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Abstract

In this paper the nonstandard theory of uniform topological spaces is
applied with two main objectives: (1) to give a nonstandard treatment
of Bernstein’s concept of p-compactness with additional results, (2) to
introduce three new concepts (p,q)-compactness, p-totally boundedness
and p-completeness. I prove some facts about them and how these three
concepts are related with p-compactness. I also give a partial answer
to the open question stated in [3]
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1. Introduction

It was in 1966 that Abraham Robinson’s book [4] on nonstandard analysis
appeared. His methods were based on the theory of models and in particu-
lar on the Lowenheim-Skolem theorem. He introduced extension ∗X (in a
superstructure no standard) of any set X (in a standard superstructure) by
looking at nonstandard models of their respectives theories. ”Infinitely close”
or ”infinitely large” were to be found in the enlargement ∗X . In this way he
was able to justify proofs using ”infinitesimals” or ”monads” and that was not
possible before his discovery, more over, he showed that these methods were
able to produce original solutions to unsolved mathematical questions as well.

This approach to the nonstandard analysis is based on the axiomatic set
theory called ZFC (Zermelo-Fraenkel with Axiom Choice), all theorems of con-
ventional mathematics remain valid. We start with a superstructure S , the

∗Proyecto 9.4 Coordinación de la Investigación Cient́ıfica.
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sets A, B, X , etc. are set of individuals in S. The extensions or enlargements
∗A, ∗B, ∗X , etc. are sets in the superstructure Ŝ.

Nonstandard analysis is a technique rather than a subject. Aside from the-
orems that tell us that nonstandard notions are equivalent to corresponding
standard notions, all the results we obtain can be proved by standard meth-
ods. Therefore, the subject can only be claimed to be of importance insofar as
it leads to simpler, more accesible expositions, or, more important, to mathe-
matical discoveries. In writing formulas we use conventional symbols such that
∈, =, ∀, ∃, ⇒, ∨, ∧,∼, () etc.

2. Some Notions of Nonstandard Theory

The nonstandard enlargements satisfies the following properties:

A ⊂ ∗A , ∗(A∩B) = ∗A∩ ∗B , ∗(A∪B) = ∗A∪ ∗B , A ⊂ B ⇒ ∗A ⊂ ∗B ,
∗(A × B) = ∗A × ∗B , ∗(A\B) = ∗A\ ∗B ,

A = ∗A ⇔ A is a finite set. Therefore, ∗N \N, ∗R \R are non empty
sets whose elements are called ”infinite large numbers”.

In general, for any infinite set X , ∗X \X 6=φ

Each function f : A → B has an ”extension” ∗f : ∗A → ∗B . For this we
observe that f ⊂ A × B , so that, ∗f ⊂ ∗A × ∗B

Given a topological space (X, t) and z ∈ ∗X , the monad of z is

µ(z) =
⋂

{∗O |O ∈ t and z ∈ ∗O}

The space (X, t) is Hausdorff ⇔ ∀x, y ∈ X , µ(x) ∩ µ(y) = φ

We denote by X̂ =
⋃
{µ(x) |x ∈ X}

Let L denote a language in the standard superstructure and by L̂ we denote
de corresponding language in the nonstandard superstructure. A formula of L

in which no variable has a free occurrence is called a sentence of L. For each
sentence α ∈ L we have correspondent sentence ∗α ∈ L̂ .

α = ∗α ⇔ α contains only constants b ∈ S

Let α be a sentence of L, we will denote |= α if ” α is true in S”; we will

denote ∗ |= ∗α if ” ∗α is true in Ŝ”

Transfer Principle (TP): The admisible proposition α ∈ (Ŝ, £) is true

⇔ ∗α ∈ ( ∗Ŝ, ∗£) is true.

|= α ⇔ ∗ |= ∗α

For instance, A ∩ B 6= φ ⇔ ∗A ∩ ∗B 6= φ , A ⊂ B ⇔ ∗A ⊂ ∗B , etc.

The TP provides one of the basic tools of nonstandard analysis. A mathe-
matical theorem that is equivalent to |= α for some sentence α ∈ L can be
proved by showing instead that ∗ |= ∗α [1].

A relation R ⊂ A × B is called concurrent if given a1, a2, ..., an ∈ dom(R)
there exists b ∈ B such that (ai, b) ∈ R for all i = 1, 2, ..., n
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Concurrence Theorem (CT): If R is a concurrent relation then there
exists b ∈ ∗B such that ( ∗a, b) ∈ ∗R for all a ∈ A

We only will consider Hausdorff uniform topological spaces (X, t) , with
uniformity U . Then, on ∗X we will consider three non-Hausdorff topologies:

a) τU will be the topology generated by the sets ∗O such that

O ∈ t.

b) τ̂U will be the uniform topology on ∗X given by the

uniformity Û = { ∗V |V ∈ U}.

c) τi the topology generated by { ∗A |A ⊂ X}.
A basis of τU is { ∗V (x) |x ∈ X, V ∈ U}.
A basis of τ̂U is { ∗V (z) | z ∈ ∗X, V ∈ U}.

For any z ∈ ∗X , µ(z), o(z) and i(z) will denote the monads of z for the
topologies a), b) and c) respectively.

τU and τ̂U agree on X , thereby µ(x) = o(x) ∀x ∈ X , in general τU < τ̂U .
On the other hand, i(x) = {x} ∀x ∈ X and τU < τi .

So that, i(z) ⊂ µ(z) and o(z) ⊂ µ(z) . The bigger the topology the smaller
the monad.

If f : (X, t) → (Y, t′) is a continuous function then
∗f : ( ∗X, τU ) → ( ∗Y, τ ′

U ) is a continuous function.

Any function ∗f : ( ∗X, τi) → ( ∗Y, τ ′

i) is continuous.
The topology on the set of natural numbers N always be the discrete topo-

logy.
For any p ∈ ∗N \N and any topological space X

β′

pX =
⋃

{µ(∗f(p)) | f : N → X}.

3. p-Compactness

Definition 3.1. Let p ∈ ∗N \N be and {zn |n ∈ N} ⊂ ∗X . We will say
that z ∈ ∗X is a p-limit of the sequence {zn} ( z = p − lim zn ) if z is an
accumulation point of the sequence such that for each O ∈ t , with z ∈ ∗O ,

p ∈ ∗{n ∈ N | zn ∈ ∗O}.

Lemma 3.2. If f : X → Y is a continuous function and z ∈ ∗X is a p-lim

of {zn} ⊂ ∗X then ∗f(z) = p − lim ∗f(zn) in ∗Y.

Proof. Let W ⊂ Y be an open set such that ∗f(z) ∈ ∗W and let O ⊂ X be
open such that z ∈ ∗O and ∗f(∗O) ⊂ ∗W . Hence,

p ∈ ∗{n ∈ N | zn ∈ ∗O} ⊂ {n ∈ N | ∗f(zn) ∈ ∗W}.

�
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Theorem 3.3. z = p − limxn ⇔ xp ∈ µ(z).

Proof. ⇒ ) Let O ∈ t such that z ∈ ∗O , by definition xp ∈ ∗O.

⇐ ) Let O ∈ t be such that z ∈ ∗O . The following sentence is true in the
nonstandard structure (∃n ∈ ∗N)(xn ∈ ∗O) , by the PT (∃n ∈ N)(xn ∈ O)
is true, i.e., A = {n ∈ N |xn ∈ O} 6= ∅ y, p ∈ ∗A. �

Proposition 3.4. Let p, q ∈ ∗N \N . If there exists f : N → N such that

p = q − lim{f(n)} then ∗f(q) ∈ β′

pN.

Proof. p ∈ ∗O ⇒ ∗f(q) ∈ ∗O ⇒ µ(∗f(q)) ⊂ µ(p) . �

Proposition 3.5. If for {xn} ⊂ X there exists {xnk
} → x ∈ X such that

p ∈ ∗{nk} , then x = p − lim xn.

Definition 3.6 ([3]). A topological space (X, t) is p-compact if every sequence
in X has a p-limit in ∗X

X̂ =
⋃

{µ(x) |x ∈ X}.

X ⊂ X̂ ⊂ β′

pX taking for each x ∈ X f : N → X, f(n) = x

Theorem 3.7. (X, t) is p-compact ⇔ X̂ = β′

pX.

Proof. ⇒ ) The contention left to proof is X̂ ⊃ β′

pX

Let {xn} ⊂ X be such that q ∈ µ(xp) . Since xp ∈ µ(x) for some x ∈ X ,
this implies that q ∈ µ(xp) ⊂ µ(x)

⇐ ) Nothing left to prove. �

Corollary 3.8. (X, t) compact ⇒ p-compact for all p ∈ ∗N \N.

Proof. X̂ ⊂ β′

pX ⊂ ∗X = X̂. �

Definition 3.9. Let tp be the topology generated by the set {O ∈ t | ∗f(p)6∈ ∗O

for some f : N → X} tp is closed under intersections.

Lemma 3.10. X tp-compact implies p-compact.

Proposition 3.11. (X, t) p-compact implies for each numerable tp-cover of X

has a finite sub-cover.

Corollary 3.12. If X is p-compact and tp-Lindelof then it is tp-compact.

Definition 3.13 (Comfort Order). p ≤C q (in ∗N \N )if (X, t) q-compact
implies p-compact [2].

Corollary 3.14. If β′

pX ⊂ β′

qX then X q-compact implies p-compact.
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4. (p, q)-Compactness

Definition 4.1. p ⊗ q = {A ⊂ N × N | (p, q) ∈ ∗A}.

Definition 4.2. A topological space (X, t) is (p, q)-compact if for each
f : N × N → X there exists x ∈ X such that for every x ∈ O ∈ t ,

∗f(p, q) ∈ µ(x) y (p, q) ∈ ∗{(m, n) | f(m, n) ∈ O}.

Theorem 4.3. (X, t) is (p, q)-compact if and only if it is p and q compact.

Proof. ⇒ ) Let us prove that X is p-compact. Let f : N → X and
π1 : N × N → N be the projection in the first coordinate, then
f ◦ π1 : N × N → X : By hypothesis there exists x ∈ X such that
∗f(p) = (∗f ◦ ∗π1)(p, q) = ∗(f ◦ π1)(p, q) ∈ µ(x) and for each x ∈ O ∈ t

(p, q) ∈ ∗{(m, n) | f(m) = (f ◦ π1)(m, n) ∈ O} i.e.,

{(m, n) | f(m) = (f ◦ π1)(m, n) ∈ O} ∈ p ⊗ q .

This implies that

p = ∗π1(p, q) ∈ ∗π∗

1({(m, n) | f(m) = (f ◦ π1)(m, n) ∈ O}) =

=∗ {m ∈ N | f(m) ∈ O}.

Analogous proof for (f ◦ π2) : N × N → X.

Since X is q-compact, there exists y ∈ X such that

∗f(q) = ∗(f ◦ π2)(p, q) ∈ µ(y) and for each y ∈ U ∈ t ,
(p, q) ∈ ∗{(m, n) | (f ◦ π2)(m, n) ∈ U} , i.e.,
{(m, n) | f(n) = (f ◦ π2)(m, n) ∈ U} ∈ p ⊗ q .

This implies that

q = ∗π2(p, q) ∈ ∗π2(
∗{(m, n) | f(n) = (f ◦ π2)(m, n) ∈ U})

∈ ∗{n ∈ N | f(n) ∈ U}.

⇐ ) Let us consider f : N × N → X . To prove that there exists x ∈ X

such that ∗f(p, q) ∈ µ(x) . For each n ∈ N we define fn : N → X as
fn(m) = f(m, n) . By hypothesis, there exists xn ∈ X such that ∗f(p, n) =
∗fn(p) ∈ µ(xn) and for each xn ∈ O ∈ t , p ∈ ∗{m ∈ N | fn(m) ∈ O}.

Let us define gp : N → X as gp(n) = xn ∼ ∗f(p, n) . Hence ([1, page 81])
gp ∼ ∗f(p,−) ∈ ∗(

∏
N X) . The set {∗W |W is an open basic set of

∏
N X}

is a basis of the topology on ∗(
∏

N X) .
By the q-compacity of X , there exists y ∈ X such that ∗gp(q) ∈ µ(y) and

for each y ∈ U ∈ t , q ∈ ∗A = ∗{n ∈ N | gp(n) ∈ U}.
Since gp(n) ∼ ∗f(p, n) , ∗f(p, n) ∈ ∗U ∀n ∈ A , i.e., the following formula

is true (∀n ∈ N)(n ∈ A ⇒ ∗f(p, n) ∈ ∗U) . By the PT, the following formula
is true (∀n ∈ ∗N)(n ∈ ∗A ⇒ ∗f(p, n) ∈ ∗U) .

q ∈ ∗A ⇒ ∗f(p, q) ∈ ∗U ⇒ ∗f(p, q) ∈
⋂

{ ∗U | y ∈ U ∈ t} = µ(y).

�
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5. p-totally bounded and p-complete

Definition 5.1. All uniform space (X, t) is completely regular, let us denote
by {ρj}J the saturated family of pseudometrics that define the topology t

given by the uniformity U . We recall that for each z ∈ ∗X

o(z) = {y ∈ ∗X | ρj(y, z) ≈ 0 ∀ j ∈ J} [1, 5]

µ(z) =
⋂

{ ∗V (x) |V ∈ U, x ∈ X, z ∈ ∗V (x)}

Every V ∈ U is V = {(x, y) ∈ X × X | ρj(x, y) < ǫ} for some ǫ > 0 and
some pseudometric ρj , also denoted by V = V ǫ

j .

For all z ∈ ∗X , µ(z) ⊃ o(z) and for all x ∈ X , µ(x) = o(x)
For (X, t) we define the set

pns ∗X = {z ∈ ∗X |µ(z) = o(z)}.

Proposition 5.2. z ∈ pns ∗X ⇒ µ(z) ⊂ pns ∗X.

Proof. If z ∈ ∗X and w ∈ µ(z) then o(w) ⊂ µ(w) ⊂ µ(z) and o(w) = o(z)
If z ∈ pns ∗X then µ(z) = o(z) = o(w) ⊂ µ(w) ⊂ µ(z) , i.e., o(w) = µ(w)
thereby w ∈ pns ∗X. �

Proposition 5.3. z ∈ pns ∗X ⇔ given ǫ > 0 and any pseudometric ρj there

exists xj ∈ X such that ∗ρj(z, xj) < ǫ.

Proof. ⇒) Let z ∈ pns ∗X be given, then, o(z) = µ(z) . For any ǫ > 0 , a
pseudometric ρj and V = V ǫ

j ∈ U . Since o(z)× o(z) ⊂ V , µ(z)× µ(z) ⊂ V ,
PC tells us that there exists D ∈ ∗Fµ(z) such that D ⊂ µ(z) , there exists
D ∈ ∗Fµ(z) such that D × D ⊂ ∗V , hence, by PT, there exists D ∈ Fµ(z)

such that D × D ⊂ V .
D ∈ Fµ(z) ⇒ µ(z) ⊂ ∗D ⇒ {z} × ∗D ⊂ ∗V ⇒ (z, x) ∈ ∗V for all

x ∈ D ⊂ X , i.e., ρ(z, x) < ǫ for all x ∈ D

⇐) Let w ∈ µ(z) , ǫ > 0 be given and (z, xj) ∈
∗V

ǫ

2

j = {(x, y) | ρj(x, y) <

ǫ
2} . Since w ∈ ∗V

ǫ

2

j (xj) and ∗ρj(w, z) ≤ ∗ρj(w, xj)+ ∗ρj(xj , z) < ǫ
2 + ǫ

2 = ǫ .

This implies that w ∈ ∗V ǫ
j (z) and therefore w ∈ o(z) , i.e., µ(z) ⊂ o(z) ⊂

µ(z). �

Corollary 5.4. z ∈ pns ∗X ⇔ Fµ(z) is a Cauchy filter

Remark 5.5. X̂ ⊂ pns ∗X ⊂ ∗X X̂ = pns ∗X ⇔ X is complete pns ∗X =
∗X ⇔ X is totally bounded

Definition 5.6. (X, t) is p-totally bounded if for each function f : N → X ,
∗f(p) ∈ pns ∗X
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Lemma 5.7. p-compact ⇒ p-totally bounded.

Proof. X̂ ⊂ pns ∗X ⊂ ∗X. �

Lemma 5.8. X is p-totally bounded ⇔ β′

pX ⊂ pns ∗X.

Proof. ⇒ ) X p-totally bounded ⇒ ∗f(p) ∈ pns ∗X ⇒ µ( ∗f(p)) ⊂ pns ∗X.

�

Corollary 5.9. X is p-totally bounded for all p ∗N \N ⇔ ∪pβ
′

pX ⊂ pns ∗X.

Lemma 5.10. (X, t) totally bounded ⇒ p-totally bounded for all p ∗N \N.

Proof. ⇒) Totally bounded implies pns ∗X = ∗X. �

Lemma 5.11. If (X, t) is a complete space then X p-compact ⇔ p-totally

bounded.

Proof. Complete implies X̂ = pns ∗X. �

∗f : ∗N → ∗X always is a τU -continuous function.

Proposition 5.12. X is p-totally bounded ⇔ every f : N → X is a contin-

uous function in p with the τ̂U topology.

Proof. ⇒ ) Since ∗f(p) ∈ pns ∗X , µ(∗f(p)) = o(∗f(p)) , since ∗f is a conti-
nuous function with τU , ∗f(o(p)) = ∗f(µ(p)) ⊂ µ(∗f(p)) = o(∗f(p)) then it
also is a continuous function in p with τ̂U (Cauchy’s Principle, Theorem 8.1.4,
[5])

⇐ ) Let f : N → X be a continuous function in p ∈ N with τU .
To prove that ∗f(p) ∈ pns ∗X , that is, µ(∗f(p)) = o(∗f(p)) , for this only

left to prove that µ(∗f(p)) ⊂ o(∗f(p))
We recall that Fp = {A ⊂ N | p ∈ ∗A} ⊂ P (N) is a Cauchy filter and so is

the filter G generated by the image of f(Fp) .
Claim: µ(G) = µ(∗f(p)).
Since ∗f(p) ∈ µ(G) , µ(G) ⊂ µ(∗f(p)).
On the other hand, ∗f(p) ∈ ∗S ⇒ f−1(S) ∈ Fp thereby S ⊃ f(f−1(S)) ∈

G therefore S ∈ G.

Let V ∈ U and A ∈ Fp be given such that ∗f(∗A) ⊂ ∗V (p) (τ̂U -continuity
of ∗f in p). This tells us that µ(G) ⊂ o( ∗f(p)) , therefore

µ(∗f(p)) ⊂ o(∗f(p)).

�

Corollary 5.13. ∗f(p) ∈ pns ∗X ⇔ ∗f is τ̂U -continuous in p.

Proposition 5.14. pns ∗X is the biggest subset of ∗X containing X such

that τU and τ̂U agree.

Theorem 5.15. (X, t) is totally bounded ⇔ τU = τ̂(∗)U .
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Corollary 5.16. If ∗X = ∪pβ
′

pX and X is p-totally bounded for all p ∗N \N ,

then X is totally bounded.

Definition 5.17. (X, t) is p-complete if any function f : N → X , ∗f(p) ∈

pns ∗X ⇒ ∗f(p) ∈ X̂.

Proposition 5.18. p-compact ⇔ p-complete and p-totally bounded.

Definition 5.19. p ≤ta q if q-totally bounded ⇒ p-totally bounded.
p ≤cc q if q-complete ⇒ p-complete.

Questions 2.20 and 2.21

In [3] appeared Q 2.20 and Q 2.21 (open questions) whose nonstandard
versions are:

Q 2.20: Is there p ∈∗ N \N such that TC(p) ∩ wP = ∅ ?

TC(p) = {q ∈ ∗N | q ≤C p and p ≤C q}

Q 2.21: Is β′N ∩ wP 6= for all p ∈∗ N \N ? or
Is there p ∈∗ N \N such that β′N ∩ wP = ∅ ?

I will prove that if Q 2.21 is true then Q 2.20 is true.

Definition 5.20. For q ∈∗ N \N ,

Nq = {p ∈∗ N | q 6∈β′

pN}.

Remark 5.21.
1.- Np ⊂ Nq ⇒ p ∈ β′

qN.

2.- For all f : N → N , ∗f(Nq) ⊂ Nq.

Definition 5.22. We will say that Nq is p-compact if each function f : N →

Nq →֒ ∗N , its extension f̂ : ∗N → ∗N satisfies f̂(p) ∈ Nq.

Remark 5.23. Nq p-compact ⇒ p ∈ Nq.

Definition 5.24. p ∈∗ N \N is a weak P-point if p 6∈C ⊂∗ N \N ⇒ p 6∈C.

We denote the set of weak P-points by wP.

Theorem 5.25. q ∈ wP ⇒ Nq p-compact for all p ∈ Nq.

Theorem 5.26. p ≤C q and p ∈ wP ⇒ Np ⊂ Nq ⇒ p ∈ β′

qN.

Proof. If there is some z ∈ Np\Nq then both Np is z-compact and q ∈ β′

zN .
Hence, there is f : N → N such that q ∈ ∗A ⇔ ∗f(z) ∈ ∗A for all A ⊂ N

which implies that ĝ(q) ∈ Np since ĝ(∗f(z)) ∈ Np for all g : N → Np

Therefore Np is q-compact and, because p ≤C q , Np is p-compact then
(Theorem 5.25) p ∈ Np . This contradiction tells us that there is not z ∈
Np\Nq. �
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Now we can restate
Q 2.21: Is there p ∈∗ N \N such that Nq is p-compact for all q ∈ wP ? or⋂

q∈wP Nq 6= ∅ ?

If this last inequality is true, that is, if there is p ∈
⋂

q∈wP Nq then q 6≤Cp ∀ q ∈

wP thereby TC(p) ∩ wP = ∅ (Q 2.21)
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