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Characterizing meager paratopological groups
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Abstract

We prove that a Hausdorff paratopological group G is meager if and

only if there are a nowhere dense subset A ⊂ G and a countable set

C ⊂ G such that CA = G = AC.
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1. Introduction

Trying to find a counterpart of the Lindeföf property in the category of
topological groups I.Guran [7] introduced the notion of an ω-bounded group
which turned out to be very fruitful in topological algebra, see [9]. We recall
that a topological group G is ω-bounded if for each non-empty open subset
U ⊂ G there is a countable subset C ⊂ G such that CU = G = UC.

A similar approach to the Baire category leads us to the notion of an shift-
meager (shift-Baire) group. This is a topological group that can(not) be written
as the union of countably many translation copies of some fixed nowhere dense
subset.

The notion of a shift-meager (shift-Baire) group can be defined in a more
general context of semitopological groups, that is, groups G endowed with a
shift-invariant topology τ . The latter is equivalent to saying that the group
operation · : G × G → G is separately continuous. If this operation is jointly
continuous, then (G, τ) is called a paratopological group, see [1].

A semitopological group G is defined to be

• left meager (resp. right meager) if G = CA (resp. G = AC) for some
nowhere dense subset A ⊂ X and some countable subset C ⊂ G;

• shift-meager if G is both left and right meager;
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• left Baire (resp. right Baire) if for every open dense subset U ⊂ X
and every countable subset C ⊂ G the intersection

⋂

x∈C
xU (resp.

⋂

x∈C
Ux) is dense in G;

• shift-Baire if G is both left and right Baire.

For semitopological groups those notions relate as follows:
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The following theorem implies that for Hausdorff paratopological groups all
the eight properties from this diagram are equivalent.

Theorem 1.1. A Hausdorff paratopological group G is meager if and only if
G is shift-meager.

This theorem will be proved in Section 4. The proof is based on Theorem 2.1
giving conditions under which a meager semitopological group is left (right)
meager and Theorem 3.2 describing some oscillator properties of 2-saturated
Hausdorff paratopological groups.

2. Shift-meager semitopological groups

In this section we search for conditions under which a given meager semi-
topological group is left (right) meager.

Following [3], [4] and [5], [6], we define a subset A ⊂ G of a group G to be

• left large (resp. right large) if G = FA (resp. G = AF ) for some finite
subset F ⊂ G;

• left P-small (resp. right P-small) if there is an infinite subset B ⊂ G
such that the indexed family {bA}b∈B (resp. {Ab}b∈B) is disjoint.

Theorem 2.1. A meager semitopological group G is left (right) meager pro-
vided one of the following conditions holds:

(1) G contains a non-empty open left (right) P-small subset;
(2) G contains a sequence (Un)n∈ω of pairwise disjoint open left (right)

large subsets;
(3) G contains sequences of non-empty open sets (Un)n∈ω and points (gn)n∈ω

such that the sets gnUnU−1
n (resp. U−1

n Ungn), n ∈ N, are pairwise dis-
joint.
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Proof. (1l) Assume that U ⊂ G is a non-empty open left P-small subset. We
may assume that U is a neighborhood of the neutral element e of G. It follows
that there is a countable subset B = {bn}n∈ω ⊂ G such that bnU ∩ bmU = ∅

for any distinct numbers n 6= m. The countable set B generates a countable
subgroup H of G. By an H-cylinder we shall understand an open subset
of the form HV g where g ∈ G and V ⊂ U is a neighborhood of e. Let
U = {HVαgα : α ∈ A} be a maximal disjoint family of H-cylinders in G (such
a family exists by the Zorn Lemma).

We claim that ∪U is dense in G. Assuming the converse, we could find a
point g ∈ G \ ∪U and a neighborhood V ⊂ U of e such that V g ∩ ∪U . Taking
into account that H · (∪U) = ∪U , we conclude that HV g ∩∪U = ∅ and hence
U∪{HV g} is a disjoint family of H-cylinders that enlarges the family U , which
contradicts the maximality of U . Therefore ∪U is dense in G and hence G\∪U
is a closed nowhere dense subset of G.

The space G, being meager, can be written as the union G =
⋃

n∈ω
Mn of a

sequence (Mn)n∈ω of nowhere dense subsets of G. It is easy to see that the set

M = (G \ ∪U) ∪
⋃

α∈A

⋃

n∈ω

bn(Mn ∩ Vαgα)

is nowhere dense in G and G = HM , witnessing that G is left meager.

(2l) Assume that G contains a sequence (Un)n∈ω of pairwise disjoint open
left large subsets. For every n ∈ ω find a finite subset Fn ⊂ G with G = Fn ·Un.
Write G =

⋃

n∈ω
Mn as countable union of nowhere dense subsets and observe

that for every n ∈ ω the subset
⋃

x∈Fn

x−1(Mn ∩ xUn) of Un is nowhere dense.

Since the family {Un}n∈ω is disjoint, the set

M =
⋃

n∈ω

⋃

x∈Fn

x−1(Mn ∩ xUn)

is nowhere dense in G. Since (
⋃

n∈ω
Fn) ·M = G, the semitopological group G

is left meager.

(3l) Assume that (Un)n∈ω is a sequence of non-empty open subsets of G and
(gn)n∈ω is a sequence of points of G such that the sets gnUnU−1

n , n ∈ ω, are
pairwise disjoint. Using the Zorn Lemma, for every n ∈ ω we can choose a
maximal subset Fn ⊂ G such that the indexed family {xUn}x∈Fn

is disjoint.
If for some n ∈ ω the set Fn is infinite, then the set Un is left P-small and
consequently, the group G is left meager by the first item. So, assume that
each set Fn, n ∈ ω, is finite. The maximality of Fn implies that for every
x ∈ G there is y ∈ Fn such that xUn ∩ yUn 6= ∅. Then x ∈ yUnU−1

n and hence
G = FnUnU−1

n , which means that the open set UnU−1
n is left large. Since

the family {gnUnU−1
n }n∈ω is disjoint, it is legal to apply the second item to

conclude that the group G is left meager.

(1r)−(3r). The right versions of the items (1)–(3) can be proved by analogy.
�
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3. Oscillation properties of paratopological groups

In this section we establish some oscillation properties of 2-saturated paratopo-
logical groups. First, we recall the definition of oscillator topologies on a given
paratopological group (G, τ), see [2] for more details.

Given a subset U ⊂ G, by induction define subsets (±U)n and (∓U)n, n ∈ ω,
of G letting

(±U)0 = (∓U)0 = {e} and (±U)n+1 = U(∓U)n, (∓U)n+1 = U−1(±U)n

for n ≥ 0. Thus

(±U)n = UU−1U · · ·U (−1)n−1

︸ ︷︷ ︸

n

and (∓U)n = U−1UU−1 · · ·U (−1)n

︸ ︷︷ ︸

n

.

Note that ((±U)n)−1 = (±U)n if n is even and ((±U)n)−1 = (∓U)n if n is
odd.

By an n-oscillator (resp. a mirror n-oscillator) on a topological group (G, τ)
we understand a set of the form (±U)n (resp. (∓U)n ) for some neighborhood
U of the unit of G. Observe that each n-oscillator in a paratopological group
(G, τ) is a mirror n-oscillator in the mirror paratopological group (G, τ−1) and
vice versa: each mirror n-oscillator in (G, τ) is an n-oscillator in (G, τ−1).

By the n-oscillator topology on a paratopological group (G, τ) we understand
the topology τn consisting of sets U ⊂ G such that for each x ∈ U there is an
n-oscillator (±V )n with x · (±V )n ⊂ U .

Let us recall [8], [1, p. 342] that a paratopological group (G, τ) is saturated if
each non-empty open set U ⊂ G has non-empty interior in the mirror topology
τ−1 = {U−1 : U ∈ τ}. This notion can be generalized as follows.

Define a paratopological group (G, τ) to be n-saturated if each non-empty
open set U ∈ τn has non-empty interior in the topology (τ−1)n.

Proposition 3.1. A paratopological group (G, τ) is 2-saturated if no non-empty
open subset U ⊂ G is P-small.

Proof. To prove that G is 2-saturated, take any non-empty open set U2 ∈ τ2

and find a point x ∈ U2 and a neighborhood U ∈ τ of e such that xU2U−2 ⊂ U2.
By the Zorn Lemma, there is a maximal subset B ⊂ G such that bU ∩ b′U = ∅

for all distinct points b, b′ ∈ B. By our hypothesis, U is not P-small, which
implies that the set B is finite. The maximality of B implies that for each
x ∈ G the shift xU meets some shift bU , b ∈ B. Consequently, x ∈ bUU−1 and

G =
⋃

b∈B
bUU−1. It follows that the closure UU

−1
of UU−1 in the topology

(τ−1)2 has non-empty interior. We claim that UU
−1

⊂ U2U−2. Indeed, given

any point z ∈ UU
−1

, we conclude that the neighborhood U−1zU of z in the
topology (τ−1)2 meets UU−1 and hence z ∈ U2U−2. Now we see that the set

U2 ⊃ xU2U−2 ⊃ xUU−1

has non-empty interior in the topology (τ−1)2, witnessing that the group (G, τ)
is 2-saturated. �
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By Proposition 2 of [2], for each saturated paratopological group (G, τ) the
semitopological group (G, τ2) is a topological group. This results generalizes
to n-saturated groups.

Theorem 3.2. If (G, τ) is an n-saturated paratopological group for some n ∈
N, then (G, τ2n) is a topological group.

Proof. According to Theorem 1 of [2], (G, τ2n) is a topological group if and
only if for every neighborhood U ∈ τ of the neutral element e ∈ G there is a
neighborhood V ∈ τ of e such that (∓V )2n ⊂ (±U)2n.

Since the paratopological group (G, τ) is n-saturated, the set (±U)n ∈ τ2

contains an interior point x in the mirror topology (τ−1)n. Consequently, there
is a neighborhood V ∈ τ of e such that (∓V )nx ⊂ (±U)n.

Now we consider separately the cases of odd and even n.
1. If n is odd, then applying the operation of the inversion to (∓V )nx ⊂

(±U)n, we get x−1(±V )n ⊂ (∓U)n and then

(∓V )2n = (∓V )n(±V )n = (∓V )nxx−1(±V )n ⊂ (±U)n(∓U)n = (±U)2n.

2. If n is even, then (∓V )nx ⊂ (±U)n implies x−1(∓V )n ⊂ (±U)n and

(∓V )2n = (∓V )n(∓V )n = (∓V )nxx−1(∓V )n ⊂ (±U)n(±U)n = (±U)2n.

�

According to [2], for each 1-saturated Hausdorff paratopological groups (G, τ)
the group (G, τ2) is a Hausdorff topological group. For 2-saturated group we
have a bit weaker result.

Theorem 3.3. For any non-discrete Hausdorff 2-saturated paratopological group

(G, τ) the maximal antidiscrete subgroup {e} =
⋂

e∈U∈τ
(±U)4 of the topological

group (G, τ4) is nowhere dense in the topology τ2.

Proof. To show that {e} is nowhere dense in the topology τ2, fix any non-
empty open set U2 ∈ τ2. Since G is not discrete, so is the topology τ2 ⊂
τ . Consequently, we can find a point x ∈ U2 \ {e}. Since G is a Hausdorff
paratopological group, there is a neighborhood U ∈ τ of e such that e /∈
xUU−1 ⊂ U2. The continuity of the group operation yields a neighborhood
V ∈ τ of e such that V 2 ⊂ U and V 2x ⊂ xU . Then V 2xV −2 ⊂ xUU−1 6∋ e
yields V −1V ∩ V xV −1 = ∅. Using the shift-invariantness of the topology τ ,
find a neighborhood W ∈ τ of e such that W ⊂ V and xW ⊂ V x.

Since the group G is 2-saturated, the open set xWW−1 ∈ τ2 has non-empty
interior in the topology (τ−1)2. Consequently, there is a point y ∈ xWW−1

and a neighborhood O ∈ τ of e such that O ⊂ W and O−1yO ⊂ xWW−1.
Observe that

O−1O ∩ O−1yO ⊂ V −1V ∩ xWW−1 ⊂ V −1V ∩ V xV −1 = ∅

and consequently, U2 ∋ y /∈ OO−1OO−1 ⊃ {e}. �

Problem 3.4. Can the topology τ2n be antidiscrete for some Hausdorff n-
saturated paratopological group?
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Problem 3.5. Assume that a paratopological group (G, τ) is 2-saturated. Is
its mirror paratopological group (G, τ−1) 2-saturated?

4. Proof of Theorem 1.1

We need to check that each meager Hausdorff paratopological group G is
left and right meager.

If the paratopological group G contains a non-empty open left P-small sub-
set, then G is left meager by Theorem 2.1(1). So assume that no non-empty
open subset of G is left P-small. In this case Proposition 3.1 implies that the
paratopological group G is 2-saturated while Theorem 3.3 ensures that the
topological group (G, τ4) contains a countable disjoint family {Wn}n∈ω of non-
empty open sets. By the definition of the 4th oscillator topology τ4 each set
Wn contains a subset of the form xnUnU−1UnU−1

n where xn ∈ G and Un is a
neighborhood of the neutral element in the paratopological group G. Since the
sets xnUnU−1

n ⊂ Wn, n ∈ ω, are pairwise disjoint, we can apply Theorem 2.1(3)
to conclude that the paratopological group G is left meager.

By analogy we can prove that G is right meager.

5. Discussion and Open Problems

The following example shows that without any restrictions, a meager semi-
topological group needs not be shift-meager.

Example 5.1. Let G be an uncountable group whose cardinality |G| has count-
able cofinality. Endow the group G with the shift-invariant topology generated
by the base {G \ A : |A| < |G|}. It is easy to see that a subset A ⊂ G is
nowhere dense if and only if it is not dense if and only if |A| < |G|. This
observation implies that G is meager (because |G| has countable cofinality). On
the other hand, the semi-topological group G is not shift-meager because for
every nowhere dense subset A ⊂ G and every countable subset C ⊂ G we get
|A| < |G| and hence G 6= CA because |CA| ≤ max{ℵ0, |A|} < |G|.

Problem 5.2. Is each meager paratopological group G shift-meager?

Problem 5.3. Is each meager Hausdorff semitopological group shift-meager?

Problem 5.4. Is each left meager semitopological group right meager?

Also we do not know is the following semigroup version of Theorem 1.1
holds.

Problem 5.5. Let S be an open meager subsemigroup of a Hausdorff paratopo-
logical group G. Is S ⊂ CA for some nowhere dense subset A ⊂ S and a
countable subset C ⊂ G?
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