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ABSTRACT

A space X is said to be set star-Lindelof if for each nonempty subset A
of X and each collection U of open sets in X such that A C |JU, there
is a countable subset V of U such that A C St(|JV,U). The class of set
star-Lindelof spaces lie between the class of Lindel6f spaces and the class
of star-Lindel6f spaces. In this paper, we investigate the relationship
between set star-Lindeléf spaces and other related spaces by providing
some suitable examples and study the topological properties of set star-
Lindel6f spaces.
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1. INTRODUCTION AND PRELIMINARIES

Arhangel’skii [1] defined a cardinal number sL(X) of X: the minimal infinite
cardinality 7 such that for every subset A C X and every open cover U of A,
there is a subfamily V C U such that [V| < 7and A CJV. If sL(X) = w, then
the space X is called sLindeldf space. Following this idea, Ko¢inac and Konca
[7] introduced and studied the new types of selective covering properties called
set-covering properties (for a similar studies, see [4, 14, 15, 16, 17]). A space
X is said to have the set-Menger [7] property if for each nonempty subset A of
X and each sequence (U, : n € N) of collections of open sets in X such that
for each n € N, A C |JU,, there is a sequence (V,, : n € N) such that for each
n € N, V, is a finite subset of U, and A C |J,,cyy U V. The author [13] noticed

Received 16 January 2022 — Accepted 18 April 2022


http://dx.doi.org/10.4995/agt.2022.17021
https://orcid.org/0000-0001-9701-3091

S. Singh

that the set-Menger property is nothing but another view of Menger covering
property. Recently, the author [12] defined and studied set starcompact and
set strongly starcompact spaces (also see [8]).

In this paper, we consider the classes of set star-Lindelof spaces and set
strongly star-Lindelof spaces already introduced in [9] and recently studied in
[4]. Note that in fact in the class of 77 spaces, set strongly star-Lindel6fness
is equivalent to the property having countable extent [[4], Proposition 3.1].
If A is a subset of a space X and U is a collection of subsets of X, then
St(A,U)=U{U e U : UN A # @}. We usually write St(z,U) = St({z},U).

Throughout the paper, by “a space” we mean “a topological space”, N, R
and Q denotes the set of natural numbers, set of real numbers, and set of
rational numbers, respectively, the cardinality of a set is denoted by |A|. Let
w denote the first infinite cardinal, w; the first uncountable cardinal, ¢ the
cardinality of the set of all real numbers. An open cover U of a subset A C X
means elements of U open in X such that A CJU = J{U : U € U}.

We first recall the classical notions of spaces that are used in this paper.

Definition 1.1 ([5]). A space X is said to be

(1) starcompact if for each open cover U of X, there is a finite subset V of
U such that X = St(J V,U).

(2) strongly starcompact if for each open cover U of X, there is a finite
subset F' of X such that X = St(F,U).

Definition 1.2 ([12, 8]). A space X is said to be

(1) set starcompact if for each nonempty subset A of X and each collection
U of open sets in X such that A C JU, there is a finite subset VV of U
such that A C St(JV,U).

(2) set strongly starcompact if for each nonempty subset A of X and each

collection U of open sets in X such that A C (JU, there is a finite
subset F of A such that A C St(F,U).

Definition 1.3. A space X is said to be

(1) star-Lindelof [5] if for each open cover U of X, there is a countable
subset V of U such that X = St(JV,U).

(2) strongly star-Lindelof [5] if for each open cover U of X, there is a
countable subset F' of X such that X = St(F,U).

Note that the star-Lindelof spaces have a different name such as 1-star-
Lindeléf and 11-star-Lindeldf in different papers (see [5, 10]) and the strongly
star-Lindel6f space is also called star countable in [10, 21]. It is clear that,
every strongly star-Lindelof space is star-Lindelof.

Recall that a collection A C P(w) is said to be almost disjoint if each set
A € Ais infinite and the sets A B are finite for all distinct elements A, B € A.
For an almost disjoint family A, put ¢(A) = AlJw and topologize 9(.A) as
follows: for each element A € A and each finite set F' C w, {A} J(A\ F) is

a basic open neighborhood of A and the natural numbers are isolated. The
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spaces of this type are called Isbell-Mréwka i)-spaces [2, 11] or #(.A) space.
For other terms and symbols, we follow [6].
The following result was proved in [8].

Theorem 1.4 ([8]). Every countably compact space is set strongly starcompact.

Note that in the class of Hausdorff spaces strongly starcompactness, set
strongly starcompactness and countable compactness are equivalent [4, Propo-
sition 2.2].

2. SET STAR-LINDELOF AND RELATED SPACES

In this section, we give some examples showing the relationship among set
star-Lindel6f spaces, set strongly star-Lindelof spaces, and other related spaces.
First we define our main definition.

Definition 2.1. A space X is said to be

(1) set star-Lindelof if for each nonempty subset A of X and each collection
U of open sets in X such that A C (JU, there is a countable subset V
of U such that A C St(JV,U).

(2) set strongly star-Lindeldf if for each nonempty subset A of X and each
collection U of open sets in X such that A C |JU, there is a countable
subset F of A such that A C St(F,U).

Note that in the class of T7 spaces the set strongly star-Lindelofness is equiv-
alent to the property to have a countable extent [4, Proposition 3.1]. Note that
there is a misprint in the statement of the definition of relatively® set star
strongly-compact in [4]: the authors write that set F is a finite subset of A
but the original definition asks that F is contained in A and Bonanzinga and
Maesano use exactly this last fact during all the paper.

We have the following diagram from the definitions and [4, Proposition 3.1].
However, the following examples show that the converse of these implications
are not true.

set strongly starcompact — set starcompact

\J \
Lindelof — countable extent <1 set strongly star — Lindelof — set star — Lindelof
\J \J

strongly star — Lindelof — star — Lindelof

Example 2.2. (i) The discrete space w has countable extent but it is not set
starcompact space.

(ii) The space [0,w;) has countable extent but it is not Lindeldf.

(iii) Let Y be a discrete space with cardinality ¢. Let X =Y U {y*}, where
y* ¢ Y topologized as follows: each y € Y is an isolated point and a set U
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containing y* is open if and only if X \ U is countable. Then X has countable
extent but it is not countably compact.

Bonanzinga [3] proved that every Isbell-Mréwka space is a Tychonoff strongly
star-Lindel6f space with uncountable extent (hence, it is not set strongly star-
Lindel6f). Note that in [3] strongly star-Lindelof is called star-Lindelof.

The following lemma was proved by Song [18].

Lemma 2.3 ([18, Lemma 2.2]). A space X having a dense Lindeldf subspace
is star-Lindelof.

The following example shows that the Lemma 2.3 does not hold if we replace
star-Lindelof space by a set star-Lindel6f space.

Example 2.4. There exists a Tychonoff space X having a dense Lindelof sub-
space such that X is not set star-Lindelof.

Proof. Let D(c) = {d, : a < ¢} be a discrete space of cardinality ¢ and let
Y = D(c) U {d*} be one-point compactification of D(c). Let

X = (Y x[0,w)) U (D(c) x {w})

be the subspace of the product space Y x [0,w]. Then Y X [0,w) is a dense
Lindel6f subspace of X and by Lemma 2.3, X is star-Lindelof.

In [4, Proposition 3.4] shows that if X is a space such that there exists
a closed and discrete subspace D of X having uncountable cardinality and a
disjoint family & = {O,, : a € D} of open neighborhoods of points a € D, then
X is not set star-Lindel6f. So, we conclude that X is not set star-Lindelof. O

Bonanzinga and Maesano [4, Example 3.5] constructed an example of a
Tychonoff separable (hence set star-Lindel6f) non set strongly star-Lindelof
space.

Remark 2.5. (1) In [12], Singh gave an example of a Tychonoff set starcompact
space X that is not set strongly starcompact.

(2) It is known that there are star-Lindeldf spaces that are not strongly
star-Lindelof (see [5, Example 3.2.3.2] and [5, Example 3.3.1]).

Now we give some conditions under which star-Lindel6fness coincides with
set star-Lindeldfness and strongly star-Lindeléfness coincide with set strongly
star-Lindel6fness.

Recall that a space X is paralLindelof if every open cover U of X has a locally
countable open refinement.

Song and Xuan [19] proved the following result.

Theorem 2.6 ([19, Theorem 2.24]). Every reqular paraLindelof star-Lindelsf
spaces are Lindeldf.

We have the following theorem from Theorem 2.6 and the diagram.
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Theorem 2.7. If X is a regular paraLindeldf space, then the following state-
ments are equivalent:

(1) X is Lindelof;

(2) X is set strongly star-Lindeldf;

(3) e(X) = w;

(4) X is set star-Lindelof;

(5) X is strongly star-Lindeldf;

(6) X is star-Lindeldf.

A space is said to be metaLindel6f if every open cover of it has a point-
countable open refinement.
Bonanzinga [3] proved the following result.

Theorem 2.8 ([3]). Every strongly star-Lindeldf metaLindeldf spaces are Lin-
deldf.

We have the following theorem from Theorem 2.8 and the diagram.

Theorem 2.9. If X is a metaLindeldf space, then the following statements are
equivalent:

(1) X is Lindeldf;

(2) X is set strongly star-Lindeldf;

(3) e(X) = w;

(4) X is strongly star-Lindeldf.

3. PROPERTIES OF SET STAR-LINDELOF SPACES

In this section, we study the topological properties of set star-Lindelof
spaces.

Theorem 3.1. If X is a set star-Lindeldf space, then every open and closed
subset of X is set star-Lindeldf.

Proof. Let X be a set star-Lindelof space and A C X be an open and closed
set. Let B be any subset of A and U be a collection of open sets in (A4, 74)
such that Cl4(B) C [JU. Since A is open, then U is a collection of open sets
in X. Since A is closed, Cla(B) = Clx(B). Applying the set star-Lindel6fness
property of X, there exists a countable subset V of U such that B C St(|JV,U).
Hence A is a set star-Lindelof. O

Consider the Alexandorff duplicate A(X) = X x {0,1} of a space X. The
basic neighborhood of a point (x,0) € X x {0} is of the form (U x {0}) J(U x
{1} \ {{z,1)}), where U is a neighborhood of  in X and each point (z,1) €
X x {1} is an isolated point.

Theorem 3.2. If X is a T1-space and A(X) is a set star-Lindeldf space. Then
e(X) <ws.

Proof. Suppose that e(X) > w;. Then there exists a discrete closed subset
B of X such that |B| > w;. Hence B x {1} is an open and closed subset of
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A(X) and every point of B x {1} is an isolated point. Thus A(X) is not set
star-Lindelof by Theorem 3.1. O

Theorem 3.3. Let X be a space such that the Alexandorff duplicate A(X) of
X is set star-Lindeldf. Then X is a set star-Lindeldf space.

Proof. Let B be any nonempty subset of X and U be an open cover of B. Let
C = B x {0} and

AU) = {U x {0,1} : U e U}.

Then A(U) is an open cover of C. Since A(X) is set star-Lindelof, there is a
countable subset A(V) of A(U) such that C C St(|J A(V), A(U)). Let

V={Uecl:Ux{0,1} € AV)}.
Then V is a countable subset of /. Now we have to show that
B C St(Uw,U).

Let + € B. Then (z,0) € St(JA(V),A(U)). Choose U x {0,1} € A(U)
such that (z,0) € U x {0,1} and U x {0,1} N (JA(V)) # @, which implies
Un(UV) # @ and z € U. Therefore z € St(|JV,U), which shows that X is
set star-Lindelof space. O

On the images of set star-Lindel6f spaces, we have the following result.

Theorem 3.4. A continuous image of set star-Lindeldf space is set star-

Lindelof.

Proof. Let X be a set star-Lindelof space and f : X — Y is a continuous
mapping from X onto Y. Let B be any subset of Y and V be an open cover
of B. Let A= f~Y(B). Since f is continuous, U = {f~1(V) : V € V} is the
collection of open sets in X with A = f~1(B) C f~Y(B) C f~4(UV) = UU.
As X is set star-Lindelof, there exists a countable subset U’ of U such that

ACsUu',u).

Let V' = {V : f~%(V) € U'}. Then V' is a countable subset of V and B =
fA) C fseUuu)) S stUFHSHV) =V e V), V) = St(UV', V). Thus
Y is set star-Lindel6f space. O

Next, we turn to consider preimages of set strongly star-Lindelof and set
star-Lindelof spaces. We need a new concept called nearly set star-Lindel6f
spaces. A space X is said to be nearly set star-Lindel6f in X if for each subset
Y of X and each open cover U of X, there is a countable subset V of U such
that Y C St(JV,U). For the strong version of this property (see [4]).

Theorem 3.5. If f: X — Y is an open and perfect continuous mapping and
Y is a set star-Lindeldf space, then X is nearly set star-Lindeldf.
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Proof. Let A C X be any nonempty set and U be an open cover of X. Then
B = f(A) is asubset of Y. Let y € B. Then f~!{y} is a compact subset of X,
thus there is a finite subset U, of U such that f~'{y} C JU,. Let U, = JU,.
Then V, = Y \ f(X \ Uy) is a neighborhood of y, since f is closed. Then
V = {V, : y € B} is an open cover of B. Since Y is set star-Lindeldf, there
exists a countable subset V' of V such that

B CsSt(UV,V).
Without loss of generality, we may assume that V' = {V,, : ¢ € N’ C N}. Let
W = U, ens Uy,- Since f~1(V,,) CU{U : U € U,,} for each i € N’. Then W is
a countable subset of & and

AUV =uw.
Next, we show that

A C St (UW,U).
Let x € A. Then there exists a y € B such that

f(z) eV, and V, N(UV') # @.

Since
ze f7Y(V,) CU{U:U eu,},

we can choose U € U, withz € U. Then V,, C f(U). Thus U f~H(UV') # 2.
Hence x € St(f~*(UV’'),U). Therefore z € St(|JW,U), which shows that
A CSt(UW,U). Thus X is nearly set star-Lindelof. O

It is known that the product of star-Lindelof space and compact space is a
star-Lindelof (see [5]).

Problem 3.6. Does the product of set star-Lindeldf space and a compact space
is set star-Lindelof?

The following example shows that the product of two countably compact
(hence, set star-Lindelof) spaces need not be set star-Lindeldf.

Example 3.7. There exist two countably compact spaces X and Y such that
X x Y is not set star-Lindelof.

Proof. Let D(c) be a discrete space of the cardinality ¢. We can define X =

Uacw, Ba and Y = J,.,,, Fa, where E, and F, are the subsets of 3(D(c))

which are defined inductively to satisfy the following three conditions:

(1) Ea(VFp = D(c) if a# p;

(2) |Eyl <cand |F,| <

(3) every infinite subset of E, (resp., Fy,) has an accumulation point in Eq 41
(resp, Fai1).
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Those sets E, and F,, are well-defined since every infinite closed set in 3(D(c))
has the cardinality 2¢ (see [20]). Then X x Y is not set star-Lindelof, since the
diagonal {(d,d) : d € D(c)} is a discrete open and closed subset of X x Y with
the cardinality c. (I

van Douwen-Reed-Roscoe-Tree [5, Example 3.3.3] gave an example of a
countably compact X (hence, set star-Lindelof) and a Lindeldf space Y such
that X x Y is not strongly star-Lindel6f. Now we use this example to show
that X x Y is not set star-Lindel6f.

Example 3.8. There exists a countably compact space X and a Lindel6f space
Y such that X x Y is not set star-Lindelof.

Proof. Let X = [0,w) with the usual order topology. Let Y = [0, w1] with the
following topology. Each point a < wy is isolated and a set U containing w; is
open if and only if Y \ U is countable. Then, X is countably compact and Y
is Lindelof. It is enough to show that X x Y is not star-Lindelof.

For each a < wy, Uy = X x {a} is open in X x Y. For each 8 < wy,
Ve =10,8] x (0,wi] isopenin X xY. Let Y = {Up : e < w1} U{V3: 8 <wr}.
Then U is an open cover of X x Y. Let V be any countable subset of U. Since
V is countable, there exists o’ < w; such that U, ¢ V for each o > /. Also,
there exists o' < wy such that Vg ¢ V for each § > o”. Let 8 = sup{c/,a}.
Then Ug((UV) = @ and Ug is the only element containing (3, 3). Thus
(8,8) ¢ St(UV,U), which shows that X is not star-Lindelof. O

van Douwen-Reed-Roscoe-Tree [5, Example 3.3.6] gave an example of Haus-
dorff regular Lindelof spaces X and Y such that X x Y is star-Lindel6f. Now
we use this example and show that the product of two Lindel6f spaces is not
set star-Lindelof.

Example 3.9. There exists a Hausdorff regular Lindelof spaces X and Y such
that X x Y is not set star-Lindel6f.

Proof. Let X =R\ Q have the induced metric topology. Let Y = R with each
point of R\ Q is isolated and points of Q having metric neighborhoods. Hence
both spaces X and Y are Hausdorff regular Lindel6f spaces and first countable
too, so X x Y Hausdorff regular and first countable. Now we show that X xY
is not set star-Lindelof. Let A = {(z,z) € X xY : 2z € X}. Then A is an
uncountable closed and discrete set (see [[5], Example 3.3.6]). For (z,z) € A,
U, = X x {z} is the open subset of X x Y. Then U = {U, : (z,2) € A} is
an open cover of A. Let V be any countable subset of &. Then there exists
(a,a) € A such that (a,a) ¢ |JV and thus (V) (U, = @. But U, is the only
element of U containing (a,a). Thus (a,a) ¢ St(UV,U), which completes the
proof. O
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