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Abstract

In this paper, a new class of sets called µ-generalized closed (briefly
µg-closed) sets in generalized topological spaces are introduced and
studied. The class of all µg-closed sets is strictly larger than the class

of all µ-closed sets (in the sense of Á. Császár). Furthermore, g-closed
sets (in the sense of N. Levine) is a special type of µg-closed sets in
a topological space. Some of their properties are investigated here.
Finally, some characterizations of µ-regular and µ-normal spaces have
been given.
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1. Introduction

In the past few years, different forms of open sets have been studied. Re-
cently, a significant contribution to the theory of generalized open sets, was
extended by A. Császár. Especially, the author defined some basic operators
on generalized topological spaces.

It is observed that a large number of papers is devoted to the study of
generalized open like sets of a topological space, containing the class of open
sets and possessing properties more or less similar to those of open sets. For
example, [22] has introduced g-open sets, [4, 30, 2] sg-open sets, [25] pg-open
sets, [27, 28] gα-open sets, [13] δg∗-open sets, [21, 17] bg-open sets.

Owing to the fact that corresponding definitions have many features in
common, it is quite natural to conjecture that they can be obtained and a
considerable part of the properties of generalized open sets can be deduced
from suitable more general definitions. The purpose of this paper is to point
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out extremely elementary character of the proofs and to get many unknown
results by special choice of the generalized topology.

We recall some notions defined in [9]. Let X be a non-empty set, expX
denotes the power set of X . We call a class µ ⊆ expX a generalized topology
[9], (briefly, GT) if ∅ ∈ µ and union of elements of µ belongs to µ. A set X ,
with a GT µ on it is said to be a generalized topological space (briefly, GTS)
and is denoted by (X,µ). The θ-closure [35] (resp. δ-closure [35]) of a subset
A of a topological space (X, τ) is defined by {x ∈ X : clU ∩ A 6= ∅ for all
U ∈ τ with x ∈ U} (resp. {x ∈ X : A ∩ U 6= ∅ for all regular open sets U
containing x}, where a subset A is called regular open if A = int(cl(A))). A is
called δ-closed [35] (resp. θ-closed [35]) if A = clδA (resp. A = clθA) and the
complement of a δ-closed set (resp. θ-closed) set is known as a δ-open (resp. θ-
open) set. A subset A of a topological space (X, τ) is called preopen [29] (resp.
semiopen [23], δ-preopen [33], δ-semiopen [32], α-open [27], β-open [1], b-open
[21]) if A ⊆ int(cl(A)) (resp. A ⊆ cl(int(A)),A ⊆ int(clδA), A ⊆ cl(intδA),
A ⊆ int(cl(int(A))), A ⊆ cl(int(clA)), A ⊆ cl(int(A)) ∪ int(cl(A))). We note
that for any topological space (X, τ), the collection of all open sets denoted
by τ (preopen sets denoted by PO(X), semi-open sets denoted by SO(X), δ-
open sets denoted by δO(X), δ-preopen sets denoted by δ-PO(X), δ-semiopen
sets denoted by δ-SO(X), α-open sets denoted by αO(X), β-open sets denoted
by βO(X), θ-open sets denoted by θO(X), b-open sets denoted by BO(X) or
γO(X)) forms a GT.

For a GTS (X,µ), the elements of µ are called µ-open sets and the comple-
ment of µ-open sets are called µ-closed sets. For A ⊆ X , we denote by cµ(A)
the intersection of all µ-closed sets containing A, i.e., the smallest µ-closed set
containing A; and by iµ(A) the union of all µ-open sets contained in A, i.e.,
the largest µ-open set contained in A (see [9, 10]). Obviously in a topological
space (X, τ), if one takes τ as the GT, then cµ becomes equivalent to the usual
closure operator. Similarly, cµ becomes pcl, scl, clδ, pclδ, sclδ, clα, clβ , bcl
if µ stands for PO(X) (resp. SO(X), δO(X), δ-PO(X), δ-SO(X), αO(X),
βO(X), BO(X) or γO(X)).

It is easy to observe that iµ and cµ are idempotent and monotonic, where
γ : expX → expX is said to be idempotent iff A ⊆ B ⊆ X implies γ(γ(A))
= γ(A) and monotonic iff γ(A) ⊆ γ(B). It is also well known from [10, 11]
that if g is a GT on X and A ⊆ X , x ∈ X , then x ∈ cµ(A) iff x ∈ M ∈ µ ⇒
M ∩A 6= ∅ and cµ(X \A) = X \ iµ(A).

In this paper we introduce the concepts of µg-closed sets and µg-open sets.
It is shown that many results in previous papers can be considered as special
cases of our results.

2. Properties of µg-closed sets

Definition 2.1. Let (X,µ) be a GTS. Then a subset A of X is called a µ-
generalized closed set (or in short, µg-closed set) iff cµ(A) ⊆ U whenever A ⊆ U
where U is µ-open in X . The complement of a µg-closed set is called a µg-open
set.
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Remark 2.2.

(i) If (X, τ) is a topological space, the definition of g-open set [22] (resp.
sg-open set [4, 2], pg-open set [25], gα-open set [27], δg∗-open set [13],
bg-open set [21] or γg-open set [17]) can be obtained by taking µ = τ
(resp. SO(X), PO(X), αO(X), δO(X), γO(X)).

(ii) Every µ-open set in a GTS (X,µ) is µg-open. In fact, if A is a µ-open
set in (X,µ), then X \A is a µ-closed set. Let X \ A ⊆ U ∈ µ. Then
cµ(X \A) = X \A ⊆ U . Thus X \A is a µg-closed set and hence A is
a µg-open set.

The converse of Remark 2.2(ii) is not true as seen from the next example :

Example 2.3. Let X = {a, b, c} and µ = {∅, X, {a}, {b, c}, {a, c}}. Then
(X,µ) is a GTS. It is easy to verify that {c} is µg-open in (X,µ) but not
µ-open.

The next two examples show that the union (intersection) of two µg-open
sets is not in general µg-open.

Example 2.4.

(a) Let X = {a, b, c} and µ = {∅, X, {a}}. Then (X,µ) is a GTS. It can
be shown that if A = {b} and B = {c}, then A and B are two µg-open
sets but A ∪B = {b, c} is not a µg-open set.

(b) Let X = {a, b, c, d} and µ = {∅, X, {a, b}, {a, c, d}, {a, b, d}, {b, c, d}}.
Then (X,µ) is a GTS. It follows from Remark 2.2(ii) that {a, b} and
{a, c, d} are two µg-open sets but it is easy to check that their intersec-
tion {a} is not µg-open.

Theorem 2.5. A subset A of a GTS (X,µ) is µg-closed iff cµ(A)\A contains
no non-empty µ-closed set.

Proof. Let F be a µ-closed subset of cµ(A) \ A. Then A ⊆ F c (where F c

denotes as usual the complement of F ). Hence by µg-closedness of A, we have
cµ(A) ⊆ F c or F ⊆ (cµ(A))

c. Thus F ⊆ cµ(A) ∩ (cµ(A))
c = ∅, i.e., F = ∅.

Conversely, suppose that A ⊆ U where U is µ-open. If cµ(A) * U , then
cµ(A) ∩ U c (6= ∅) is a µ-closed subset of cµ(A) \ A - a contradiction. Hence
cµ(A) ⊆ U . �

Theorem 2.6. If a µg-closed subset A of a GTS (X,µ) be such that cµ(A)\A
is µ-closed, then A is µ-closed.

Proof. Let A be a µg-closed subset such that cµ(A) \ A is µ-closed. Then
cµ(A) \ A is a µ-closed subset of itself. Then by Theorem 2.5, cµ(A) \ A = ∅
and hence cµ(A) = A, showing A to be a µ-closed set. �

That the converse is false follows from the following example.

Example 2.7. Let X = {a, b, c} and µ = {∅, {a}, {a, b}}. Then (X,µ) is a
GTS. It is easy to observe that {b, c} is µ-closed and hence a µg-closed set (by
Remark 2.2), but cµ(A) \A = ∅, which is not µ-closed.
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Theorem 2.8. Let A be a µg-closed set in a GTS (X,µ) and A ⊆ B ⊆ cµ(A).
Then B is µg-closed.

Proof. Let B ⊆ U , where U is µ-open in (X,µ). Since A is µg-closed and
A ⊆ U , cµ(A) ⊆ U . Now, B ⊆ cµ(A) ⇒ cµ(B) ⊆ cµ(A). So cµ(B) ⊆ U . �

Theorem 2.9. In a GTS (X,µ), µ = Ω (the collection of all µ-closed sets) iff
every subset of X is µg-closed.

Proof. Suppose µ = Ω and A (⊆ X) be such that A ⊆ U ∈ µ. Then cµ(A) ⊆
cµ(U) = U and hence A is µg-closed.

Conversely, suppose that every subset of X is µg-closed. Let U ∈ µ. Then
U ⊆ U and by µg-closedness of U , we have cµ(U) ⊆ U , i.e., U ∈ Ω. Thus
µ ⊆ Ω.
Now, if F ∈ Ω then F c ∈ µ, so F c ∈ Ω (as µ ⊆ Ω), i.e., F ∈ µ. �

Theorem 2.10. A subset A of a GTS (X,µ) is µg-open iff F ⊆ iµ(A), when-
ever F is µ-closed and F ⊆ A.

Proof. Obvious and hence omitted. �

Theorem 2.11. A set A is µg-open in a GTS (X,µ) iff U = X whenever U
is µ-open and iµ(A) ∪ Ac ⊆ U .

Proof. Suppose U is µ-open and iµ(A) ∪ Ac ⊆ U . Now, U c ⊆ (iµ(A))
c ∩ A =

cµ(X \A) \ (X \A). Since U c is µ-closed and X \A is µg-closed, by Theorem
2.5, U c = ∅, i.e., U = X .

Conversely, let F be a µ-closed set and F ⊆ A. Then by Theorem 2.10,
it is enough to show that F ⊆ iµ(A). Now, iµ(A) ∪ Ac ⊆ iµ(A) ∪ F c, where
iµ(A) ∪ F c is µ-open. Hence by the given condition, iµ(A) ∪ F c = X , i.e.,
F ⊆ iµ(A). �

Theorem 2.12. A subset A of a GTS (X,µ) is µg-closed iff cµ(A) \ A is
µg-open.

Proof. Suppose A is µg-closed and F ⊆ cµ(A)\A, where F is a µ-closed subset
of X . Then by Theorem 2.5, F = ∅ and hence F ⊆ iµ[cµ(A) \ A]. Then by
Theorem 2.10, cµ(A) \A is µg-open.

Conversely, suppose that A ⊆ U where U is µ-open. Now, cµ(A) ∩ U c ⊆
cµ(A)∩Ac = cµ(A) \A. Since cµ(A)∩U c is µ-closed and cµ(A) \A is µg-open,
cµ(A) ∩ U c = ∅ (by Theorem 2.5). Thus cµ(A) ⊆ U , i.e., A is µg-closed. �

Definition 2.13. A GTS (X,µ) is said to be

(i) µ-T0 [34] iff x, y ∈ X , x 6= y implies the existence of K ∈ µ containing
precisely one of x and y.

(ii) µ-T1 [34] iff x, y ∈ X , x 6= y implies the existence of K,K1 ∈ µ such
that x ∈ K, y 6∈ K and x 6∈ K1, y ∈ K1.

(iii) µ-T1/2 iff every µg-closed set is µ-closed.
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Remark 2.14. A topological space (X, τ) is Ti [16] (resp. semi-Ti [4], pre-Ti

[25], α-Ti [28], δ-Ti [13], b-Ti [21]) for i = 0, 1/2, 1 by taking µ = τ (resp.
SO(X), PO(X), αO(X), δO(X), BO(X) or γO(X)).

Theorem 2.15. If a GTS (X,µ) is µ-T1/2 then it is µ-T0.

Proof. Suppose that (X,µ) is not a µ-T0 space. Then there exist distinct points
x and y in X such that cµ({x}) = cµ({y}). Let A = cµ({x}) ∩ {x}c. We shall
show that A is µg-closed but not µ-closed. Suppose that A ⊆ V ∈ µ. We have
to show that cµ(A) ⊆ V . Thus it is enough to show that cµ({x}) ⊆ V (as
A ⊆ cµ({x})). Again, since cµ({x}) ∩ {x}c = A ⊆ V , we need only to show
that x ∈ V . In fact, if x 6∈ V , then y ∈ cµ({x}) ⊆ V c (as V c is µ-closed). So
y ∈ A ⊆ V c and hence y ∈ V ∩ V c - a contradiction.
If x ∈ U ∈ µ, then U ∩A ⊇ {y} 6= ∅, and hence x ∈ cµ(A). Clearly, x 6∈ A and
thus A is not µ-closed. �

Example 2.16. Let X = {a, b, c, d} and µ = {∅, X, {a, b}, {a, c, d}, {a, b, d},
{b, c, d}}. Then (X,µ) is a GTS. Clearly, this GTS is µ-T0 and it can be shown
that the collection of all µg-open sets are {∅, X, {d}, {a, b}, {a, c, d}, {a, b, d},
{b, c, d}}. Thus this space is not µ-T1/2.

Theorem 2.17. If a GTS (X,µ) is µ-T1 then it is µ-T1/2.

Proof. Suppose that A is a subset of X which is not µ-closed. Take x ∈
cµ(A) \A. Then {x} ⊆ cµ(A) \A and {x} is µ-closed (as (X,µ) is µ-T1). Thus
by Theorem 2.5, A is not µg-closed. �

Example 2.18. Let X = {a, b, c, d} and µ = {∅, X, {d}, {a, b}, {b, c, d}, {a, c, d},
{a, b, d}}. Then (X,µ) is a GTS. It is easy to verify that (X,µ) is µ-T1/2 but
not µ-T1.

Definition 2.19. A GTS (X,µ) is said to be µ-symmetric iff for each x, y ∈ X ,
x ∈ cµ({y}) ⇒ y ∈ cµ({x}).

Remark 2.20. It is easy to check that the above definition of a µ-symmetric
space GT unifies the existing definitions of δ-symmetric space [8], (δ, p)-symmetric
space [5], α-symmetric [6], δ-semi symmetric space [7] if (X, τ) is a topological
space and µ = δO(X), δ-PO(X), αO(X), δ-SO(X) respectively.

Theorem 2.21. A GTS (X,µ) is µ-symmetric iff {x} is µg-closed for each
x ∈ X.

Proof. Let {x} ⊆ U ∈ µ and (X,µ) be µ-symmetric but cµ({x}) * U . Then
cµ({x}) ∩ U c 6= ∅. Let y ∈ cµ({x}) ∩ U c. Then x ∈ cµ({y}) ⊆ U c ⇒ x 6∈ U - a
contradiction.

Conversely, let for each x ∈ X , {x} is µg-closed and x ∈ cµ({y}) ⊆ (cµ({x}))
c

(as {y} is µg-closed). Thus x ∈ (cµ({x}))
c - a contradiction. �

Corollary 2.22. If a GTS (X,µ) is µ-T1 then it is µ-symmetric.

Example 2.23. Let X = {a, b} and µ = {∅, X}. Then (X,µ) is a µ-
symmetric space which is not µ-T1.
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Theorem 2.24. A GTS (X,µ) is µ-symmetric and µ-T0 iff (X,µ) is µ-T1.

Proof. If (X,µ) is µ-T1 then it is µ-symmetric (by Corollary 2.22) and µ-T0

(by Definition 2.13).
Conversely, let (X,µ) be µ-symmetric and µ-T0. We shall show that (X,µ)

is µ-T1. Let x, y ∈ X and x 6= y. Then by µ-T0-ness of (X,µ), there exists
U ∈ µ such that x ∈ U ⊆ {y}c. Then x 6∈ cµ({y}) and hence y 6∈ cµ({x}).
Thus there exists V ∈ µ such that y ∈ V and x 6∈ V . Thus (X,µ) is µ-T1. �

Theorem 2.25. If (X,µ) is µ-symmetric, then (X,µ) is µ-T0 iff (X,µ) is
µ-T1/2 iff (X,µ) is µ-T1.

Proof. Follows from Theorem 2.24 and the fact that µ-T1 ⇒ µ-T1/2 ⇒ µ-T0.
�

3. Preservation of µg-closed sets

Definition 3.1. Let (X,µ
1
) and (Y, µ

2
) be two GTS’s. A mapping f :

(X,µ
1
) → (Y, µ

2
) is said to be

(i) (µ
1
, µ

2
) continuous [9] iff f−1(G2) ∈ µ

1
for each G2 ∈ µ

2
;

(ii) (µ
1
, µ

2
)-closed iff for any µ

1
-closed subset A of X , f(A) is µ

2
-closed in

Y .

Theorem 3.2. Let (X,µ
1
) and (Y, µ

2
) be two GTS’s and f : (X,µ

1
) → (Y, µ

2
)

be (µ
1
, µ

2
)-continuous and (µ

1
, µ

2
)-closed mapping. If A is µ

1
g-closed in X

then f(A) is µ
2
g-closed in Y .

Proof. Let f(A) ⊆ G2, where G2 is a µ
2
-open set in Y . Then A ⊆ f−1(G2),

where f−1(G2) is a µ
1
-open set in X . Thus by µ

1
g-closedness of A, cµ

1
(A) ⊆

f−1(G2). Thus f(cµ1
(A)) ⊆ G2 and f(cµ

1
(A)) is µ

2
-closed in Y . It thus follows

that cµ
2
(f(A)) ⊆ cµ

2
(f(cµ1

(A))) = f(cµ
1
(A)) ⊆ G2. Thus f(A) is µ

2
g-closed

in Y . �

Theorem 3.3. Let (X,µ
1
) and (Y, µ

2
) be two GTS’s and f : (X,µ

1
) → (Y, µ

2
)

be a (µ1, µ2)-continuous and (µ
1
, µ

2
)-closed mapping. If B is a µ

2
g-closed set

in Y , then f−1(B) is µ
1
g-closed in X.

Proof. Suppose that B is a µ
2
g-closed set in Y and f−1(B) ⊆ G1, where G1 is

µ
1
-open in X . We shall show that cµ1

(f−1(B)) ⊆ G1. Now f [cµ
1
(f−1(B)) ∩

Gc
1] ⊆ cµ

2
(B) \ B and by Theorem 2.5, f [cµ

1
(f−1(B)) ∩ Gc

1] = ∅. Thus

cµ
1
(f−1(B)) ∩ Gc

1 = ∅. Thus cµ
1
(f−1(B)) ⊆ G1 and hence f−1(B) is µ

1
g-

closed in X . �

Next two examples show that (µ
1
, µ

2
)-continuity and (µ

1
, µ

2
)-closedness in

both of the above theorems are essential.

Example 3.4. Let X = {a, b, c, d}, µ
1
= {∅, X, {a, b}, {c, d}, {a, c, d}, {a, b, d}}

and µ
2
= {∅, X, {a, b}, {c, d}, {a, c, d}}. Then (X,µ

1
) and (X,µ

2
) are two

GTS’s. Consider the identity mapping f : (X,µ
1
) → (X,µ

2
). It is easy to see
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that f is a (µ
1
, µ

2
)-continuous mapping which is not (µ

1
, µ

2
)-closed. The fami-

lies of µ
1
g-open and µ

2
g-open sets are respectively {∅, X, {a}, {d}, {c, d}, {a, d},

{a, b}, {a, c, d}, {a, b, d}} and {∅, X, {a}, {c}, {d}, {c, d}, {a, d}, {a, b}, {a, c},
{a, c, d}, {a, b, d}, {a, b, c}}. We note that {d} is gµ

2
-closed but f−1({d}) is not

gµ
1
-closed.
Again, the identity map h defined by h : (X,µ

2
) → (X,µ

1
) is not a (µ2, µ1)-

continuous mapping but it is (µ
2
, µ

1
)-closed. Clearly, {d} is a µ

2
g-closed set

but h({d}) is not a µ
1
g-closed set.

Example 3.5. Let X = {a, b, c, d} , µ
1
= {∅, X, {a, b}, {c, d}, {a, c, d}, {a, b, d}}

and µ
2
= {∅, X, {a, b}, {a, b, d}, {a, c, d}}. Then (X,µ

1
) and (X,µ

2
) are GTS’s.

Now, consider the identity map f : (X,µ
1
) → (X,µ

2
). It is easy to verify that

f is a (µ
1
, µ

2
)-continuous mapping which is not (µ

1
, µ

2
)-closed. The family of

gµ
1
-open and gµ

2
-open sets are respectively {∅, X, {a}, {d}, {c, d}, {a, d}, {a, b},

{a, c, d}, {a, b, d}} and {∅, X, {a}, {d}, {a, b}, {a, d}, {a, b, d}, {a, c, d}}. We note
that {a, b} is µ

1
g-closed but f({a, b}) is not µ

2
g-closed.

Again, consider the identity map h : (X,µ
2
) → (X,µ

1
). Then, clearly h

is a (µ
2
, µ

1
)-closed map which is not (µ

2
, µ

1
)-continuous. Clearly, {a, b} is

µ
1
g-closed but h−1({a, b}) is not a µ

2
g-closed set.

4. Properties of µ-regular and µ-normal spaces

Definition 4.1. A GTS (X,µ) is said to be µ-regular if for each µ-closed set
F of X not containing x, there exist disjoint µ-open set U and V such that
x ∈ U and F ⊆ V .

Remark 4.2. Regular space, pre-regular space, semi-regular space, β-regular
space, α-regular space are defined and studied in [16, 31, 15, 19, 20] respectively.
The above definition gives a unified version of all these definitions if µ takes
the role of τ , PO(X), SO(X), βO(X), αO(X) respectively.

Theorem 4.3. For a GTS (X,µ) the followings are equivalent:

(a) X is µ-regular.
(b) For each x ∈ X and each U ∈ µ containing x, there exists V ∈ µ such

that x ∈ V ⊆ cµ(V ) ⊆ U .
(c) For each µ-closed set F of X, ∩{cµ(V ) : F ⊆ V ∈ µ} = F .
(d) For each subset A of X and each U ∈ µ with A ∩ U 6= ∅, there exists

a V ∈ µ such that A ∩ V 6= ∅ and cµ(V ) ⊆ U .
(e) For each non-empty subset A of X and each µ-closed subset F of X

with A ∩ F = ∅, there exist U, V ∈ µ such that A ∩ V 6= ∅, F ⊆ W
and W ∩ V = ∅.

(f) For each µ-closed set F with x 6∈ F there exist U ∈ µ and a µg-open
set V such that x ∈ U , F ⊆ V and U ∩ V = ∅.

(g) For each A ⊆ X and each µ-closed set F with A ∩ F = ∅ there exist
a U ∈ µ and a µg-open set V such that A ∩ U 6= ∅, F ⊆ V and
U ∩ V = ∅.

(h) For each µ-closed set F of X, F = ∩{cµ(V ) : F ⊆ V, V is µg-open}.
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Proof. (a) ⇒ (b) : Let U be a µ-open set containing x. Then x 6∈ X\U , where
X \ U is µ-closed. Then by (a) there exist G, V ∈ µ such that X \ U ⊆ G and
x ∈ V and G ∩ V = ∅. Thus V ⊆ X \G and so x ∈ V ⊆ cµ(V ) ⊆ X \G ⊆ U .

(b) ⇒ (c) : Let X \ F ∈ µ be such that x 6∈ F . Then by (b) there exists
U ∈ µ such that x ∈ U ⊆ cµ(U) ⊆ X \ F . So, F ⊆ X \ cµ(U) = V (say)∈ µ
and U ∩ V = ∅. Thus x 6∈ cµ(V ). Hence F ⊇ ∩{cµ(V ) : F ⊆ V ∈ µ}.

(c) ⇒ (d) : Let U ∈ µ with x ∈ U ∩ A. Then x 6∈ X \ U and hence by (c)
there exists a µ-open set W such that X \ U ⊆ W and x 6∈ cµ(W ). We put
V = X \ cµ(W ), which is a µ-open set containing x and hence A ∩ V 6= ∅ (as
x ∈ A ∩ V ). Now V ⊆ X \W and so cµ(V ) ⊆ X \W ⊆ U .

(d) ⇒ (e) : Let F be a µ-closed set as in the hypothesis of (e). Then X \F
is a µ-open set and (X \ F ) ∩ A 6= ∅. Then there exists V ∈ µ such that
A ∩ V 6= ∅ and cµ(V ) ⊆ X \ F . If we put W = X \ cµ(V ), then F ⊆ W and
W ∩ V = ∅.

(e) ⇒ (a) : Let F be a µ-closed set not containing x. Then by (e), there
exist W,V ∈ µ such that F ⊆ W and x ∈ V and W ∩ V = ∅.

(a) ⇒ (f) : Obvious as every µ-open set is µg-open (by Remark 2.2).

(f) ⇒ (g) : Let F be a µ-closed set such that A ∩ F = ∅ for any subset
A of X . Thus for a ∈ A, a 6∈ F and hence by (f), there exist a U ∈ µ and a
µg-open set V such that a ∈ U , F ⊆ V and U ∩ V = ∅. So A ∩ U 6= ∅.

(g) ⇒ (a) : Let x 6∈ F , where F is µ-closed. Since {x}∩F = ∅, by (g) there
exist a U ∈ µ and a µg-open set W such that x ∈ U , F ⊆ W and U ∩W = ∅.
Now put V = iµ(W ). Then F ⊆ V (by Theorem 2.10) and U ∩ V = ∅.

(c) ⇒ (h) : We have F ⊆ ∩{cµ(V ) : F ⊆ V and V is µg-open} ⊆ ∩{cµ(V ) :
F ⊆ V and V is µ-open} = F .

(h) ⇒ (a) : Let F be a µ-closed set in X not containing x. Then by (h)
there exists a µg-open set W such that F ⊆ W and x ∈ X \ cµ(W ). Since F is
µ-closed and W is µg-open, F ⊆ iµ(W ) (by Theorem 2.10). Take V = iµ(W ).
Then F ⊆ V , x ∈ X\cµ(V ) = U (say) (as (X\F )∩V = ∅) and U∩V = ∅. �

Definition 4.4. A GTS (X,µ) is µ-normal [12] if for any pair of disjoint µ-
closed subsets A and B of X , there exist disjoint µ-open sets U and V such
that A ⊆ U and B ⊆ V .

Remark 4.5. Normal space, pre-normal space, semi-normal space, α-normal
space, β-normal space, γ-normal space are defined and studied in [16, 31, 2,
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20, 19, 17] respectively. The above definition gives a unified version of all these
definitions if µ takes the role of τ , PO(X), SO(X), αO(X), βO(X) respectively.

Theorem 4.6. For a GTS (X,µ) the followings are equivalent:

(a) X is µ-normal;
(b) For any pair of disjoint µ-closed sets A and B, there exist disjoint

µg-open sets U and V such that A ⊆ U and B ⊆ V ;
(c) For every µ-closed set A and µ-open set B containing A, there exists

a µg-open set U such that A ⊆ U ⊆ cµ(U) ⊆ B;
(d) For every µ-closed set A and every µg-open set B containing A, there

exists a µ-open set U such that A ⊆ U ⊆ cµ(U) ⊆ iµ(B);
(e) For every µg-closed set A and every µ-open set B containing A, there

exists a µ-open set U such that A ⊆ cµ(A) ⊆ U ⊆ cµ(U) ⊆ B.

Proof. (a) ⇒ (b) : Let A and B be two disjoint µ-closed subsets of X . Then
by µ-normality of X , there exist disjoint µ-open sets U and V such that A ⊆ U
and B ⊆ V . Then U and V are µg-open by Remark 2.2.

(b) ⇒ (c) : Let A be a µ-closed set and B be a µ-open set containing
A. Then A and Bc are two disjoint µ-closed sets in X . Then by (b), there
exist disjoint µg-open sets U and V such that A ⊆ U and Bc ⊆ V . Thus
A ⊆ U ⊆ X \ V ⊆ B. Again, since B is µ-open and X \ V is µg-closed,
cµ(X \ V ) ⊆ B. Hence A ⊆ U ⊆ cµ(U) ⊆ B.

(c) ⇒ (d) : Let A be a µ-closed subset of X and B be a µg-open set
containing A. Since B is a µg-open set containing A and A is µ-closed, by
Theorem 2.10, A ⊆ iµ(B). Thus by (c) there exists a µg-open set U such that
A ⊆ U ⊆ cµ(U) ⊆ iµ(B).

(d) ⇒ (e) : Let A be a µg-closed set and B be a µ-open set in X containing
A. A ⊆ B implies cµ(A) ⊆ B, where cµ(A) is µ-closed and B is µg-open (as B
is µ-open). Then by (d), there exists a µ-open set U such that A ⊆ cµ(A) ⊆
U ⊆ cµ(U) ⊆ iµ(B). Thus A ⊆ cµ(A) ⊆ U ⊆ cµ(U) ⊆ B.

(e) ⇒ (a) : Let A and B be two disjoint µ-closed subsets of X . Then A
is µg-closed and A ⊆ X \B, where X \B is µ-open. Thus by (e), there exists
a µ-open set U such that A ⊆ cµ(A) ⊆ U ⊆ cµ(U) ⊆ X \ B. Thus A ⊆ U ,
B ⊆ X \ cµ(U) and U ∩ (X \ cµ(U)) = ∅. Hence X is µ-normal. �

Remark 4.7. (a) By using µ = τ [22] (resp. PO(X) [25], SO(X) [4], αO(X)
[27], δO(X) [13], BO(X) [17, 21]) on a topological space (X, τ) several modifi-
cations of g-closed sets (resp. sg-closed sets, gα-closed sets, δg∗-closed sets, bg-
closed sets) are introduced and investigated. Since each of τ , PO(X), SO(X),
αO(X), δO(X), BO(X) forms a GT on X, the characterizations of each of the
families are obtained from µg-open set.
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(b) The definition of many other similar types of generalized closed sets can
be defined on a topological space (X, τ) from the definition of µg-closed set by
replacing µ by the corresponding GT on X .
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