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ABSTRACT

The paper is a continuation of our study on developing a new approach
to (lattice-valued) topological structures, which relies on category the-
ory and universal algebra, and which is called categorically-algebraic
(catalg) topology. The new framework is used to build a topological
setting, based in a catalg extension of the set-theoretic membership
relation “€” called dual attachment, thereby dualizing the notion of
attachment introduced by the authors earlier. Following the recent
interest of the fuzzy community in topological systems of S. Vickers,
we clarify completely relationships between these structures and (dual)
attachment, showing that unlike the former, the latter have no inher-
ent topology, but are capable of providing a natural transformation
between two topological theories. We also outline a more general set-
ting for developing the attachment theory, motivated by the concept of
(L, M)-fuzzy topological space of T. Kubiak and A. Sostak.
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1. INTRODUCTION

Motivated by the abundance of lattice-valued topological theories available
in the literature and the lack of interaction means between them, this paper
makes another step towards developing a new approach to (lattice-valued) topo-
logical structures deemed to incorporate in itself the majority of the existing
settings. Based in category theory and universal algebra, the new framework
is called categorically-algebraic (catalg) topology [64] to underline its generat-
ing theories. It originates from point-set lattice-theoretic (poslat) topology of
S. E. Rodabaugh [61, 62], developed in the framework of lattice-valued powerset
theories (motivated by algebraic theories (in clone form) of E. G. Manes [46],
the basic example given by the theory of the powerset functor on the category
Set of sets and maps, appended with its induced contravariant powerset func-
tor), where the underlying algebraic structures for topology are semi-quantales.
We replace semi-quantales with algebras (possibly having a class of non-finitary
operations) from an arbitrary variety and consider an abstract category as the
ground for topology. The framework obtained in this manner includes the
most important approaches to (lattice-valued) topology, providing convenient
means of intercommunication between them, and (that is more essential) ul-
timately erasing the border between lattice-valued and crisp developments.
Moreover, the amount of building blocks of the proposed theory is reduced to
minimum, postulating the so-called “plug and play approach”, when additional
requirements on the underlying setting are motivated by the need of additional
properties. In particular, we never employ the framework of monadic topol-
ogy, developed by several authors in the literature [18, 29, 31], as being too
restrictive for our current purposes. Briefly speaking, we propagate the slogan:
achieve more with less. On the other hand, it should be underlined imme-
diately, that all essential properties of modern (lattice-valued) topology (e.g.,
compactness, separation axioms, connectedness, etc.) can be incorporated in
the catalg setting. It is the theory of catalg spaces [67], which is currently
undertaking the job. Moreover, the new framework is rapidly progressing in
several other directions [65, 71, 72, 73, 74], influencing each other dramatically.
It is the main purpose of this paper to show one of the important applications
of the new theory, i.e., the development of a fruitful topological setting, based
in a catalg generalization of the set-theoretic membership relation “€”.

The starting point for the proposed research topic lies in the concept of quasi-
coincidence between a fuzzy point and a fuzzy set, introduced by P.-M. Pu and
Y.-M. Liu [49, Definition 2.3'] with the aim to extend the standard approach to
topology through neighborhood structures by fuzzifying the above relation “€”.
Given a set X, a fuzzy point a, (a map from X to the unit interval I = [0, 1],
taking value a at x and 0 elsewhere) is said to be quasi-coincident with a
fuzzy set o (a map X < 1) provided that 1 — a(z) < a. Later on, Y.-M. Liu
and M.-K. Luo [43, Definition 2.3.1] used a completely distributive lattice L,
equipped with an order-reversing involution (—)’, to generalize the definition
to a € (a(x))’. Moreover, Y.-M. Liu [42] showed that the quasi-coincidence
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relation is the unique membership relation, which satisfies the four principles of
a “reasonable” (generating a fruitful topological theory) membership relation.

The next step was done by C. Guido (and V. Scarciglia) [25, 26, 27], who
removed the requirement on the existence of an involution and introduced
a lattice-valued analogue of the relation in question under the name of at-
tachment. Given a complete lattice L, an attachment A in L is a family
{F.la € L\{L}} of completely prime (\/ S € F, implies S(\F, # &) fil-
ters of L, indexed by its elements, with an additional requirement F| = &.
An L-point a, is said to be attached to an L-set a (denoted a, A «a) provided
that a(z) € F,. The new notion not only generalizes quasi-coincidence relation
(take L =T and let F, = {b|1 —a < b} for every a € L), but also induces a
functor from the category L-Top of L-topological spaces [33] to the category
Top of topological spaces, which takes an L-topological space (X, 1) to the
crisp space (Sx,7*), where Sy is the set of L-points of X and 7* = {a* |a € 7}
with o* = {a, | ay Aa}. The new functor is closely related to the well-known
hypergraph functors [20, 32, 36, 53, 55, 58] used in lattice-valued mathemat-
ics, bringing them under the common roof of attachment, and thereby remov-
ing the difference in their definition by various authors, that prevents them
from gaining in popularity in applications. The employed machinery is based
in the concept of topological system of S. Vickers [75], introduced to merge
point-set (topological spaces) and pointless (their underlying algebraic struc-
tures - locales [35]) topology, which recently has raised an interest among the
fuzzy researchers [12, 13, 14, 74] as a possible framework to incorporate both
lattice-valued topology and its underlying algebraic structures (in most cases,
particular kinds of the already mentioned semi-quantales).

In [73], S. Solovyov generalized the approach even further, taking into con-
sideration the fact that there exists a one-to-one correspondence between com-
pletely prime filters of a complete lattice L and points of L (frame homomor-
phisms from L to the two-element frame 2 = {L, T} [35]), which opens a

possibility to define an attachment as a map L T Frm(L, 2) (omitting the re-
quirement I’} = & as never influencing the essential properties of the theory).
The above-mentioned catalg approach to topology in hand, he introduced the
notion of variable-basis attachment for an arbitrary variety of algebras.

Definition 1.1. Let A be a variety of algebras and let A ), Set? be a

functor, which takes an A-algebra A to its underlying set. An (A-)attachment
is a triple F = (QF,X F,IF), where Q F and ¥ F are A-algebras, and Q F L,
AQF,XF) is a map. An attachment morphism Fy ER Fy is a pair of A-
homomorphisms (Q Fy, XF) w (Q Fy, X Fy) such that for every a1 €
QO F and every as € QFs, (IF2(a2))(2 f(a1)) = (B f o Ik ((Q f)*P(az2)))(aq).
AttA is the category of attachments and their homomorphisms, concrete over
the product category A x A.

The main achievement of [73] is a common framework (based in catalg at-
tachment) for the majority of instances of hypergraph functor, providing a



104 A. Frascella, C. Guido and S. A. Solovyov

convenient tool for exploring their features, and the explicit study of cate-
gorical properties of attachment and its generated functors (in the sense of
[25, 26]), which appear to have a right adjoint for a particular attachment type
called spatial, generalizing the respective property of the hypergraph functor of
U. Hohle [32]. The advantage of the last result is the extension of the achieve-
ment of U. Hohle to all of the above instances of hypergraph functor, taking the
appropriate underlying variety in each case. Moreover, this fact illustrates the
main contribution of the catalg setting itself, whose essence is: prove once for
many. It is the goal of this paper to continue the once started line of research
by presenting a dual version of attachment. The meta-mathematical induce-
ment for the new approach was given by the observation that both partially
ordered sets and categories provide the means for dualization of their results.
The real push, however, was taken up by the authors in their wish to change
the setting of lattice-valued attachment of [26] from filters to ideals. After a
brief discussion on the topic, the following crucial observations came to light.

Observation 1. The case of a complete chain L provides a possibility to
define an attachment A on L as a family F)}, = & and F, = {b € L|a < b}
for every a € L\{L}. More particularly, given an L-point a, and an L-set a,
az A iff a(z) € Fy iff a < ax). If a(x) # T, then Gy = {b€ L|b < afx)}
is a completely prime ideal of L, which is the notion dual to that of completely
prime filter. This suggests the family G+ = @ and G, = {b € L|b < a} for
every a € L\{T} as a possible substitute for A, thereby turning the attachment
condition a; A o from a(zr) € F, into a € Gy(y)-

Observation 2. In the wake of [73], the concluding section of [26] intro-
duced the notion of generalized attachment, based in the category QFrm of
quasi-frames (Definition 2.2 of this paper), which are complete lattices, with
the respective morphisms preserving arbitrary \/ and binary A (the empty meet
is excluded). The new category gives rise to the notion of completely prime
quasi-filter of a complete lattice L as the preimage of {T} under a quasi-frame
map (quasi-point) L 2y 2. which allows, apart from the standard filters, also
the empty one. A generalized attachment in a quasi-frame L is then a map

o QFrm(L, 2) (cf. Definition 1.1). The particular case of a complete chain
L suggests the following definition of the map IF:

T, a<b,
1, otherwise,

(IF(a))(b) = {

providing a generalized attachment F' = (L, 2,I). Brief consideration brings a

new map L -5 2L defined by (IF(a))(b) = (IF(b))(a), which induces the triple
G = (L,2,IIF). An important property of the map is its preservation of \/
and binary A, i.e., (IF(\V/S)(0) =T if b < \/S iff b < s for some s € S iff
(I-(s))(b) = T for some s € Siff (\/,.glIF(s))(b) = T, whereas (I-(sAt))(b) = T
iffb<sAtiffb<s, b<tiff (IF(s))(b) A (IF(£))(b) = T. On the other hand,
the map lIF(a) is not \/-preserving for a # L, since (IlF(a))(L) =T # L. In
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such a manner, the so-called dual attachment pair (F,G) arises, where duality
means a, F o iff (IF(a))(a(z)) = T iff IF(a(z))(a) = T iff a; G a.

The above remarks provide an opening for a new definition of attachment,
called in this paper dual attachment. Apart from concrete applications to the al-
ready developed theory, the concept represents a catalg extension of the notion
of “duality” in mathematics (should not be mixed with the theory of catalg du-
alities [71, 72] dealing with topological representations of algebraic structures).
The attentive reader will see that catalg “duality” is neither categorical duality
(as, e.g., the dual of a category), nor algebraic duality (as, e.g., the dual of a
partially ordered set), but truly categorically-algebraic “duality”. It will be the
topic of our forthcoming papers to find the proper place for such kind of dual-
ities in mathematics, whereas this manuscript is bound to consider categorical
properties of dual attachment and the functors arising from it. It appears that
the concept still retains a close relation to topological systems of S. Vickers.
On the other hand, the results of this paper clearly show that the nature of the
two notions is essentially different, the latter being equipped with an internal
topology extracted by the procedure of spatialization of systems introduced
by S. Vickers [75], whereas the former providing a way of interaction (natural
transformation) between two topological theories, resulting in a functor be-
tween the categories of the respective topological structures. The achievement
finally resolves the question (posed in the fuzzy community) on relationships
between the two concepts and a possible common framework for both of them
(non-existent due to the principally different categorical perspectives of the no-
tions). Moreover, the just mentioned crucial property of attachment gave rise
to the study of one of the authors on general relationships between catalg topo-
logical theories and their induced catalg topological structures (see Section 6
of this manuscript for the respective definitions), partly announced during the
presentation of [65] and currently being developed as the subject of a forth-
coming paper, similar by the approach (but not the results) to the widely used
in categorical algebra algebraic theories of F. W. Lawvere [41].

This paper uses both category theory and universal algebra, relying more on
the former. The necessary categorical background can be found in [1, 28, 45,
46]. For the notions of universal algebra we recommend [7, 9, 23, 46]. Although
the authors tried to make the paper as much self-contained as possible, some
details are still omitted and left to the reader.

2. DUAL ATTACHMENT WITH ITS INDUCED CATEGORIES AND FUNCTORS

In this section, we introduce the notion of dual attachment and consider its
related categories and functors. The cornerstone of the approach is the concept
of algebra. The structure is to be thought of as a set with a family of operations
defined on it, satisfying certain identities, e.g., semigroup, monoid, group and
also (that is different from the standard theory of universal algebra) complete
lattice, frame, quantale. The classes of finitary algebras (those induced by a
set of finitary operations) are usually described in universal algebra as either
varieties or equational classes [7, 9, 23], which coincide due to the well-known
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HSP-theorem of G. Birkhoff [6]. To incorporate the algebraic structures used
in lattice-valued topology (where set-theoretic unions are usually replaced by
arbitrary joins), this paper extends the approach of varieties to cover its needs.

Definition 2.1.

(1) Let 2 = (nx)aea be a (possibly proper) class of cardinal numbers.
An R-algebra is a pair (A, (w§)ren), comprising a set A and a fam-
A

ily of maps A" Sy} (nx-ary primitive operations on A). An £2-
homomorphism (A, (W)aer) = (B, (w2)rea) is a map A 2 B such
that ¢ o wy = wP o™ for every A € A. Alg(f2) is the construct of
2-algebras and 2-homomorphisms.

(2) Let M (resp. &) be the class of £2-homomorphisms with injective (resp.
surjective) underlying maps. A variety of £2-algebras is a full subcate-
gory of Alg(2) closed under the formation of products, M-subobjects
and £-quotients. The objects (resp. morphisms) of a variety are called
algebras (resp. homomorphisms).

(3) Given a variety A, a reduct of A is a pair (|| — ||,B), where B is a

variety such that 25 C 2 and A u) B is a concrete functor.

From now on, every concrete category is supposed to be equipped with the
underlying functor | — | to its respective ground category (cf. Definition 1.1).
For the sake of shortness, the fact will be never mentioned explicitly again.

An experienced reader will probably be able to find numerous examples to
back the new notion. Below, we extend the list with several more items, all of
which (except the last one) come from the realm of lattice-valued topology [61,
62] and will be used throughout the paper.

Definition 2.2.

(1) Given = € {V, A}, a E-semilattice is a partially ordered set having
arbitrary =. CSLat(Z) is the variety of =-semilattices.

(2) A semi-quantale (s-quantale) is a \/-semilattice equipped with a binary
operation ® (multiplication). SQuant is the variety of s-quantales.

(3) An s-quantale is called DeMorgan provided that it is equipped with an
order-reversing involution (—)’. DmSQuant is the variety of DeMor-
gan s-quantales.

(4) An s-quantale is called unital (us-quantale) provided that its multipli-
cation has the unit 1. USQuant is the variety of us-quantales.

(5) A quantale is an s-quantale whose multiplication is associative and
distributes across \/ from both sides. Quant is the variety of quantales.

(6) A quasi-frame (g-frame) is an s-quantale whose multiplication is A.
QFrm is the variety of g-frames.

(7) A semi-frame (s-frame) is a unital g-frame. SFrm is the variety of
s-frames.

(8) A frame is an s-frame which is a quantale. Frm is the variety of frames.
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(9) A closure semilattice (c-semilattice) is a /\-semilattice, with the singled
out bottom element L. CSL is the variety of c-semilattices.

The reader should bear in mind that all varieties of Definition 2.2 have
complete lattices as objects. Moreover, all of them except DmSQuant, Quant
and Frm are reducts of the variety CLat of complete lattices. To continue the
topic, we remark that CSLat(\/) is a reduct of SQuant; SQuant is a reduct of
USQuant and QFrm; USQuant is a reduct of SFrm; Set is a reduct of any
variety. Also notice that the categories SFrm and QFrm, having essentially
the same objects (complete lattices), differ significantly on morphisms. The last
item of Definition 2.2 was motivated by the concept of strong (T-preserving)
quantale homomorphism [37, 38], and would provide an additional example for
the concept of catalg topology introduced later on in the paper.

For the sake of convenience, from now on we use the following notations,
which differ from the respective category-theoretic ones (see, e.g., [14, 57, 61]
for the motivation). An arbitrary variety is denoted A, B, C, etc. The cate-
gorical dual of a variety A is denoted LoA (the “Lo” comes from “localic”),
whose objects (resp. morphisms) are called localic algebras (resp. homomor-
phisms). Several other categories introduced in the paper (but always related
to varieties) employ similar notation for their duals. Following the already
accepted designation of [35], the dual of Frm is denoted Loc , whose objects
are called locales. To distinguish maps (or, more generally, morphisms) and
homomorphisms, the former are denoted f, g, h, reserving , ¥, ¢ for the latter.
Given a homomorphism ¢, the respective localic one is denoted ¢°P and vice
versa. Given an algebra A of a variety A (or an object of a related category),
Sa stands for the subcategory of LoA comprising the identity 14 on A as
the only morphism. We will occasionally use the notation Sf}, to underline
the originating variety of the algebra A. Given a set X, an algebra A and an
element a € A, X 2% A denotes the constant map with value a.

A few words are due to the many-valued framework employed in the paper.
Following [73], we extend the concept of lattice-valued set to that of algebraic
one, which is defined as follows (recall the underlying functor of Alg(£2)).

Definition 2.3. Let X be a set and let A be an algebra of a variety A. An
(A-)algebraic set in X is a map X = |A|.

The underlying idea of the new setting is based in a direct algebraization of
the classical frameworks of L. A. Zadeh [77] and J. A. Goguen [21], which can
be easily restored by choosing an appropriate variety A. Despite the fact that
the theory of algebraic sets provides a nice challenge for research, the current
paper will not develop the topic off the bounds of its interests. To distinguish
algebraic sets from other maps, from now on, they will be denoted «, 3, 7.

All preliminaries in their places, the new notion of attachment is ready to
introduce (recall that Set stands for the category of sets and maps).

Definition 2.4. Let B be a variety and let B (_—> Set? be a functor such

that B* = |B|. A dual (B-)attachment is a triple G = (QG, X G,IIF), where
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QG, ¥ G are B-algebras, and QG I, »Gle6l s a B-homomorphism. A

dual attachment morphism G ER G5 is then a pair of B-homomorphisms

(QG1,XGh) w (2 G2, X G9) such that for every by € QG and every

bg S QGQ, (|”—2(Qf(bl)))(b2) = (Ef o llF ( ))((Q f)*Op(bz)). ATTB is the
category of dual attachments and their homomorphisms, concrete over the
product category B x B.

To convince the reader that Definition 2.4 gives a category, we check the

closure under composition. Given two ATTB-morphisms G ER Ga, Go L G
and by € QGq, by € QG3, one easily gets that (IF3(Q(g o £)(b1)))(b3) = X go
(Ir2(2 £ (b)) (2.9)* P (bs)) = Sg oS f o (I (b)) (2 ) o (2g) 7 (b)) =
B(g0 fol1 (b)) (g o © £)* (b)) = (E(go f)o(l-1 (b)) (g © £))**)(ba)).

An attentive reader will notice striking similarities between the categories
AttA (Definition 1.1) and ATTB (to distinguish the new type of attachment,
capital letters are used in the notation of the respective category). A somewhat
deeper insight into their nature reveals not less striking differences in their
behavior, one of which being ready for display on the spot. In [73], a full

E
embedding A 2> AttA was provided, showing that AttA gave a proper
extension of its underlying variety A. In the new framework, a similar procedure
results in an (in general, non-full) embedding under certain requirements only.

Proposition 2.5. Suppose there exists a nullary operation wy, of B, satis-
fying the identity wx (Wi, )ny ) = W, for every B-operation wy (implying that
wyx, 18 the unique nullary operation of B). Then there exists an (in general,

non-full) embedding B2> ATTB, Ep(B; % By) = (By, By, lky) 22

173 | Bi|

(Ba, Ba o), with B; = BI™! given by Ir;(b) = wp.

Proof. To show that the functor is correct on objects, notice that given A € Ag
and b; € B for i € ny, (IIF(wf((bi>m)))(b) = wﬁ(b) = wﬁ = wf((wfﬂ>m) =

WB(IFB)) (1)) ny) = (B ((IF(B:))ny))(b) for every b € B. To check the
correctness on morphlsms notice that given by € By and by € By, one gets,

(IF2(p(b1)))(b2) = wyr (b2) = wyz = plwy)) = (powp )(¥™P(b2)) = (po
(IF1(61)))(¢*P(b2)). The embedding properties of Eg follow directly from the
definition of the functor. The claim on non-fullness requires an additional

o]
assumption that there exist two different B-homomorphisms By ——=< Bs.
¥

Then Eg(B1) M Eg(Bs) 1s an ATTB-morphism, since gwen by € By and
(b

ba € By, (IFa(p(01)))(b2) = wye (b2) = wy? = Plwnst) = (o wp ) (@ P (b2)) =
(1o (IF1(b1)))(¢*P(b2)). By the fact that ¢ # 1, we obtain that (p,1) is not
in the image of Eg, thereby concluding the proof of the proposition. O

An example for Proposition 2.5 is the variety CSLat(\/) of \/-semilattices,
which gives rise to the respective non-full embedding. The variety Frm of
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frames, however, does not fit into the proposed framework, having more than
one nullary operation, but its reduct QFrm suits well. In one word, in some
cases the category ATTB provides a proper extension of its underlying variety.

To continue, we need additional notions from the framework of categorically-
algebraic (catalg) topology, introduced recently [64] as an extension of the point-
set lattice-theoretic (poslat) topology of S. E. Rodabaugh [57, 61]. The full
development of the theory will be given in Section 6 of this paper, whereas
here, we just borrow some of its building blocks.

By analogy with its predecessor, the new setting is based in a generalization
of the backward powerset theory employed by the classical topological setting.
The intuition for the new concept comes from the so-called (pre)image opera-
tors [61], well-known for every working mathematician. Recall that given a set

map X ER Y, there exist the maps P(X) EA P(Y) (resp. P(Y) EAR P(X))
such that f7(S) = {f(x)|z € S} (vesp. fT(T) = {z|f(x) € T}). The
operators have already been extended to powersets of lattice-valued sets (see
[10, 21, 56, 77]) and the latter one can be lifted to a more general setting.

Proposition 2.6. Given a variety A, every subcategory C of LoA induces

a functor Set x C 97 LoA defined by ((X1, A1) e, (X2, A2)) =

A el T)7, A with (f, ) (o) = ¢ oao f.
Proof. The proof consists of easy calculations and can be found in [69, 70]. O

For the sake of convenience, the functor Set x Sy4 i> LoA (the so-

called fized-basis approach, whereas the full framework is referred to as the
variable-basis approach) is denoted by (—)% , omitting the notation for 14 in its
definition. The functor of Proposition 2.6 has the merit of incorporating in itself
the majority of the approaches to powersets of many-valued mathematics. The
most crucial of its properties is the fact that it gives rise to a category of catalg
(strictly speaking, its variety-based reduction [67]) topological spaces, providing
a common framework for many approaches to (lattice-valued) topology.

Definition 2.7. Let A be a variety and let C be a subcategory of LoA. A
C-topological space (C-space) is a triple (X, A, 7), where (X, A) is a Set x C-
object, and 7 (C-topology on (X, A)) is a subalgebra of AX. A C-continuous

map (X1, Ay,m1) L% (X5, Ay, ) is a Set x Comorphism (X3, 4;) 17

(X2, A2) such that ((f,¢) )7 (m2) € 71. C-Top is the category of C-spaces
and C-continuous maps, which is concrete over the product category Set x C.
The category S 4-Top is denoted A-Top, whose objects (resp. morphisms) are
shortened to (X, 7) (resp. f).

It should be underlined that the category C-Top is a particular instance of a
more general approach to catalg topology, developed in Section 6 of this paper.
The main advantages of the new framework have already been described in an
abstract way in Introduction and would be illustrated by concrete examples in
Section 6. At the moment, the reader should notice that apart from serving
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as a convenient tool for developing the attachment theory, the new setting
provides the (much needed) means of interaction between hugely diversified
(lattice-valued) topological theories available in the modern literature.

It appears that the framework of attachment provides a more general cate-
gory for topology than C-Top.

Definition 2.8. Given a variety B and a subcategory D of LoATTB, a
D-topological space (D-space) is a triple (X, G, 7), where (X, G) is a Set x
D-object, and 7 (D-topology on (X,@G)) is a subalgebra of (QG)*. A D-

continuous map (X1,G1,71) M (X2,Go,72) is then a Set x D-morphism

(X1,G1) L2 (X5, Ga) with ((f,(Q9)”)< )~ (r2) € m1. D-Top is the cate-
gory of D-spaces and D-continuous maps, concrete over the category Set x D.

For the sake of brevity, the category Sg-Top is denoted G-Top, employ-
ing the shortened notations of the category A-Top. Under the assumption
used at the beginning of Proposition 2.5, there exists the embedding func-

Eto
tor LoB-Top % LoATTB-Top, Etop((X1,B1,71) L% (X, By, 1)) =
fE
(X1,EB(B1),m1) ﬂ

ing the machinery of the proof of Proposition 2.5, Ezop(@, B1, BY)
Etop (2, Ba, B2Ia ) is continuous, but never belongs to the image of Eqgp). The
new functor makes the diagram

(X2, EB(B2), ™), which in general is not full (us-
(1 (es9)

ETop
LoB-Top———— LoATTB-Top
—l l—
Set x LoB&————~ Set x LoATTB

lget X EDBP

commute, showing that (in some cases) the category LoATTB-Top provides
a proper extension of the category LoB-Top. Moreover, it appears that the
former category induces another functor, which has more importance in the cur-
rent developments. The new definition requires an additional (and very signifi-
cant) notion related to catalg topology. This time, it is the concept of topological
system introduced by S. Vickers [75] as a common framework for incorporating
both topological spaces and their underlying algebraic structures — locales [35],
thereby trying to merge point-set and pointless topology. Recently, the notion
was successfully extended to include the case of lattice-valued topologies, the
most significant results in the field achieved by J. T. Denniston, A. Melton,
S. E. Rodabaugh [11, 12, 13, 14], C. Guido [25, 26] and S. Solovyov [66, 74].
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Definition 2.9. Let A be a variety and let C, D be subcategories of LoA. A
(C,D)-topological system ((C,D)-system) is a tuple D = (pt D, XD, 0D, |=),
where (pt D, XD, QD) is a Set x C x D-object and pt D x QD |i> ¥D is a

map (XD-satisfaction relation on (pt D,§2D)) such that QD F@ $p s an

A-homomorphism for every « € pt D. A (C, D)-continuous map D1 ER Dyisa
Set x Cx D-morphism (pt D1, £D1, 0D, ) PLENEDT, o b sDy QD)
such that for every z € pt Dy and every b € 2Dy, it follows that |=, (z, Qf (b)) =
Yf(Ey(pt f(2),b)). (C,D)-TopSys is the category of (C,D)-systems and
(C, D)-continuous maps, concrete over the product category Set x C x D.

For the sake of shortness, the category (LoA,LoA)-TopSys is denoted
LoA-TopSys, whereas the category (S 4, LoA)-TopSys is denoted A-TopSys.
To provide the intuition for the concept, we list two important examples.

Example 2.10. Loc-TopSys is precisely the category of lattice-valued topo-
logical systems introduced by J. T. Denniston, A. Melton and S. E. Rodabaugh
n [12]. Its subcategory 2-TopSys (2 is the two-element frame { L, T}) is iso-
morphic to the category TopSys of S. Vickers [75].

Example 2.11. Given a set K, the subcategory K-TopSys of LoSet-TopSys
is isomorphic to the category Chu(Set, K) (or just Chug) comprising Chu
spaces over a given set K [5, 48]. In particular, Chug is the category Cont
of contexts of formal concept analysis [19, 76], and also the category IntSys
of interchange systems introduced recently by J. T. Denniston, A. Melton and
S. E. Rodabaugh [13] in connection with certain aspects of program semantics
(the so-called predicate transformers) initiated by E. W. Dijkstra [16]. Sharing
the same definition, the categories Chug, Cont and IntSys have quite different
motivating theories.

The framework of Definition 2.9 is closely related to the category LoA-Top,
allowing the extension of the system spatialization procedure, introduced by
S. Vickers [75] to extract their inherent topology.

Theorem 2.12.

(1) There exists a full embedding LoA-Top(—E> LoA-TopSys defined

: ) )oP
by E((Xl,Al,Tl)M* (X2, A, 1)) = (X1, A1, 71, =) WUl ),

(X2, Az, 72, |=,), where |=,(x,a) = a(z).
ere exists a functor LoA-To s 2% LoA-Top, which is de-
(2) Th f LoA-TopSys ~2*. LoA-Top, which is d
fined by the formula Spat(Dq ER Dy) = (pt D1, D1, 1) (ot £, (BN,
(pt DQ,EDQ,TQ), where T = {):j(—,b) |b € QD]}
(3) Spat is a right-adjoint-left-inverse to E.
e category LoA-Top s isomorphic to a full (regular mono)-coreflec-
(4) The category LoA-Top ph Jull (regul )-corefl
tive subcategory of the category LoA-TopSys.
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The attentive reader has probably already guessed that the name “Spat” in
the second item of Theorem 2.12 comes from “spatialization”.

The new category of Definition 2.8 in hand, we can proceed to the definition
of a new functor.
Proposition 2.13. There is a functor LoATTB-Top Earr, 1,6B-TopSys,
which is giwen through the formula Earr((X1,G1,71) M) (X2,G2,m2)) =

*op op opy<-\op

(X1 x| QG1|, =Gy, ) (fx(Q2g)" (2 9)°",((f.(29)°")7)") (Xax|QGal, % Ga,
T2, =), where |=((2,b), a) = (IFi(a(x))) ().

Proof. To show that the functor in question is correct on objects, notice that
given A € Ag and «a; € 7 for i € ny, it follows that

(@, 5), w5 (@) ) = (F(@F (@ dn)) (@) (B) = (I (w2C ({0 (@))ny)))(B) =
@Z O (U (a(2)) Jan ) (B) = W (I (s () (8) ) =
WX (= (@), 00) by ).

)

To check the preservation of continuity, use the fact that for (z,b) € X7 x| QG
and o € Ty,

)

(IF1(Qgoao f(x)))(b) = (Egolba(ao f(x)))((2g
Ygo ):2((f($)7 (Qg)*op(b))va) =3Xgo ':2(f X (Qg)*op(va)va)'

[l

It should be noticed at once that despite the notation, the functor of Propo-
sition 2.13 never needs to be an embedding. In fact, the merits of the functor
in question are highly dependant on the properties of the employed functor
B i> Set”. On the other hand, it is possible to restrict the domain of
EaTT and obtain an embedding. Below we suggest two possible approaches,

the first of which being rather straightforward.

Proposition 2.14. Given a dual B-attachment G such that Q G is non-empty,

G _ S G-TopSys
Eaxrr=EarT IG-Top

the restriction G-Top ¥ G-TopSys is an embedding.

Proof. Given a G-continuous map (Xi,71) ER (X2,72), ESpp((X1,71) ERN

e \op
(X2, 7)) = (X1 | QG 7, =,) Lh0etUee)™) 010G, ) (recall
our shortened notation for fixed-basis topological spaces) that implies the de-
sired property, the condition on Q2 GG excluding the case of the constant functor
mapping everything to the empty system. O

The second approach is more sophisticated. The restriction in question is
provided by the concept of stratified topological space (the idea of stratification
is due to R. Lowen [44], the term itself coined by P.-M. Pu and Y.-M. Liu [50]).
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Definition 2.15. LoATTB-Top,. is the full subcategory of LoATTB-Top
of non-empty stratified spaces, i.e., spaces (X, G, 7) such that both X and QG
are non-empty, and for every a € Q G, the constant map ax is in 7.

The notation “(—);” for stratified spaces comes from [51, 52] and is already
widely accepted among the researchers, motivating us to follow their steps.

E?k _g |
ATT  HATT|LoATTB-Top g

Proposition 2.16. The restriction LoATTB-Top,
LoB-TopSys provides an embedding.

(f1.91)
Proof. Let (X1,G1,71) é (X2,G2,72) be a pair of LoOATTB-Top,-mor-
(f2,92)

phisms. To show that Eiﬁ}.T embeds objects, notice that Eif}.T(Xl, Gi,m) =

Ei!%T(XQ,GQ,TQ) implies X1 X |QG1| = X2 X |QG2|, EGl =XG = EGQ,

T = T = T9 and (Xl X |QG1|) X T |_—1> Y¥GE = (Xg X |QG2|) X T |_—2>
Y G. The assumption on non-emptiness (which can not be avoided) pro-
vides X1 = X = Xo and |QGy| =Y = |QGy|. To show that QG =
Q G, take some g € X and then, given A € Ag and b; € Y for ¢ € ny,
W () = (@ (b)) @0) = @ (Be)na))(@0) = W O2((bi)y), imn-
plying Gy = QG = QGs. To show that lIF; = llF2, employ the existing
Zo to get that for every bl,bg S QG, (”Fl(bl))(bg) = (”Fl(b_l(xo)))(bg) =
=1 (w0, b2), b1) = F=5((20,b2), b1) = (IF2(b1))(b2).-

To show faithfulness of E4%.1., use the fact that E4%.1.(f1,91) = E2 ey (f2, 92)
implies f1 X (291)*” = fax (Qg2)*”, X g1 = Xg =X gp and (f1,(291)")" =
(f2,(2g2)°)*. The non-emptiness requirement provides f; = f = fo and
also (Qg1)*" = (Qg2)*”. To verify that Qg1 = Qgo, use the fact that
given b € 0Ga, (291)(b) = (21 0 bo Hlwo) = ((f,(2g1)™)* (B))(wo) =
((F, (©92)°") () o) = (2.62)(b). O

At the end of this section, we finally define the main object of our inter-
est, namely, a particular functor. It provides an analogue of the functor H,

introduced in [73] as a generalization of the functor L-Top SN Top of [26]
(already mentioned in Introduction), with the aim to produce a convenient
framework for studying categorical properties of the hypergraph functors. It
is one of the main goals of this paper to explore the nature of the new functor
and its relationships to its predecessors.

Definition 2.17. There exists a functor LoATTB-Top —2*% LoB-Top =

LoATTB-Top 2477, LoB-TopSys —*°% LoB-Top, Harr((X1,G1,71) Y9,

. - (Fx(Q2g)" P, (29)°") ~
(XQ,GQ,TQ))—(X1X|QG1|,EG1,7'1) (X2X|QG2|,EG2,7’2),
where 7; = {& = (IlF;(a(=)))(—) |« € 7}. Given a LoATTB-object G, the

G

respective fized-basis functor G-Top HAL> Y G-Top is defined by the formula
‘ Ly fx1 -
HgTT((Xl,Tl)L(X2,T2)):(X1 X |QG|,T1) 2] (XQX |QG|,T2).
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Unlike [73], we are not going to touch the topic of hypergraph functors in
this paper, restricting our attention to the functor Harpr itself. We begin with
the remark that certain properties of the dual attachment G can help to provide
an embedding property for the resulting functor H§pp.

Definition 2.18. A dual attachment G is called

(1) Q-spatial provided that for every by,ba € QG such that by # ba,
lI-(b1) # lIF(b2) (IIF is injective).

(2) X-spatial provided that for every by, bs € QG such that by # bo, there
exists some b € QG such that (II-(b))(b1) # (IF(D))(b2).

After brief consideration, the reader will easily see that -spatiality and Y-
spatiality are quite different notions. A nice example on the topic is provided

by the category ATTSet. The map I L, I', taking every a € I to the identity
11, gives a dual attachment G = (I, I, IIF), which is X-spatial but not 2-spatial.
On the other hand, changing the definition to take every a € I to the constant
map ay, provides an attachment which is Q-spatial but not X-spatial. Examples
for more complicated varieties can be found in [73].

Proposition 2.19. Given an -spatial attachment G with the property that
HG’
QG is non-empty, the functor G-Top —2%3 ¥ G-Top is an embedding.

Proof. Tt will be enough to show the injectivity on objects. Given two spaces
(X1,7) and (Xy,7s) such that H§ (X1, 71) = HGpp (X2, 7), the non-empti-
ness of QG implies X; = X = Xs. To show that 7 = 75, notice that given
a1 € T1, Q1 € Ty = T» and, therefore, a; = @y for some asy € 7. Given x € X,
(IF1 (a1 (2)))(b) = d1(z,b) = as(x,b) = (lF2(az(x)))(b) for every b € QG and
that implies oy () = as(z) by Q-spatiality of G. As aresult, ay = aw, providing
71 C 7. The converse inclusion is similar. O

3. DUAL ATTACHMENT PAIRS

This section clarifies the word “dual” in the term “dual attachment” used in
this paper. The motivation for the choice comes from a particular property of
attachment found out in [26], namely, the existence of a functor L-Top i)
Top (already mentioned in Introduction), which takes an L-topological space
(X, 7) to the crisp space (Sx,7*), where Sx is the set of L-points of X, and
7* consists of the sets a* for every a € 7, comprising precisely those L-points,
which are attached to the particular o in question. A catalg analogue of the
above-mentioned functor has been already considered in [73], whose counter-
part for the current setting is given in Definition 2.17. It is the main purpose
of this section to show that both functors coincide in case the respective at-
tachments form a dual attachment pair. We begin with the definition of a
generalized version of the above-mentioned functors, which require some addi-
tional preliminaries contained in the following definition and proposition.
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Definition 3.1. Let A be a variety and let (|| — ||, B) be a reduct of A. A dual
B-attachment G is called A-derived provided that there exist A-algebras Aq,
Ay, such that QG = ||Aqll, 2 G = || As|.

Proposition 3.2. Let A be a variety, let (|| — ||, B) be a reduct of A and let
A be an A-algebra. There exist two functors:

Xtjaja

(1) [|Al|-Top —2% A-Top defined by Xtyaja((X1,m) L (X, 7)) =
(X1, (1)) ER (Xa, (12)) with (r;) the A-subalgebra of A generated by 7;;
Rd
(2) A-Top —2L, ||A||-Top defined by Rdaja)(X1,m1) & (Xa,7)) =
f
(X1, Imal) = (X2, [[72])-
G
If G is an A-derived dual B-attachment, then there is a functor Aq-Top M
Ay -Top defined by commutativity of the following diagram:

3G
Aq-Top e AT > Ay -Top
RdAQQGl Tth GAy

G-Top Y G-Top.

ATT

Proof. 1t is enough to verify that the functor Xt 44 preserves continuity. We

use the simple fact that given a homomorphism A; %5 Ay and a subset S C Aq,
e ((S) = (7 (9)) [70]. As aresult, (fi)7((72)) = ((f)7(2)) € (m). O

The reader should notice that “Xt” (resp. “Rd”) is the abbreviation for
“extension” (resp. “reduction”), used to underline the action of the functor in
question, i.e., to extend (resp. reduce) the algebraic structure. Both functors
will play an important role in the subsequent developments.

To compare the new functor with the already existing setting of [73], one
should recall some results from its approach to the concept of attachment.

Eatt

Proposition 3.3. There exists a functor LoAttA-Top —= LoA -TopSys,
which is given by the formula Eawe((X1, F1,71) M) (X2, Fy, 1)) = (X7 X
QR[S E,) (fx(Q2g)" (2 9)°"((f, (29)°") 7)) (Xox| QB Fy, 1, =),
(2, a), @) = (Fi(a))(a(z)).

The reader is advised to pay attention to the important fact that the only

difference in the definition of the functors of Propositions 2.13, 3.3 concerns
the respective satisfaction relation.

Definition 3.4. There exists a functor LoAttA-Top Haw, LoA-Top =

LoAttA-Top 2 LoA-TopSys Seat, LoA-Top, Haet (X1, Fi,71) o),

. fx(Qg) P, (Xg)°F ~
(X2, Fo, 1)) = (X1 x| QF |, X Fy,71) U@ 9 (Xox|QF,|, X Fy, T2),
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where 7; = {& = (IF;(=))(a(—)) |« € 7;}. Given a LoAttA-object F', the re-
HF
spective fized-basis functor F-Top —2%s ¥ F-Top is given by HA ., (X1, 71) ERN
. fX1ar .
(X2, 72)) = (X1 x |QF[,71) (X X [QF[, 7).
f}fF

By analogy with Proposition 3.2(3), one obtains the functor Ag-Top —2%
As-Top (notice the difference in the notations). The crucial question arises
on when the two functors 3%, and HGpp coincide, and that is precisely the
point for dual attachment pairs to come in play.

Definition 3.5. Let A be a variety, let (|| — ||, B) and (|| — ||, C) be reducts of
A, and let F' and G be a B-attachment and a dual C-attachment respectively.

(1) Both F and G are called reduct attachments.

(2) The pair (F,G) is an attachment pair w.r.t. (A,B,C).

(3) (F,G) is a related attachment pair provided that both F' and G are
A-derived, and Al = Ag = A§, AL = Ay = A,

(4) (F,G) is a dual attachment pair provided that (F,G) is a related at-
tachment pair, and for every ai,as € Aq, (IF(a1))(az) = (IF(az2))(a1)

I
w.r.t. the maps |Aq| == Set(|Aq], |4x]).
-

3
Every related attachment pair gives two functors Agq-Top £>> As-Top.
g{jciTT
With a dual attachment pair in hand, these two functors coincide.
Proposition 3.6. Given a dual attachment pair (F,G), H4, = HSGpp-

Proof. Since the case of morphisms is clear, it will be enough to show equality
of the functors on objects. Given an Ag-space (X, 7), it is sufficient to verify
that (7) = (7). Given a € 7, &(z,a) = ((IF(=))(a(=)))(z,a) = (F(a))(a(z)) =
(IFa(x))(a) = ((IF(a(=))(=))(z,a) = a(x,a) for every (z,a) € X x |Ag|.
Thus 7 = 7, implying (7) = (7). O

A good illustration of Proposition 3.6 is provided by Observation 2 from
Introduction, which gives a dual attachment pair (F,G) w.r.t. the varieties
(CLat, QFrm, QFrm), where F' = (L, 2,IF) is based on a complete chain L
and the map

Ta ay; < ag,

(IF(a1))(az) = {

To get more intuition for the attachment pair (F, &), one can represent every
map IF(a) as a particular subset of L (the preimage of {T} under the map in
question), i.e., IF(a) = {b € L]a < b} =[ a (notice that IF(T) = @). The
dual attachment IIF is then the collection of sets lIF(a) = {b € L|b < a} =| a
(IF(L) = @ now) for every a € L. It is easy to see that in this particular
case, the attachment duality reduces to the usual, well-known in mathematics,
order-theoretic duality. The main point of Proposition 3.6 is that the functors

1, otherwise.
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j{Ftt
L-Top :A; (2-Top = Top) generated by F and G coincide. On the other

j{g"l'T
hand, straightforward computations backed by [73] show that HX,, is precisely

the functor L-Top L Top of [26]. Tt follows that a two-fold representation
of the already well-known notion is obtained. The reader should pay attention
to the fact that the case L = 2 does not result in the identity functor on Top,
since a topological space (X, ) is taken to the space (X x |2|, (7|} = ([|7]|)),
which has a different carrier set.

The reader will easily find other examples on the topic. It is important to
underline, however, that the case of an unrelated attachment pair can provide
completely different (incomparable) functors H%,,, HSG pp-

4. EXISTENCE OF DUAL ATTACHMENT PAIRS

The previous section showed that the case of a dual attachment pair has the
crucial property of equality of the derived functors. On the other hand, the
functors of a just related attachment pair need not coincide which gives dual
attachment pairs even more importance. A natural question on the existence
of dual attachment pairs arises. This short section clarifies the situation.

Proposition 4.1. Let F' be a B-attachment which is a reduct attachment w.r.t.
A. There exists a dual C-attachment G such that (F, Q) is a dual attachment
pair iff the following conditions are fulfilled:

(1) F is A-derived (QUF = ||Aq|| and S F = ||As]|);
(2) there exists a reduct (||—||, C) of A such that || Aq|| L, C(||Aall, | As]])-

Proof. For the necessity, notice that, firstly, A5 = Aq = AS, AL = Ay = Ag,
and, secondly, given A € Ac and a; € ||Aql| for i € ny,

(IF(a) (@11 (@) ) = (IH@L* N (a3)ny ) (@) =
@I =1 (@) b)) (@) = Wl (I @) (@))ny ) = =N (@) (@) )y )

for every a € ||Aql||. The sufficiency is slightly more sophisticated. Define

the required dual attachment G by QG = ||Aq||, G = ||As]| (the respec-

tive reducts are taken in the variety C) together with QG I, (R G)eCl

given by (IF(a1))(az) = (IF(az2))(a1). The only challenge now is to show
that IIF is a C-homomorphism. Given A € Ac and a; € QG for i € ny,

OF @3 (ahna))a) = (H@)@ ™ (@) = X (@) @))n) =
W) (@) (@))ny) = @17 ((a3)ny)) (@) for every a € QG. O

An example for the proposition is provided by the dual attachment pair
(F,G) with F = (L, 2,IF), mentioned at the end of the previous section, the
second of the requirements (the first being obvious) verified in Introduction as
follows: (IF(a))(\V S) = T iff a < \/ S iff a < s for some s € S iff (IF(a))(s) = T

for some s € Siff (\/,.gIF(a))(s) = T, whereas (IF(a))(s At) = T iffa < sAt
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iff a < sanda<tiff (IF(a))(s) A (IF(a))(t) = T. The converse way (from dual
attachment to attachment) is equally easy and can be run through as follows.

Proposition 4.2. Let G be a dual C-attachment which is a reduct attachment
w.r.t. A. There exists a B-attachment F such that (F,G) is a dual attachment
pair iff the following conditions are fulfilled:
(1) G is A-derived (UG = ||Aq|| and X G = ||As]|);
(2) there exists a reduct (|| — ||, B) of A such that || Aq]| I, | As||l42l is a
B-homomorphism.

Proof. For the necessity notice that, firstly, AS = Aq = AL, AZ = Ay, = AL,
and, secondly, given A € Ag and a; € ||Aql| for i € ny,

(@) (ai)ny ) (@) = (F@) @V ((@i)ny) = wh ™ ((IF (@) (@i))ny) =
A=V (a0))(@))ny) = @1 (I (0) ) )) (@)

for every a € ||Aq||. To show the sufficiency, define an attachment F' by Q F' =

|Aqll, ¥ F = ||As]| together with Q F' L B(Q F,X F) given by (IF(a1))(az) =
(IF(az))(a1). It should be verified that IF(a) is a B-homomorphism for every
a€QF. Given A\ € Ag and a; € QF for i € nj,

(@) @1 (@3} )) = (FA ((ai)ny ) (@) =

@I =1 (a3 ) (@) = Wl (02)) @)y ) = WA= (O (0)) (1) Yy ).
O

We close this section with the remark (already mentioned in Introduction)
that the concept of duality for attachment used in this paper is developed in
the framework of arbitrary algebras (possibly) void of any kind of order relation
and, therefore, our current setting is not the duality induced by a partial order.
On the other hand, the approach is neither a duality of category theory, since
the underlying category of the respective attachment is not dualized. Based
on the employed framework of catalg topology, the type of duality presented
in the paper could be called categorically-algebraic. It will be the topic of our
forthcoming papers to find the proper place of the new notion in mathematics.
The current manuscript will continue exploring another aspects of attachment.

5. NATURAL TRANSFORMATIONS INDUCED BY ATTACHMENT

It was shown in [26] that every attachment A in a complete lattice L provides

a frame homomorphism L¥ o, P(Sx) for every set X (simply taking o € LX
to the set a* of all L-points attached to «), which gives rise to the already

mentioned functor L-Top i> Top. This section extends the map to our
catalg setting, resulting in consequences important for the whole development.

Proposition 5.1. Let F' be a B-attachment and let G be a dual C-attachment.

N\
For every set X, there exist a B-homomorphism (2 F)X SN (B F)XxIQF]
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I

defined by o (z,b) = (IF(b))(a(x)), and a C-homomorphism (QG)* Sl
(B G)XHLE defined by o' (2,b) = (IF(al(x)))(b). If (F,G) is a related attach-

-

ment pair, then the maps have the same (co)domain |Aq|X ——=% |Ag|¥*4el
I+

If (F,G) is a dual attachment pair, then the maps coincide.

Proof. To prove the first claim, we show that the map (—)"" provides a C-
homomorphism. Given A € Ac and (;),, € (QG)¥,

@O (@) ))' (@, 5) = (IF(@2 D ((@i)na)) (2)))(B) =
(I (@2 (@ (@))))B) = @D (I (s (@)))ny)) () =

o)X X126
WX (I a(@) B))ns) = X (0 (@ 0)hna) = @377 (Y )) (D)
for every (x,b) € X x |QG|. The second claim is obvious. For the last state-
ment, notice that given a € |Aq|¥, o' (z,a) = (IF(a(x)))(a) = (IF(a))(a(z)) =
o (z,a) for every (z,a) € X x |Ag]. O
After a closer scrutiny, it appears that the homomorphisms of Proposition 5.1

are actually components of natural transformations (the fact, never mentioned
in [26]). To prove the claim, start with the preliminary remark that given a

dual C-attachment G, there exists a functor Set (=x10GD5e LoC defined by

commutativity of the following triangle:

—X| QG|
Set ————— Set

(x| QGHEG ., l”gg
LoC,
where — x |Q @G| is the standard product functor [1] defined by the formula
(= x [QG) (X1 L5 Xo) = X1 x |06 2229 x, < |Qa.
Proposition 5.2. Every dual C-attachment G provides a natural transforma-
tion (- x | 2656 225 (D)

Proof. Given a map X1 ER X5, one has to verify commutativity of the diagram

(Q G)XQ (“)x, (= G)X2><|QG|
f&;l l(fﬂnc)gc
QaG)n e (z G)X1XIQG|=

),

and that follows from the fact that (((—), o f§g)(@))(z,b) = (o f)"(2,b) =

(IF(aco f(2)))(b) = o' (f(2),b) = (&' o (f x Lo a))(@,b) = ((f X Ljaa)Ea o
(—)%,)(@))(x,b) for every o € (2G)*? and every (z,b) € X1 x |QG|. O
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IFyop

Similarly, one gets a natural transformation (— x |Q F|)§ & 7, (=)&F
for a given B-attachment F', which reduces to the setting of [26] for B being the
variety Frm of frames. In case of a dual attachment pair, (as one might expect)
both natural transformations coincide. To generalize the passage of [26] from
a natural transformation to a functor, we need some additional notions from
the realm of catalg topology, presented briefly in the subsequent section.

6. CATEGORICALLY-ALGEBRAIC TOPOLOGY AND ATTACHMENT

In this section we recall from [71] basic concepts of categorically-algebraic
(catalg) topology (see also [64, 66, 72]), which bring to light the crucial property
of attachment, i.e., generation of a functor between two topological settings.
The approach is motivated by the currently dominating in the fuzzy community
point-set lattice-theoretic (poslat) topology introduced by S. E. Rodabaugh [55]
and developed by P. Eklund, C. Guido, U. Hohle, T. Kubiak, A. Sostak and
the initiator himself [17, 24, 33, 39, 40, 57]. The main advantage of the new
setting is the fact that apart from incorporating as special subcases the most
important approaches to (lattice-valued) topology and providing convenient
means of interaction between them, the catalg framework ultimately erases
the border between crisp and many-valued developments, producing a theory
which underlines the algebraic essence of the whole (not only lattice-valued)
mathematics, thereby propagating algebra as the main driving force of modern
exact sciences. It should be noticed immediately that some parts of the theory
have already been used throughout the paper (Definition 2.7). The current
section provides a more rigid foundation for the approach and backs it by
several motivating examples, to give the flavor of fruitfulness of the new theory.

The setting is based in a mixture of powerset theories of [61, Definition 3.5]
(see also [60, 62]) and topological theories of [1, Exercise 22B].

Definition 6.1. A variety-based backward powerset theory (vbp-theory) in a

category X (the ground category of the theory) is a functor X s LoA to the
dual of a variety A.

To get the intuition for the concept, the reader is advised to recall the functor
of Proposition 2.6, providing the main example for the notion and incorporating
many approaches to powerset operators popular in lattice-valued mathematics.

Example 6.2.
(1) SetxS2 P, LoCBool, where CBool is the variety of complete
Boolean algebras (complete, complemented, distributive lattices) and
2 = {1, T}, provides the standard preimage operator, mentioned before
Proposition 2.6.
(2) Set x Sy 2=O", PmLoc (cf. Definition 2.2), where I = [0,1] is the
unit interval, gives the fized-basis fuzzy approach of L. A. Zadeh [77].
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(3) Set x Sy, ﬁ Loc provides the fized-basis L-fuzzy approach of

J. A. Goguen [21]. The setting was changed to Set x Sy, 5=0i,
LoUQuant in [22]. The machinery can be generalized to an arbitrary

SA: _\+—
variety A and the theory Set x S 4 M LoA, which unites the

previous items in one common fixed-basis framework.
C__/_\+
(4) Set x C Ri=()7, DmLoc, where C is a subcategory of DmLoc,
gives the variable-basis poslat approach of S. E. Rodabaugh [54]. The

C_(_\+
setting has been extended to Set x C % LoUSQuant in [61]
and then reduced to Set x Loc == Loc in (11, 14].

(5) Set x FuzLat i> FuzLat provides the variable-basis approach of

P. Eklund [17], motivated by those of S. E. Rodabaugh [54] and B. Hut-
ton [34]. Notice that FuzLat is the dual of the variety HUT of
completely distributive DeMorgan frames called Hutton algebras [57].

The machinery can be generalized to an arbitrary variety A and the
SC: N\
theory Set x C % LoA, which unites the previous items in one

common variable-basis framework.

On the next step, we provide another level of abstraction, which has never
been used in the above-mentioned theories of S. E. Rodabaugh.

Definition 6.3. Let X be a category and let 7 = (P, (]| — ||,B)) contain a

vbp-theory X Ly LoA in the category X and a reduct (|| — ||,B) of A. The

variety-based topological theory (vi-theory) in X induced by T is the functor
T=|—||°"oP

X ———  LoB.

Since a vt-theory T' is completely determined by the respective pair 7, we
use occasionally the notation (P, B) instead of T'. It is important to underline
that the aim of an additional level of abstraction is to remove the unused
topological structure provided by powerset theories, the move, motivated by
the observation that the standard backward powerset theory is based in Boolean
algebras, whereas the respective topological theory is reduced to frames (the
case of closure spaces mentioned below provides another good example). On the
other hand, the case of coincidence between powerset and topological theories
is not excluded in our framework. The reader will see that the subsequent
developments will often provide a topological theory only, without any explicit
reference to its generating powerset theory.

Definition 6.4. Let T be a vt-theory in a category X. Top(T) is the cat-
egory, concrete over X, whose objects (T-topological spaces) are pairs (X, ),
comprising an X-object X and a subalgebra 7 of T'(X) (T'-topology on X),

and whose morphisms (X, 7) ER (Y, o) are those X-morphisms X ER Y, which
satisfy ((T'(f)))~ (o) C 7 (T-continuity).
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The significance of the category Top(T') is the fact that it unites many of
the existing topological frameworks in mathematics. To give the reader the
flavor of their abundance and the fruitfulness of the new unifying framework,
we provide a short list of examples illustrating the notion of catalg topology.

Example 6.5.

(1) Top((P,Frm)) is isomorphic to the category Top of topological spaces
and continuous maps.

(2) Top((P,CSL)) is isomorphic to the category Cls of closure spaces and
continuous maps, studied by D. Aerts et al. [2, 3].

(3) Top((Z,Frm)) is isomorphic to the category I-Top of fized-basis fuzzy
topological spaces, introduced by C. L. Chang [8].

(4) Top((G2, UQuant)) is isomorphic to the category L-Top of fized-basis
L-fuzzy topological spaces of J. A. Goguen [22].

(5) Top((RE,USQuant)) is isomorphic to the category C-Top,, i € {1,2}
for variable-basis poslat topology of S. E. Rodabaugh [54, 61].

(6) Top((€,Frm)) is isomorphic to the category FUZZ for variable-basis
poslat topology of P. Eklund [17], motivated by those of S. E. Rod-
abaugh [54] and B. Hutton [34].

(7) Top((Sa,A)) (resp. Top((Sk°2, A))) is isomorphic to the fived- (resp.
variable-) basis category A-Top (resp. LoA-Top) used in the former
approach to catalg topologies of [70] (resp. [69]) as well as in the pre-
vious sections of this paper (Definition 2.7).

The reader should notice the fact that the second item of Example 6.5 is
never included in the setting of topological theories of S. E. Rodabaugh [61],
which are based explicitly on s-quantales (and, therefore, on \/-semilattices),
whereas closure spaces rely on c-semilattices (and, therefore, on /-semilattices).

It appears (as an experienced reader might guess) that in order to deal
successfully with the categories of the form Top(T), it is enough to consider
their generating topological theories 7T'.

Proposition 6.6. Let X —5 LoA, Y -2 LoA be vt-theories, let X >
Y be a functor, and let Ty o F 5% Ty be a natural transformation. There

exists a functor Top(T}) M, Top(T») given by H, (X1, 71) ERN (X2, 72)) =

(F(X1), %)~ () 2 (F(X), (1) (7).

Proof. It will be enough to show that the functor H,, preserves continuity and
that follows immediately from commutativity of the diagram

op

n
Ti(X3) — 2~ Ty o F(X>)
(Tl(f))"pl l(TzoF(f))"p
Tl(Xl) %op T2 ] F(Xl),

X,
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since ((Ty 0 F(f)”) 7 ((n¥,) 7 (12)) = (Tao F(f)* o ng,) 7 (r2) = (n¥, o
(M) (72) € ()7 (1) O

As an example of the obtained result, one can look at Proposition 5.2

and the remark just afterward, providing two functors Top((—)§ ) Hier
Hipop

Top((—)% o) and Top((—)gF) —— Top((—)§ r), which essentially are the

Att:

fixed-basis functors G-Top —> > G-Top and F-Top —= X F-Top of
Definitions 2.17 and 3.4 respectively. Moreover, it appears that a more gen-
eral framework is available. Start by defining the required topological theories,
together with an additional functor and a natural transformation.

Proposition 6.7. There exist topological theories

ATT
(1) Setx LoATTC To LoC, where T(?TT((Xl,Gl) (Xg,Gg))
QG ((f,(29)°") )" (Q Go) X2
(=

ATT
(2) Set x LoC B, LoC = Set x LoC —) LoC;
ATT

together with a functor Set x LoATTC —— Set xLoC, KATT (X1, G1) 2L

(X2, Ga)) = (X1 x | QG £qy) LEITEDD v 10 G|, £G) and
_\lkyop

ﬂq)

a natural transformation given by the maps of

Proposition 5.1.

Proof. Since the definitions of the functors are straightforward, the only thing
to verify is correctness of the definition of the natural transformation. Consider

a Set x LoOATTC-morphism (X1, G1) L2,
of the diagram

(X2, G3) and check commutativity

-
(Q GQ)XQ (= )(Xg G2) (E G2)X2><|QG2|

(f,(Qg)(’p)“l l(fx(Q!7)*"‘7,(2!1)”')H
(2GS —— = (S Gr) ¥ 12,

T(X1,G1)
Given a € (Q2G2)*2 and (2,b) € X1 x | QG4
(Dren © (U (Q29)) (@) (,b) = (Qgoao f)F (z,0) =
(IF1(Qgoao f(2)))(b) = (Egolia(ao f(x)((R9)))(b) =
Zgoa(f(x),(29)" (b)) = (Egoa o (f x (g)*"))(x,0) =
((f x (29", (29)™")7 o (=)(xs.60) (@) (2, b).



124 A. Frascella, C. Guido and S. A. Solovyov

Propositions 6.6, 6.7 give a functor Top(T4TT) Huver, Top(TATT), which
is essentially (up to the change of the notation for the underlying variety)
the functor LoATTC-Top —2%%; LoC-Top of Definition 2.17. In a similar

way, one obtains the functor Top(TAH ) Her, Top(T&*), which essentially

provides the functor LoATTB-Top Haee, LoB-Top of Definition 3.4. The
reader should notice the significant difference between the ways of obtaining
the functors Hart, Hatt by Propositions 6.6, 6.7 and in Definitions 2.17,
3.4, the latter relying on the framework of topological systems, whereas the
former being based explicitly on catalg topology. It is up to the reader to
decide, which way is more applicable in his/her framework. We would just
like to notice that the final results of this section clearly show one of the main
advantages of the notion of attachment, i.e., the fact that it provides a way of
moving (natural transformation) between two topological theories, resulting in
a functor between the categories of the respective topological structures.

7. CATEGORICALLY-ALGEBRAIC ATTACHMENT

The attentive reader will easily notice that although the definition of ob-
jects of the category ATTB of Definition 2.4 provides a straightforward gen-
eralization of the attachment notion of [26], the definition of morphism comes
essentially “out of the blue”, the only its justification being the existence of the

functor LoATTB-Top Barr, LoB-TopSys of Proposition 2.13. The simple
reason for the occurrence is the fact that the case of attachment morphisms
has never been treated in [25, 26] and, therefore, there is actually nothing to
compare with. It is the main goal of this section to provide a more trustworthy
justification for the definition of morphisms of the category ATTB.

We start with some new functors, which will be used in the subsequent pro-
cedures. For the sake of convenience, in what follows, we change the notation
(kept until now) for the underlying variety of ATTB from B to A.

Proposition 7.1. Given a variety A, there exists a functor Set” x A o,

defined by the formula (X1, A1) e, (Xa, Ap))~ = A Yo, A2 with
(f,0)" (o) = poao fP. The new functor satisfies the equality Set’” x A )
A = (Set x LoA 2" LoA).

Proof. Correctness of the definition of the functor follows from the last claim
(backed by Proposition 2.6), which is a consequence of the fact that given

a€ A, (f,9) (@) = poao fP = (fP¢%) (a). 0

To underline the motivating setting of the functor (—)*, the new one uses a
similar notation (—). The other functors are collected in the next definition.
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(

Definition 7.2. Every variety A equipped with a functor A ;)> Set? such
that A* = |A|, gives rise to the following three functors:

(1) Ax A0y A (AL A) DY (4, 45) = A D A, (the first
projection functor);
(2) AxA S Set? x A=A xA A Getor x A
(3) Set” x A 25 A =Set” x A 15 A
The next definition shows a more general approach to attachment, with the
notion of morphism coming from the existing framework of comma categories.

Definition 7.3. ATT"A is the full subcategory of the comma category (ITy |
P oK), whose objects are precisely those (II; | P oK)-objects II;(A;, Ag) =
PoK(A}, AL) for which (Aq, As) = (4], A)).

A natural question on the equivalence of Definition 7.3 and Definition 2.4
arises. It is the purpose of the next result to answer it positively.

Proposition 7.4. The categories ATTA and ATT*A are isomorphic.

Proof. An ATT"A-object G is a triple (Q G, X G,IIF), where (QG, X G) is the

object of the product category A x A and IT; (G, X G) % po KQG Q) =

oc L (2 G)!2C s an A-homomorphism. An ATT* A-morphism G ENye
is a pair of A-homomorphisms (2G1, X G3) ALELEIN (Q G2, X G2) making the

following diagram commute:

-1

L,(QGy, X Gy) PoK(QGy, ¥ G)
nanl lPoKw)

I, (2 Gs, ¥ Gs) PoK(QGs, ¥ Ga)

lIFo
that in its turn provides commutativity of the next diagram:

Il

QG (2 Gy)le6l

Qj’l l((Q HEH

QGQ T‘ (2 GQ)‘QG2‘,

which is equivalent to the fact that given by € QG and by € QGa, it fol-

lows that (ka0 Q £(51))(b2) = ()%, 5 £)= ollF1) (b)) (bs) = & f ollF1 (by) o
(Qf)*P(ba) = (X follr1(b1))((2 £)*°P(b2)). Taking together, the remarks pro-

vide an isomorphism ATTA X, ATT*A, K(Gy EN Gq) = G4 EN Gs. O

Having introduced an equivalent definition of attachment, we are going to
generalize the results from the end of the last section to the new framework,
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namely, derive a respective natural transformation between topological theo-
ries. Now, however, we would like to provide a more explicit description of
the machinery employed. To make the things easier, we begin with several
additional properties of powerset operators.

Proposition 7.5. Given a variety A and a set X, there exists a functor
)X X
AT AL (A8 A% = AX P2 AF with X () = poa.

Proof. To show that the functor is correct on morphisms (provides an A-
homomorphism), notice that given A € Aa and a; € A for i € ny, it fol-

lows that (% <w;“f<<ai>m>>g(<x> = pow ((i(2))ny) = Wi ({9 0 @i (2))ny) =
(@r? ({poai)n))(@) = (W2 (9% (:))ny)) () for every « € X. 0

Notice that the morphism action of the functor of Proposition 7.5 has already
been considered in [69, 70], where it has been observed (following, e.g., [56, 59])
that the variable-basis functor of Proposition 2.6 splits up as follows:

op\ X2
X5 (50 )ﬁ» Xo
A2 Al

f@l [ lel
.
X1

X1
A2 1

X
(7)1

In view of Proposition 7.5 and the above-mentioned remark, every commutative
diagram in a variety A

Y1
A —2 oA

.| B

/
JE—
As = A

and every map X; ER X5, provide the following commutative diagram:

X2
(7.1) AXe O g
()X l l(m)iz
X2
(F5P) A B2 g% (F05P)

\ _
f:zl (Fres) lfA;
\

A ——— A

The last needed property of powerset operators is in the next proposition.
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Proposition 7.6. For a Set x LoA x LoA-morphism (X1, A1, B1) M
(X2, Ag, By), there exist A-homomorphisms (BlAi‘)Xi AN B;XiXIAiI defined by
(0())(x,a) = (a(z))(a), making the following diagram commute:

(BYYehXe 22 prexil

(f,((sa*,w)*)"p)“\\ l(f><s@“’pﬂ/f’p)H
(B\lAl\)xl T_Bfﬁxml\.
1

Proof. There are two simple challenges to deal with. To show that ©; is an
A-homomorphism, notice that given A € Ax and «; € (BlAi‘)Xi for j € ny,

t follows that O™ (o) @a) = (@™ (ag)m)) (@) (@) =
@2 (@)@ = wf ((as@)(a)n) = el (@ua)ma),) =
(wfi ix14y ((©i(j))ny))(x,a) for every (z,a) € X;x|A;|. Commutativity of the

above-mentioned diagram follows from the fact that given a € (B|2A2‘)X2 and
(z1,a1) € X1 x [Ax], ((©1 0 (f,((¢",9) 7)) )(@))(z1,a1) = (O1((¢*, %) 0
ao f))(z1,a1) = ((¢",¥)7 cao f(x1))(ar) = ¢ o (ac f(z1)) 0 " (a1) = b o
g@iga))(fgfl)vw*op(al)) = PoBOz(a)o(f x¢ ) (z1,a1) = ((f X w*opﬂ/f"p)“DO

Everything in its place, we consider the analogues for our current setting
ATT

of the functors of Proposition 6.7, which are Set x LoATT*A TQ—> LoA,

ATT ATT

KA T, .
Set x LOATT*A —" Set x LoA and Set x LoA —>— LoA. Our aim
is to provide an equivalent description of the natural transformation between
them given in Proposition 6.7. The new approach is bound to clarify its nature,
vaguely touched in Proposition 5.1.

HF)OP

Proposition 7.7. There is a natural transformation TATT o K‘i‘F‘BT ()

N\l x
TS‘?TT defined by T{?TT(X, G) ()(—XG)> T§TT o KQET(Xv G) = (QG)* e
(2 GIREHX N ¥ GXXIRG where the map © comes from Proposition 7.6.

Proof. The claim is a consequence of the fact that every Set x LoATT™A-

morphism (X, Gy) Y9, (X2, G2) makes the following diagram commute:

X2

(QG2)X2 =5 ((E G2)IQG2|)X2 Os

(z](;2)X2X‘§2G2
|

|
(£(Q9)")™ (f,(((Qg)"Zg) 7)) (fx(Qg) P, (29)7")"
v v v

(QGy)™ (BGy)leehX

-1 ©1

(EGl)XIX‘QGl‘,
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where the left rectangle uses commutativity of the second diagram of Propo-
sition 7.4 in the form of resulting Diagram (7.1), and the right rectangle is a
direct consequence of Proposition 7.6. O

The reader should pay attention to the fact that the new description clari-
fies the categorical background of the natural transformation in question, which
was defined in an algebraic way in Propositions 5.1, 6.7. Categorical approach
brings more universality in play, reducing dramatically the algebraic depen-
dence on points, thereby opening a possibility to define attachment in a more
general category than Set. It will be the subject of our forthcoming papers to
provide such an extended definition of attachment.

8. CONCLUSION: LATTICE-VALUED CATEGORICALLY-ALGEBRAIC TOPOLOGY

The notion of dual attachment introduced in this paper clarified completely
the categorical nature of the concept of attachment considered in [25, 26, 73].
As the main achievement, we showed that it provides a way of interaction (nat-
ural transformation) between two topological theories (Propositions 6.7, 7.7),
which results in a functor between the respective categories of topological struc-
tures (see remarks after Proposition 6.7). It was the framework of categorically-
algebraic (catalg) topology, which helped to discover this important property.
Moreover, we have already remarked (see, e.g., Example 6.5) that the catalg
approach incorporates the majority of the existing (lattice-valued) topological
settings, erasing the border between crisp and many-valued frameworks. A
significant drawback of the concept, however, is its inability to include the the-
ory of (L, M)-fuzzy topological spaces of T. Kubiak and A. Sostak [40]. The
striking difference of their approach from those used in the paper is the fact
that a topological space is defined as a pair (X, T), where T is a lattice-valued
subalgebra of T(X) for an appropriate topological theory T of Definition 6.3.
This observation in hand, the concept of lattice-valued catalg topology has been
introduced in [65], based in a suitably defined notion of lattice-valued alge-
bra. The latter notion has already appeared in [68], motivated by the concept
of fuzzy group of A. Rosenfeld [63] and its generalization of J. M. Anthony
and H. Sherwood [4]. The employed machinery goes in line with the general
procedure of, e.g., J. N. Mordeson and D. S. Malik [47] as follows.

Definition 8.1. Let A, L be varieties, the latter having the variety CSLat(\/)
as a reduct, and let C be a subcategory of L. An (A, C)-algebra is a triple

(A, i, L), where A is an A-algebra, L is a C-algebra and |A| £ |L| is a map such
that for every A € A and every (a;)n, € A™, A\, p(a;) < wwi({ai)ny ). An

(A, C)-homomorphism (A, u1,L1) (o), (Az, p2, Lo) is an A x C-morphism

(A1, L1) L), (As, Ly) such that © o pi(a) < ug o p(a) for every a € Aj.
C-A is the category of (A, C)-algebras and (A, C)-homomorphisms, which is
concrete over the product category A x C.
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An important moment arising from the definition should be underlined at
once. In [15], A. Di Nola and G. Gerla introduced the category C(7) as a
“general approach to the theory of fuzzy algebras”. It is easy to see that C(7)
is isomorphic to the subcategory CLat-Alg(f2)~ of CLat-Alg(f2), with the

same objects and with morphisms (A1, 1, L1) M (Ag, o, Lo) satisfying
the identity ¢ o u1 = po o ¢ (reflected in the notation “(—)="). Moreover, [15]
started to develop the theory of fuzzy universal algebra, some results of which
can be easily extended to our approach. Bound to the topological nature of this
paper, we will only notice that the category C-A provides a more appropriate
fuzzification of universal algebra, which fuzzifies not only algebras, but also
(and that is more important) their respective homomorphisms.

The related topological stuff is an easy modification of Definitions 6.3, 6.4.

Definition 8.2. Let T be a vt-theory in a category X, let L be a variety having
CSLat(\/) as a reduct, and let L be a subcategory of LoL. An L-valued vt-
theory in X induced by T and L is the pair (T,L).

Definition 8.3. Let (T, L) be an L-valued vt-theory in a category X. LTop(T)

is the category, concrete over X x L, whose objects (IL-valued T-topological
spaces) are triples (X, 7, L), comprising an X-object X, an L-object L and
a (B,LoL)-algebra (T'(X),T, L) (L-valued T-topology on X ), and whose mor-
phisms (X, T, L) M (Y,8, M) are those X x L-morphisms (X, L) M)
(Y, M), which satisfy the property of (T'(X),T, L) T, (T(Y),8, M) being
a Lo(LoL-B)-morphism (L-valued T -continuity).

It appears that lattice-valued catalg topology is truly a universal one, incor-
porating all (up to the knowledge of the authors) existing topological settings
(including the catalg one). The following examples justify the fruitfulness of
the new notion (the reader should notice that an L-valued vt-theory (7),L) is
occasionally denoted by (P, B, LolL), to underline its building blocks).

Example 8.4.

(1) LTop((SZ% .., SFrm, S§PY ), where CLat is the variety of com-
plete lattices and CDCLat is its subcategory of completely distributive
lattices, provides a categorical accommodation of the theory of (L,M )-
fuzzy topological spaces of T. Kubiak and A. Sostak [40].

(2) LTop((Rs3, Frm,Frm)) is isomorphic to the category Loc-F>Top of
(L, M)-fuzzy topological spaces of J. T. Denniston, A. Melton and
S. E. Rodabaugh [11], which was introduced as a variable-basis counter-
part of the above-mentioned approach of T. Kubiak and A. Sostak.

(3) LTop((P, Frm, SPM°%)) provides the approach of U. Héhle [30].

(4) LTop(T) for L = SSSLat(V) is isomorphic to the category Top(T)
introduced in Definition 6.4.

In view of the above-mentioned remarks, it seems natural to consider the
notion of attachment in the more general lattice-valued framework, and, there-
fore, one can postulate the following open problem.
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Problem 8.5. What will be the concept of lattice-valued catalg attachment?

It will be the topic of our further research to extend the already developed
framework to the new setting.
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USQuant: unital semi-quantales. 106
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