \{U \times \{0,1\} : U \in \mathcal{U}\}.$$

Then $A(\mathcal{U})$ is an open cover of \overline{C} . Since A(X) is set star-Lindelöf, there is a countable subset $A(\mathcal{V})$ of $A(\mathcal{U})$ such that $C \subseteq \text{St}(\bigcup A(\mathcal{V}), A(\mathcal{U}))$. Let

$$\mathcal{V} = \{ U \in \mathcal{U} : U \times \{0, 1\} \in A(\mathcal{V}) \}.$$

Then V is a countable subset of U. Now we have to show that

$$B \subseteq \operatorname{St}(\bigcup \mathcal{V}, \mathcal{U}).$$

Let $x \in B$. Then $\langle x, 0 \rangle \in \operatorname{St}(\bigcup A(\mathcal{V}), A(\mathcal{U}))$. Choose $U \times \{0, 1\} \in A(\mathcal{U})$ such that $\langle x, 0 \rangle \in U \times \{0, 1\}$ and $U \times \{0, 1\} \cap (\bigcup A(\mathcal{V})) \neq \emptyset$, which implies $U \cap (\bigcup \mathcal{V}) \neq \emptyset$ and $x \in U$. Therefore $x \in \operatorname{St}(\bigcup \mathcal{V}, \mathcal{U})$, which shows that X is set star-Lindelöf space.

On the images of set star-Lindelöf spaces, we have the following result.

Theorem 3.4. A continuous image of set star-Lindelöf space is set star-Lindelöf.

Proof. Let X be a set star-Lindelöf space and $f: X \to Y$ is a continuous mapping from X onto Y. Let B be any subset of Y and V be an open cover of \overline{B} . Let $A = f^{-1}(B)$. Since f is continuous, $\mathcal{U} = \{f^{-1}(V) : V \in \mathcal{V}\}$ is the collection of open sets in X with $\overline{A} = \overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B}) \subseteq f^{-1}(\bigcup \mathcal{V}) = \bigcup \mathcal{U}$. As X is set star-Lindelöf, there exists a countable subset \mathcal{U}' of \mathcal{U} such that

$$A \subseteq St(| \mathcal{U}', \mathcal{U}).$$

Let $\mathcal{V}' = \{V : f^{-1}(V) \in \mathcal{U}'\}$. Then \mathcal{V}' is a countable subset of \mathcal{V} and $B = f(A) \subseteq f(\operatorname{St}(\bigcup \mathcal{U}', \mathcal{U})) \subseteq \operatorname{St}(\bigcup f(\{f^{-1}(V) : V \in \mathcal{V}'\}), \mathcal{V}) = \operatorname{St}(\bigcup \mathcal{V}', \mathcal{V})$. Thus Y is set star-Lindelöf space.

Next, we turn to consider preimages of set strongly star-Lindelöf and set star-Lindelöf spaces. We need a new concept called nearly set star-Lindelöf spaces. A space X is said to be nearly set star-Lindelöf in X if for each subset Y of X and each open cover \mathcal{U} of X, there is a countable subset \mathcal{V} of \mathcal{U} such that $Y \subseteq \text{St}(\bigcup \mathcal{V}, \mathcal{U})$. For the strong version of this property (see [4]).

Theorem 3.5. If $f: X \to Y$ is an open and perfect continuous mapping and Y is a set star-Lindelöf space, then X is nearly set star-Lindelöf.

Proof. Let $A \subseteq X$ be any nonempty set and \mathcal{U} be an open cover of X. Then B = f(A) is a subset of Y. Let $y \in \overline{B}$. Then $f^{-1}\{y\}$ is a compact subset of X, thus there is a finite subset \mathcal{U}_y of \mathcal{U} such that $f^{-1}\{y\} \subseteq \bigcup \mathcal{U}_y$. Let $U_y = \bigcup \mathcal{U}_y$. Then $V_y = Y \setminus f(X \setminus U_y)$ is a neighborhood of y, since f is closed. Then $\mathcal{V} = \{V_y : y \in \overline{B}\}$ is an open cover of \overline{B} . Since Y is set star-Lindelöf, there exists a countable subset \mathcal{V}' of \mathcal{V} such that

$$B \subseteq \operatorname{St}(\bigcup \mathcal{V}', \mathcal{V}).$$

Without loss of generality, we may assume that $\mathcal{V}' = \{V_{y_i} : i \in \mathcal{N}' \subseteq \mathbb{N}\}$. Let $\mathcal{W} = \bigcup_{i \in \mathcal{N}'} \mathcal{U}_{y_i}$. Since $f^{-1}(V_{y_i}) \subseteq \bigcup \{U : U \in \mathcal{U}_{y_i}\}$ for each $i \in \mathcal{N}'$. Then \mathcal{W} is a countable subset of \mathcal{U} and

$$f^{-1}(\bigcup \mathcal{V}') = \bigcup \mathcal{W}.$$

Next, we show that

$$A \subseteq \operatorname{St}(\bigcup \mathcal{W}, \mathcal{U}).$$

Let $x \in A$. Then there exists a $y \in B$ such that

$$f(x) \in V_y$$
 and $V_y \cap (\bigcup \mathcal{V}') \neq \varnothing$.

Since

$$x \in f^{-1}(V_y) \subseteq \bigcup \{U : U \in \mathcal{U}_y\},$$

we can choose $U \in \mathcal{U}_y$ with $x \in U$. Then $V_y \subseteq f(U)$. Thus $U \cap f^{-1}(\bigcup \mathcal{V}') \neq \varnothing$. Hence $x \in \operatorname{St}(f^{-1}(\bigcup \mathcal{V}'), \mathcal{U})$. Therefore $x \in \operatorname{St}(\bigcup \mathcal{W}, \mathcal{U})$, which shows that $A \subseteq St(\bigcup \mathcal{W}, \mathcal{U})$. Thus X is nearly set star-Lindelöf.

It is known that the product of star-Lindelöf space and compact space is a star-Lindelöf (see [5]).

Problem 3.6. Does the product of set star-Lindelöf space and a compact space is set star-Lindelöf?

The following example shows that the product of two countably compact (hence, set star-Lindelöf) spaces need not be set star-Lindelöf.

Example 3.7. There exist two countably compact spaces X and Y such that $X \times Y$ is not set star-Lindelöf.

Proof. Let $D(\mathfrak{c})$ be a discrete space of the cardinality \mathfrak{c} . We can define X= $\bigcup_{\alpha<\omega_1} E_\alpha$ and $Y=\bigcup_{\alpha<\omega_1} F_\alpha$, where E_α and F_α are the subsets of $\beta(D(\mathfrak{c}))$ which are defined inductively to satisfy the following three conditions:

- (1) $E_{\alpha} \cap F_{\beta} = D(\mathfrak{c}) \text{ if } \alpha \neq \beta;$
- (2) $|E_{\alpha}| \leq \mathfrak{c}$ and $|F_{\alpha}| \leq \mathfrak{c}$;
- (3) every infinite subset of E_{α} (resp., F_{α}) has an accumulation point in $E_{\alpha+1}$ (resp, $F_{\alpha+1}$).

Those sets E_{α} and F_{α} are well-defined since every infinite closed set in $\beta(D(\mathfrak{c}))$ has the cardinality $2^{\mathfrak{c}}$ (see [20]). Then $X \times Y$ is not set star-Lindelöf, since the diagonal $\{\langle d, d \rangle : d \in D(\mathfrak{c})\}$ is a discrete open and closed subset of $X \times Y$ with the cardinality \mathfrak{c} .

van Douwen-Reed-Roscoe-Tree [5, Example 3.3.3] gave an example of a countably compact X (hence, set star-Lindelöf) and a Lindelöf space Y such that $X \times Y$ is not strongly star-Lindelöf. Now we use this example to show that $X \times Y$ is not set star-Lindelöf.

Example 3.8. There exists a countably compact space X and a Lindelöf space Y such that $X \times Y$ is not set star-Lindelöf.

Proof. Let $X = [0, \omega_1)$ with the usual order topology. Let $Y = [0, \omega_1]$ with the following topology. Each point $\alpha < \omega_1$ is isolated and a set U containing ω_1 is open if and only if $Y \setminus U$ is countable. Then, X is countably compact and Y is Lindelöf. It is enough to show that $X \times Y$ is not star-Lindelöf.

For each $\alpha < \omega_1$, $U_{\alpha} = X \times \{\alpha\}$ is open in $X \times Y$. For each $\beta < \omega_1$, $V_{\beta} = [0, \beta] \times (0, \omega_1]$ is open in $X \times Y$. Let $\mathcal{U} = \{U_{\alpha} : \alpha < \omega_1\} \cup \{V_{\beta} : \beta < \omega_1\}$. Then \mathcal{U} is an open cover of $X \times Y$. Let \mathcal{V} be any countable subset of \mathcal{U} . Since \mathcal{V} is countable, there exists $\alpha' < \omega_1$ such that $U_{\alpha} \notin \mathcal{V}$ for each $\alpha > \alpha'$. Also, there exists $\alpha'' < \omega_1$ such that $V_{\beta} \notin \mathcal{V}$ for each $\beta > \alpha''$. Let $\beta = \sup\{\alpha', \alpha''\}$. Then $U_{\beta} \cap (\bigcup \mathcal{V}) = \emptyset$ and U_{β} is the only element containing $\langle \beta, \beta \rangle$. Thus $\langle \beta, \beta \rangle \notin \operatorname{St}(\bigcup \mathcal{V}, \mathcal{U})$, which shows that X is not star-Lindelöf.

van Douwen-Reed-Roscoe-Tree [5, Example 3.3.6] gave an example of Hausdorff regular Lindelöf spaces X and Y such that $X \times Y$ is star-Lindelöf. Now we use this example and show that the product of two Lindelöf spaces is not set star-Lindelöf.

Example 3.9. There exists a Hausdorff regular Lindelöf spaces X and Y such that $X \times Y$ is not set star-Lindelöf.

Proof. Let $X = \mathbb{R} \setminus \mathbb{Q}$ have the induced metric topology. Let $Y = \mathbb{R}$ with each point of $\mathbb{R} \setminus \mathbb{Q}$ is isolated and points of \mathbb{Q} having metric neighborhoods. Hence both spaces X and Y are Hausdorff regular Lindelöf spaces and first countable too, so $X \times Y$ Hausdorff regular and first countable. Now we show that $X \times Y$ is not set star-Lindelöf. Let $A = \{(x,x) \in X \times Y : x \in X\}$. Then A is an uncountable closed and discrete set (see [[5], Example 3.3.6]). For $(x,x) \in A$, $U_x = X \times \{x\}$ is the open subset of $X \times Y$. Then $\mathcal{U} = \{U_x : (x,x) \in \overline{A}\}$ is an open cover of \overline{A} . Let \mathcal{V} be any countable subset of \mathcal{U} . Then there exists $(a,a) \in A$ such that $(a,a) \notin \bigcup \mathcal{V}$ and thus $(\bigcup \mathcal{V}) \cap U_a = \emptyset$. But U_a is the only element of \mathcal{U} containing (a,a). Thus $(a,a) \notin \operatorname{St}(\bigcup \mathcal{V}, \mathcal{U})$, which completes the proof.

ACKNOWLEDGEMENTS. The author would like to thank the referee for several suggestions that led to an improvement of both the content and exposition of the paper.

References

- A. V. Arhangel'skii, An external disconnected bicompactum of weight c is inhomogeneous, Dokl. Akad. Nauk SSSR. 175 (1967), 751–754.
- [2] M. Bonanzinga and M. V. Matveev, Some covering properties for ψ -spaces, Mat. Vesnik. 61 (2009), 3–11.
- [3] M. Bonanzinga, Star Lindelöf and absolutely star-Lindelöf spaces, Quest. Answ. Gen. Topol. 16 (1998), 79–104.
- [4] M. Bonanzinga and F. Maesano, Some properties defined by relative versions of starcovering properties, Topology Appl. 306 (2022), Article no. 107923.
- [5] E. K. van Douwen, G. K. Reed, A. W. Roscoe and I. J. Tree, Star covering properties, Topology Appl. 39 (1991), 71–103.
- [6] R. Engelking, General topology, PWN, Warszawa, 1977.
- [7] Lj. D. R. Kočinac and S. Konca, Set-Menger and related properties, Topology Appl. 275 (2020), Article no. 106996.
- [8] Lj. D. R. Kočinac, S. Konca and S. Singh, Set star-Menger and set strongly star-Menger spaces, Math. Slovaca 72 (2022), 185–196.
- [9] Lj. D. R. Kočinac and S. Singh, On the set version of selectively star-ccc spaces, J. Math. (2020) Article ID 9274503.
- [10] M. V. Matveev, A survey on star-covering properties, Topology Atlas, preprint No 330 1998.
- [11] S. Mrówka, On completely regular spaces, Fund. Math. 41 (1954), 105–106.
- [12] S. Singh, Set starcompact and related spaces, Afr. Mat. 32 (2021), 1389–1397.
- [13] S. Singh, Remarks on set-Menger and related properties, Topology Appl. 280 (2020), Article no. 107278.
- [14] S. Singh, On set-star-K-Hurewicz spaces, Bull. Belg. Math. Soc. Simon Stevin 28, no. 3 (2021), 361–372.
- [15] S. Singh, On set-star-K-Menger spaces, Publ. Math. Debrecen 100 (2022), 87–100.
- [16] S. Singh, On set weak strongly star-Menger spaces, submitted.
- [17] S. Singh and Lj. D. R. Kočinac, Star versions of Hurewicz spaces, Hacet. J. Math. Stat. 50, no. 5 (2021), 1325–1333.
- [18] Y. K. Song, Remarks on neighborhood star-Lindelöf spaces, Filomat 27, no. 1 (2013), 149–155.
- [19] Y. K. Song and W. F. Xuan, Remarks on new star-selection principles in topology, Topology Appl. 268 (2019), Paper no. 106921.
- [20] R. C. Walker, The stone-Čech compactification, Berlin, 1974.
- [21] W. F. Xuan and W. X. Shi, Notes on star Lindelöf spaces, Topology Appl. 204 (2016), 63–69.