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Abstract

A space X is said to be set star-Lindelöf if for each nonempty subset A
of X and each collection U of open sets in X such that A ⊆

⋃
U , there

is a countable subset V of U such that A ⊆ St(
⋃
V,U). The class of set

star-Lindelöf spaces lie between the class of Lindelöf spaces and the class
of star-Lindelöf spaces. In this paper, we investigate the relationship
between set star-Lindelöf spaces and other related spaces by providing
some suitable examples and study the topological properties of set star-
Lindelöf spaces.
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1. Introduction and Preliminaries

Arhangel’skii [1] defined a cardinal number sL(X) of X: the minimal infinite
cardinality τ such that for every subset A ⊂ X and every open cover U of A,
there is a subfamily V ⊂ U such that |V| ≤ τ and A ⊆

⋃
V. If sL(X) = ω, then

the space X is called sLindelöf space. Following this idea, Kočinac and Konca
[7] introduced and studied the new types of selective covering properties called
set-covering properties (for a similar studies, see [4, 14, 15, 16, 17]). A space
X is said to have the set-Menger [7] property if for each nonempty subset A of
X and each sequence (Un : n ∈ N) of collections of open sets in X such that
for each n ∈ N, A ⊆

⋃
Un, there is a sequence (Vn : n ∈ N) such that for each

n ∈ N, Vn is a finite subset of Un and A ⊆
⋃
n∈N

⋃
Vn. The author [13] noticed
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that the set-Menger property is nothing but another view of Menger covering
property. Recently, the author [12] defined and studied set starcompact and
set strongly starcompact spaces (also see [8]).

In this paper, we consider the classes of set star-Lindelöf spaces and set
strongly star-Lindelöf spaces already introduced in [9] and recently studied in
[4]. Note that in fact in the class of T1 spaces, set strongly star-Lindelöfness
is equivalent to the property having countable extent [[4], Proposition 3.1].
If A is a subset of a space X and U is a collection of subsets of X, then
St(A,U)=

⋃
{U ∈ U : U ∩A 6= ∅}. We usually write St(x,U) = St({x},U).

Throughout the paper, by “a space” we mean “a topological space”, N, R
and Q denotes the set of natural numbers, set of real numbers, and set of
rational numbers, respectively, the cardinality of a set is denoted by |A|. Let
ω denote the first infinite cardinal, ω1 the first uncountable cardinal, c the
cardinality of the set of all real numbers. An open cover U of a subset A ⊂ X
means elements of U open in X such that A ⊆

⋃
U =

⋃
{U : U ∈ U}.

We first recall the classical notions of spaces that are used in this paper.

Definition 1.1 ([5]). A space X is said to be

(1) starcompact if for each open cover U of X, there is a finite subset V of
U such that X = St(

⋃
V,U).

(2) strongly starcompact if for each open cover U of X, there is a finite
subset F of X such that X = St(F,U).

Definition 1.2 ([12, 8]). A space X is said to be

(1) set starcompact if for each nonempty subset A of X and each collection
U of open sets in X such that A ⊆

⋃
U , there is a finite subset V of U

such that A ⊆ St(
⋃
V,U).

(2) set strongly starcompact if for each nonempty subset A of X and each
collection U of open sets in X such that A ⊆

⋃
U , there is a finite

subset F of A such that A ⊆ St(F,U).

Definition 1.3. A space X is said to be

(1) star-Lindelöf [5] if for each open cover U of X, there is a countable
subset V of U such that X = St(

⋃
V,U).

(2) strongly star-Lindelöf [5] if for each open cover U of X, there is a
countable subset F of X such that X = St(F,U).

Note that the star-Lindelöf spaces have a different name such as 1-star-
Lindelöf and 1 1

2 -star-Lindelöf in different papers (see [5, 10]) and the strongly
star-Lindelöf space is also called star countable in [10, 21]. It is clear that,
every strongly star-Lindelöf space is star-Lindelöf.

Recall that a collection A ⊆ P (ω) is said to be almost disjoint if each set
A ∈ A is infinite and the sets A

⋂
B are finite for all distinct elements A,B ∈ A.

For an almost disjoint family A, put ψ(A) = A
⋃
ω and topologize ψ(A) as

follows: for each element A ∈ A and each finite set F ⊂ ω, {A}
⋃

(A \ F ) is
a basic open neighborhood of A and the natural numbers are isolated. The
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spaces of this type are called Isbell-Mrówka ψ-spaces [2, 11] or ψ(A) space.
For other terms and symbols, we follow [6].

The following result was proved in [8].

Theorem 1.4 ([8]). Every countably compact space is set strongly starcompact.

Note that in the class of Hausdorff spaces strongly starcompactness, set
strongly starcompactness and countable compactness are equivalent [4, Propo-
sition 2.2].

2. set star-Lindelöf and related spaces

In this section, we give some examples showing the relationship among set
star-Lindelöf spaces, set strongly star-Lindelöf spaces, and other related spaces.
First we define our main definition.

Definition 2.1. A space X is said to be

(1) set star-Lindelöf if for each nonempty subset A of X and each collection
U of open sets in X such that A ⊆

⋃
U , there is a countable subset V

of U such that A ⊆ St(
⋃
V,U).

(2) set strongly star-Lindelöf if for each nonempty subset A of X and each
collection U of open sets in X such that A ⊆

⋃
U , there is a countable

subset F of A such that A ⊆ St(F,U).

Note that in the class of T1 spaces the set strongly star-Lindelöfness is equiv-
alent to the property to have a countable extent [4, Proposition 3.1]. Note that
there is a misprint in the statement of the definition of relatively∗ set star
strongly-compact in [4]: the authors write that set F is a finite subset of A
but the original definition asks that F is contained in A and Bonanzinga and
Maesano use exactly this last fact during all the paper.

We have the following diagram from the definitions and [4, Proposition 3.1].
However, the following examples show that the converse of these implications
are not true.

set strongly starcompact→ set starcompact

↓ ↓
Lindelof → countable extent↔T1 set strongly star − Lindelof → set star − Lindelof

↓ ↓
strongly star − Lindelof → star − Lindelof

Example 2.2. (i) The discrete space ω has countable extent but it is not set
starcompact space.

(ii) The space [0, ω1) has countable extent but it is not Lindelöf.
(iii) Let Y be a discrete space with cardinality c. Let X = Y ∪ {y∗}, where

y∗ /∈ Y topologized as follows: each y ∈ Y is an isolated point and a set U

© AGT, UPV, 2022 Appl. Gen. Topol. 23, no. 2 317



S. Singh

containing y∗ is open if and only if X \U is countable. Then X has countable
extent but it is not countably compact.

Bonanzinga [3] proved that every Isbell-Mrówka space is a Tychonoff strongly
star-Lindelöf space with uncountable extent (hence, it is not set strongly star-
Lindelöf). Note that in [3] strongly star-Lindelöf is called star-Lindelöf.

The following lemma was proved by Song [18].

Lemma 2.3 ([18, Lemma 2.2]). A space X having a dense Lindelöf subspace
is star-Lindelöf.

The following example shows that the Lemma 2.3 does not hold if we replace
star-Lindelöf space by a set star-Lindelöf space.

Example 2.4. There exists a Tychonoff space X having a dense Lindelöf sub-
space such that X is not set star-Lindelöf.

Proof. Let D(c) = {dα : α < c} be a discrete space of cardinality c and let
Y = D(c) ∪ {d∗} be one-point compactification of D(c). Let

X = (Y × [0, ω)) ∪ (D(c)× {ω})

be the subspace of the product space Y × [0, ω]. Then Y × [0, ω) is a dense
Lindelöf subspace of X and by Lemma 2.3, X is star-Lindelöf.

In [4, Proposition 3.4] shows that if X is a space such that there exists
a closed and discrete subspace D of X having uncountable cardinality and a
disjoint family U = {Oa : a ∈ D} of open neighborhoods of points a ∈ D, then
X is not set star-Lindelöf. So, we conclude that X is not set star-Lindelöf. �

Bonanzinga and Maesano [4, Example 3.5] constructed an example of a
Tychonoff separable (hence set star-Lindelöf) non set strongly star-Lindelöf
space.

Remark 2.5. (1) In [12], Singh gave an example of a Tychonoff set starcompact
space X that is not set strongly starcompact.

(2) It is known that there are star-Lindelöf spaces that are not strongly
star-Lindelöf (see [5, Example 3.2.3.2] and [5, Example 3.3.1]).

Now we give some conditions under which star-Lindelöfness coincides with
set star-Lindelöfness and strongly star-Lindelöfness coincide with set strongly
star-Lindelöfness.

Recall that a space X is paraLindelöf if every open cover U of X has a locally
countable open refinement.

Song and Xuan [19] proved the following result.

Theorem 2.6 ([19, Theorem 2.24]). Every regular paraLindelöf star-Lindelöf
spaces are Lindelöf.

We have the following theorem from Theorem 2.6 and the diagram.
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Theorem 2.7. If X is a regular paraLindelöf space, then the following state-
ments are equivalent:

(1) X is Lindelöf;
(2) X is set strongly star-Lindelöf;
(3) e(X) = ω;
(4) X is set star-Lindelöf;
(5) X is strongly star-Lindelöf;
(6) X is star-Lindelöf.

A space is said to be metaLindelöf if every open cover of it has a point-
countable open refinement.

Bonanzinga [3] proved the following result.

Theorem 2.8 ([3]). Every strongly star-Lindelöf metaLindelöf spaces are Lin-
delöf.

We have the following theorem from Theorem 2.8 and the diagram.

Theorem 2.9. If X is a metaLindelöf space, then the following statements are
equivalent:

(1) X is Lindelöf;
(2) X is set strongly star-Lindelöf;
(3) e(X) = ω;
(4) X is strongly star-Lindelöf.

3. Properties of set star-Lindelöf spaces

In this section, we study the topological properties of set star-Lindelöf
spaces.

Theorem 3.1. If X is a set star-Lindelöf space, then every open and closed
subset of X is set star-Lindelöf.

Proof. Let X be a set star-Lindelöf space and A ⊆ X be an open and closed
set. Let B be any subset of A and U be a collection of open sets in (A, τA)
such that ClA(B) ⊆

⋃
U . Since A is open, then U is a collection of open sets

in X. Since A is closed, ClA(B) = ClX(B). Applying the set star-Lindelöfness
property of X, there exists a countable subset V of U such that B ⊆ St(

⋃
V,U).

Hence A is a set star-Lindelöf. �

Consider the Alexandorff duplicate A(X) = X × {0, 1} of a space X. The
basic neighborhood of a point 〈x, 0〉 ∈ X ×{0} is of the form (U ×{0})

⋃
(U ×

{1} \ {〈x, 1〉}), where U is a neighborhood of x in X and each point 〈x, 1〉 ∈
X × {1} is an isolated point.

Theorem 3.2. If X is a T1-space and A(X) is a set star-Lindelöf space. Then
e(X) < ω1.

Proof. Suppose that e(X) ≥ ω1. Then there exists a discrete closed subset
B of X such that |B| ≥ ω1. Hence B × {1} is an open and closed subset of
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A(X) and every point of B × {1} is an isolated point. Thus A(X) is not set
star-Lindelöf by Theorem 3.1. �

Theorem 3.3. Let X be a space such that the Alexandorff duplicate A(X) of
X is set star-Lindelöf. Then X is a set star-Lindelöf space.

Proof. Let B be any nonempty subset of X and U be an open cover of B. Let
C = B × {0} and

A(U) = {U × {0, 1} : U ∈ U}.

Then A(U) is an open cover of C. Since A(X) is set star-Lindelöf, there is a
countable subset A(V) of A(U) such that C ⊆ St(

⋃
A(V), A(U)). Let

V = {U ∈ U : U × {0, 1} ∈ A(V)}.

Then V is a countable subset of U . Now we have to show that

B ⊆ St(
⋃
V,U).

Let x ∈ B. Then 〈x, 0〉 ∈ St(
⋃
A(V), A(U)). Choose U × {0, 1} ∈ A(U)

such that 〈x, 0〉 ∈ U × {0, 1} and U × {0, 1} ∩ (
⋃
A(V)) 6= ∅, which implies

U ∩ (
⋃
V) 6= ∅ and x ∈ U . Therefore x ∈ St(

⋃
V,U), which shows that X is

set star-Lindelöf space. �

On the images of set star-Lindelöf spaces, we have the following result.

Theorem 3.4. A continuous image of set star-Lindelöf space is set star-
Lindelöf.

Proof. Let X be a set star-Lindelöf space and f : X → Y is a continuous
mapping from X onto Y . Let B be any subset of Y and V be an open cover
of B. Let A = f−1(B). Since f is continuous, U = {f−1(V ) : V ∈ V} is the

collection of open sets in X with A = f−1(B) ⊆ f−1(B) ⊆ f−1(
⋃
V) =

⋃
U .

As X is set star-Lindelöf, there exists a countable subset U ′ of U such that

A ⊆ St(
⋃
U ′,U).

Let V ′ = {V : f−1(V ) ∈ U ′}. Then V ′ is a countable subset of V and B =
f(A) ⊆ f(St(

⋃
U ′,U)) ⊆ St(

⋃
f({f−1(V ) : V ∈ V ′}),V) = St(

⋃
V ′,V). Thus

Y is set star-Lindelöf space. �

Next, we turn to consider preimages of set strongly star-Lindelöf and set
star-Lindelöf spaces. We need a new concept called nearly set star-Lindelöf
spaces. A space X is said to be nearly set star-Lindelöf in X if for each subset
Y of X and each open cover U of X, there is a countable subset V of U such
that Y ⊆ St(

⋃
V,U). For the strong version of this property (see [4]).

Theorem 3.5. If f : X → Y is an open and perfect continuous mapping and
Y is a set star-Lindelöf space, then X is nearly set star-Lindelöf.
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Proof. Let A ⊆ X be any nonempty set and U be an open cover of X. Then
B = f(A) is a subset of Y . Let y ∈ B. Then f−1{y} is a compact subset of X,
thus there is a finite subset Uy of U such that f−1{y} ⊆

⋃
Uy. Let Uy =

⋃
Uy.

Then Vy = Y \ f(X \ Uy) is a neighborhood of y, since f is closed. Then

V = {Vy : y ∈ B} is an open cover of B. Since Y is set star-Lindelöf, there
exists a countable subset V ′ of V such that

B ⊆ St(
⋃
V ′,V).

Without loss of generality, we may assume that V ′ = {Vyi : i ∈ N ′ ⊆ N}. Let
W =

⋃
i∈N ′ Uyi . Since f−1(Vyi) ⊆

⋃
{U : U ∈ Uyi} for each i ∈ N ′. Then W is

a countable subset of U and

f−1(
⋃
V ′) =

⋃
W.

Next, we show that

A ⊆ St(
⋃
W,U).

Let x ∈ A. Then there exists a y ∈ B such that

f(x) ∈ Vy and Vy
⋂

(
⋃
V ′) 6= ∅.

Since

x ∈ f−1(Vy) ⊆
⋃
{U : U ∈ Uy},

we can choose U ∈ Uy with x ∈ U . Then Vy ⊆ f(U). Thus U
⋂
f−1(

⋃
V ′) 6= ∅.

Hence x ∈ St(f−1(
⋃
V ′),U). Therefore x ∈ St(

⋃
W,U), which shows that

A ⊆ St(
⋃
W,U). Thus X is nearly set star-Lindelöf. �

It is known that the product of star-Lindelöf space and compact space is a
star-Lindelöf (see [5]).

Problem 3.6. Does the product of set star-Lindelöf space and a compact space
is set star-Lindelöf?

The following example shows that the product of two countably compact
(hence, set star-Lindelöf) spaces need not be set star-Lindelöf.

Example 3.7. There exist two countably compact spaces X and Y such that
X × Y is not set star-Lindelöf.

Proof. Let D(c) be a discrete space of the cardinality c. We can define X =⋃
α<ω1

Eα and Y =
⋃
α<ω1

Fα, where Eα and Fα are the subsets of β(D(c))
which are defined inductively to satisfy the following three conditions:

(1) Eα
⋂
Fβ = D(c) if α 6= β;

(2) |Eα| ≤ c and |Fα| ≤ c;
(3) every infinite subset of Eα (resp., Fα) has an accumulation point in Eα+1

(resp, Fα+1).
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Those sets Eα and Fα are well-defined since every infinite closed set in β(D(c))
has the cardinality 2c (see [20]). Then X ×Y is not set star-Lindelöf, since the
diagonal {〈d, d〉 : d ∈ D(c)} is a discrete open and closed subset of X × Y with
the cardinality c. �

van Douwen-Reed-Roscoe-Tree [5, Example 3.3.3] gave an example of a
countably compact X (hence, set star-Lindelöf) and a Lindelöf space Y such
that X × Y is not strongly star-Lindelöf. Now we use this example to show
that X × Y is not set star-Lindelöf.

Example 3.8. There exists a countably compact space X and a Lindelöf space
Y such that X × Y is not set star-Lindelöf.

Proof. Let X = [0, ω1) with the usual order topology. Let Y = [0, ω1] with the
following topology. Each point α < ω1 is isolated and a set U containing ω1 is
open if and only if Y \ U is countable. Then, X is countably compact and Y
is Lindelöf. It is enough to show that X × Y is not star-Lindelöf.

For each α < ω1, Uα = X × {α} is open in X × Y . For each β < ω1,
Vβ = [0, β]× (0, ω1] is open in X × Y . Let U = {Uα : α < ω1} ∪ {Vβ : β < ω1}.
Then U is an open cover of X × Y . Let V be any countable subset of U . Since
V is countable, there exists α′ < ω1 such that Uα /∈ V for each α > α′. Also,
there exists α′′ < ω1 such that Vβ /∈ V for each β > α′′. Let β = sup{α′, α′′}.
Then Uβ

⋂
(
⋃
V) = ∅ and Uβ is the only element containing 〈β, β〉. Thus

〈β, β〉 /∈ St(
⋃
V,U), which shows that X is not star-Lindelöf. �

van Douwen-Reed-Roscoe-Tree [5, Example 3.3.6] gave an example of Haus-
dorff regular Lindelöf spaces X and Y such that X × Y is star-Lindelöf. Now
we use this example and show that the product of two Lindelöf spaces is not
set star-Lindelöf.

Example 3.9. There exists a Hausdorff regular Lindelöf spaces X and Y such
that X × Y is not set star-Lindelöf.

Proof. Let X = R \Q have the induced metric topology. Let Y = R with each
point of R \Q is isolated and points of Q having metric neighborhoods. Hence
both spaces X and Y are Hausdorff regular Lindelöf spaces and first countable
too, so X ×Y Hausdorff regular and first countable. Now we show that X ×Y
is not set star-Lindelöf. Let A = {(x, x) ∈ X × Y : x ∈ X}. Then A is an
uncountable closed and discrete set (see [[5], Example 3.3.6]). For (x, x) ∈ A,
Ux = X × {x} is the open subset of X × Y . Then U = {Ux : (x, x) ∈ A} is
an open cover of A. Let V be any countable subset of U . Then there exists
(a, a) ∈ A such that (a, a) /∈

⋃
V and thus (

⋃
V)

⋂
Ua = ∅. But Ua is the only

element of U containing (a, a). Thus (a, a) /∈ St(
⋃
V,U), which completes the

proof. �
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