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ABSTRACT

A condensation is a one-to-one continuous function onto. We give suf-
ficient conditions for a Tychonoff space to admit a condensation onto
a separable dense subspace of the Tychonoff cube 1° and discuss the
differences that arise when we deal with topological groups, where con-
densation is understood as a continuous isomorphism. We also show
that every Abelian group G' with |G| < 2° admits a separable, precom-
pact, Hausdorff group topology, where ¢ = 2.

2010 MSC: 22A05, 54H11.

KEYWORDS: Condensation, continuous isomorphism, separable groups,
subtopology.

1. INTRODUCTION

A condensation is a bijective continuous function. If X and Y are spaces
and f: X — Y is a condensation, we can assume that X and Y have the same
underlying set and the topology of X is finer than the topology of Y. In this
case we say that the topology of Y is a subtopology of X or that X condenses
onto Y.

The problem of finding conditions under which a space X admits a subtopol-
ogy with a given property Q has been extensively studied by many authors.
It is known that every Hausdorff space X with nw(X) < k can be condensed
onto a Hausdorfl space ¥ with w(Y) < &k (see [7, Lemma 3.1.18]). Similar
results remain valid in the classes of regular or Tychonoff spaces. In [16], the
authors found several necessary and sufficient conditions for a topological space
to admit a connected Hausdorff or regular subtopology. It is shown in [11] that
every non-compact metrizable space has a connected Hausdorff subtopology.
Druzhinina showed in [9] that every metrizable space X with w(X) > 2% and
achievable extent admits a weaker connected metrizable topology. Recently,
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Yengulalp [17] generalized this result by removing the achievable extent condi-
tion.

In topological groups (and other algebraic structures with topologies), the
concept of condensation has a natural counterpart: Continuous Isomorphism,
a homomorphism and a condensation at the same time.

At the end of the 70’s, Arhangel’skii proved in [2] that every topological
group G with nw(G) < k admits a continuous isomorphism onto a topological
group H with w(H) < k. In [15] Shakhmatov gave a construction that implies
similar statements for topological rings, modules, and fields. C. Hernandez
modified Shakhmatov’s construction and extended that result to many alge-
braic structures with regular and Tychonoff topologies (see [8]).

As a corollary to Katz’s theorem about isomorphic embeddings into products
of metrizable groups (see [1, Corollary 3.4.24]) one can easily deduce that if G
is an w-balanced topological group and the neutral element of GG is a Gj-set,
then there exists a continuous isomorphism of G onto a metrizable topological
group. Pestov showed that the condition on G being w-balanced can not be
removed (see [14]).

In Theorem 3.2 of this paper we present conditions that a Tychonoff space
must satisfy in order to admit a condensation onto a separable dense subspace
of the Tychonoff cube of weight 2¢. In Corollary 4.2 we show that those
conditions are not sufficient if we want to have a continuous isomorphism from a
topological group to a separable group and in Theorem 4.3 we give sufficient and
necessary conditions in order for a topological isomorphism from a subgroup of
the product of compact metrizable Abelian groups onto a separable group to
exist.

As Arhangel’skii showed in [4], every continuous homomorphism of a count-
ably compact group X onto a compact group Y of Ulam nonmeasurable car-
dinality is open. In Example 4.4 we construct a condensation of a Tychonoff
countably compact space with cellularity 2“ onto a separable compact space
with cardinality 2¢ thus showing that Arhangel’skii result cannot be general-
ized to arbitrary spaces. Finally, we show in Theorem 5.11 that every Abelian
group of cardinality less than or equal to 2¢ admits a precompact separable
Hausdorff group topology.

2. NOTATION AND TERMINOLOGY

We use I for the unit interval [0, 1], T for the unit circle, N for the set of
positive integers, Z for the integers, Q for the rational numbers, and R for the
set of real numbers.

Let X be a space. As usual, we denote by w(X), nw(X), x(X), ¥(X),
d(X) the weight, network weight, character, pseudocharacter, and density of
X, respectively.

We say that Z C X is a zero-set if there exists a real-valued continuous
function f: X — R such that Z = f~1(0).



Continuous isomorphisms onto separable groups 137

Let {fo : @ € A} be a family of functions, where f, : X — Y, for each
a € A. We denote by A{f, : @ € A} the diagonal product of the family
{fa:ac A}.

Suppose that n = {G, : a € A} is a family of topological groups and
In=1] aca Ga is the topological product of the family 7. Then the X-product
of 1, denoted by XIIn, is the subgroup of IIn consisting of all points g € Iy
such that [{a € A : mo(9) # ea}| < w and the o-product of 1, denoted by
olln is the subgroup of IIn consisting of all points g € IIn such that [{a € A :
Tal(g) # €a}| < w, where 7, : IIn — G, is the natural projection of IIn onto
G, and e, € G, is the neutral element of G, for every a € A. It is easy
to see that both XIIn and olln are dense subgroups of IIn. A description of
properties of these subgroups can be found in [1, Section 1.6].

If X is a Tychonoff space and G is a topological group, we denote by X the
Cech-Stone compactification of X (see [7, Section 3.6]), and by pG the Raikov
completion of G (see [1, Section 3.6]).

The next definitions are standard in group theory (see [10, Section 1.1]). Let
G be a group, e the neutral element of G, and g € G an element of G distinct
from e. We denote by (g) the cyclic subgroup of G generated by g. The order
of g is o(g) = [{(g)]- If o(g) = oo then (g) is isomorphic to Z. The set tor(G)
of the elements g € G with o(g) < oo is called the torsion part of G. If G is
Abelian, tor(G) is a subgroup of G.

We say that the group G is:

torsion-free if for every element g € G\ {e}, o(g) = oc;

a torsion group if for every element g € G, o(g) < oo;

bounded torsion if there exists n € N such that g = e for every g € G;
unbounded torsion if G is torsion and for each n € N there exists g € G
such that o(g) > n;

a divisible group if for every g € G and n € N, there is h € G such that

h" =g
e a p-group, for a prime p, if the order of any element of G is a power of
p.

If G is an Abelian torsion group, then G is the direct sum of p-groups G,
(see [10, Theorem 8.4]). The subgroups G,, are called the p-components of G.

Let p be a prime number. The set of p”th complex roots of the unity, with
n € N forms the multiplicative subgroup Z,~ of T. For every prime p, the
group Zpe is divisible.

3. CONDENSATIONS AND SUBTOPOLOGIES

Not every space has a separable subtopology. For example, a compact Haus-
dorff space X has a separable Hausdorff subtopology only if X is separable.
Let us extend this fact to a wider class of spaces.

We recall that a Hausdorff space X is w-bounded if the closure of any count-
able subset of X is compact.
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Proposition 3.1. Let X be an w-bounded non-separable space. Then X does
not admit a condensation onto a separable Hausdorff space.

Proof. By our assumptions, for every countable subset S of X we have that
X\ S#@. Let f: X — Y be a condensation onto a Hausdorff space Y and
D a countable subset of Y. Then S = f~!(D) is a countable subset of X, and
S is compact. Take an element z € X \ S. Observe that f(S) is compact,
D C f(S) and f(x) ¢ f(S5), so D cannot be dense in Y. O

The next theorem gives sufficient conditions on a Tychonoff space to admit
a condensation onto a separable dense subspace of I, where ¢ = 2.

Theorem 3.2. Let X be a Tychonoff space with nw(X) < 2¥. Suppose that
X contains an infinite, closed, discrete, and C*-embedded subset A. Then X
can be condensed onto a separable dense subspace of I¢.

Proof. We can assume that |A] = w. By the Hewitt-Marczewski-Pondiczery
theorem, we know that d(I) = Rg. Let D = {d,, : n € w} be a countable
dense subset of I, N a network for X, IN| < 2 and A = {z,, : n € w} an
enumeration of A. Let g : A — D be a bijection, where g(x,) = d,, for each
n € w. For every a < ¢, let fo = po o g, where p, : I — I(,) denotes the
natural projection of I¢ to the a-th factor.

Our goal is to construct a family of continuous functions {g, : X — [}a<.
such that g, extends f, for every @ < ¢ in a way that, given two different
points z,y € X, there exists o < ¢ such that g,(x) # ga(y).

If n,m € w are distinct, there exists o < ¢ such that fo(z,) = pa(d,) #
Paldm) = fa(xp). Therefore any family of extensions of f,’s separates the
points of A. So, given two distinct points z,y € X, it is only necessary to
consider the cases when one point is in A and the other is not, and when
neither is in A.

Since A is closed and X is Tychonoff, for each y € X \ A there exists
V, € N such that y € V,, and A and Vy can be separated by zero-sets. Let
G1 ={V, :y € X\ A} and note that G; C N. In particular, |G1| < c.

For each V' € (1, choose disjoint zero-sets Zy, Z{, in X such that V C Zy
and A C Zj, and let Z2 = {(Zv,Z{,) : V € Gi} and C; = A x Z. Tt is clear
that |C1] < c.

Let FF = {(z,y) : z,y € X \ 4,  # y}. For each pair (z,y) € F, we can
find subsets U = Uy,) € N,V =V, € N with z € U and y € V such
that there exist pairwise disjoint zero-sets Z v), Zu, Zv with A C Zy v,
UC Zyand V C Zy. Let Go = {(Ug,y), Viay) ¢ (w,y) € F}. Tt is clear
that Go € N x N, therefore |G| < ¢. For each (U, V) € G, choose pairwise
disjoint zero-sets Z(y,v), Zu, Zv such that A C Zy vy, U C Zy and V C Zy
and let Cy = {(Z(va),ZU, Zv) : (U, V) S GQ} Then |C2| <c.

Put C = C; UCs. Clearly |C| < c¢. Let C = {C, : a < ¢} be an enumeration
of C.
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Case 1: C, € C;. Then C, has the form (x,, Zyv, Z{,), for some n € N
and V € Gy. Since Zy and Zj, are disjoint zero-sets, there exists a continuous
mapping ro : X — I such that Zy = r;'(0) and Z{, = r '(1). By the
definition of Z{, we have that A C Zj,. Since A is C*-embedded in X, there
exists a continuous mapping fa : X — [ that extends f,. We have two subcases,
fa(xn) #0or fo(ry) =0. .

If fo(zyn) # 0, we define go : X = I, by go = fao - 7o. Then go(Zy) C {0}
and for each z € A, go(2) = fa(z) -7 (2) = fuo(x), therefore g, is an extension
of fo. In particular, go(vn) = fo(Tn) € 9a(Zv). B

If fo(zn) =0, we define go : X = I, by go =1 =70+ fa 7ra. Forany ax € A,
since A C Z{, we have that 7o (z) = 1, therefore go(z) = 1 — ro(z) + fu(x) -
ro() = fa(:ﬂ) = fa(x), S0 go is a continuous extension of f,. If y € Zy, then
9aly) =1, 50 ga(Zv) C {1}.

In both subcases, we have extended f, to a continuous function g, such that
9a(Tn) & ga(Zv).

Case 2: C, € Ca. Then C,, has the form (Zy, v, Zu, Zv) for some (U, V) €
G2, where Z(y vy, Zu, and Zy are disjoint zero-sets and A C Z(y,y). As in
Case 1, there exists a continuous function fa : X — I that extends f, such that
fa(ZU) C{1}. As Z = Zw,vyU Zy is a zero-set disjoint from Zy, there exists
a continuous function r, : X — I such that Zy = r {0} and Z = r*{1}.
Let go = fo - Ta- For cach z € A, go(z) = fu(x) - ra(z) = fo(z). If 2 € Zy,
then go(z) = fo(z) -7o(x) = 1. If £ € Zy, then go(z) = folz) - ro(z) = 0.
Therefore go(Zy) N ga(Zv) = @.

Thus, we have constructed a family {g, : alpha < ¢} of continuous functions.
Given two different elements z,y € X, we have three possibilities: z,y € A,
orz € Aandy &€ A, or z,y € X \ A. The functions g, are extensions of the
mappings f,, therefore they separate the elements of A. If x € A and y € A,
then we are in Case 1 and there exists o < ¢ such that C, = (2, Zv, Z{,)
with ¢ = z, and y € Zy. Since go(zn) € ga(Zv), we have in particular
that go(z) # ga(y). If both points z,y are in X \ A, we are in Case 2 and
there exists o < ¢ such that Co, = (Z(y,vy, Zu, Zv) with 2 € Zy and y € Zy.
Since go(Zu) N go(Zyv) = @ we have that gq(x) # ga(y). Hence the family
{ga : @ < ¢} separates the elements of X.

Let g: X =1 g = A{go : a < ¢} and Y = §(X). Since g,’s separate the
elements of X, ¢ is a continuous injective mapping. Besides, for each n € w
and every o < ¢, §(zp)(@) = ga(xn) = falzn), so D C g(X). Thus Y is a
dense separable subspace of I°.

]

Since the space Y = §(X) in Theorem 3.2 is a dense subspace of I¢, it is
k-metrizable and perfectly k-normal (see [3], [13]). In particular, every regular
closed subset of Y is a zero-set.

Let us show that one cannot remove any assumption in Theorem 3.2.
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If we put X = N and A = N, then we have an example showing that the
condition on A being closed can not be dropped in Theorem 3.2.

As to the condition on A being discrete, take a non-separable Hausdorff
compact space X with w(X) < 2%, for example, the Alexandroff double circle
[7, Example 3.1.26]. Let A be any infinite closed subset of X. By the Urysohn’s
Lemma, A is C*-embedded, but there is no condensation of X onto a separable
space.

Let X = (W x Wy) \ {(w1,w)}, where W = {a: a < w} and Wy = {o :
a < w} carry the order topology. This space, known as the Tychonoff plank,
is a Tychonoff space that has the property that the closure of any countable
subset A is also countable, and if A C (W \ {w;}) x Wy, then A is compact. It
is not difficult to see that every continuous real-valued function on X can be
extended over W x Wy, that is, X = W x Wy. Let A = {wi} x (Wy \ {w}).
Clearly A is an infinite closed discrete subset of X. Suppose that we have a
condensation f : X — Y onto a Tychonoff space Y. Let D C Y be a countable
subset of Y and S = f~1(D). Since f is a bijection we have that S is countable.
The closure S of S in BX is a compact countable subset of X, so X \ S # @.
Take an element € X \ S. Let F: BX — BY be a continuous extension of
the mapping f. Observe that F(S) is countable and compact (hence closed in
Y), F(z) ¢ F(S), and F(S) contains D. Therefore D can not be dense in Y.
This example shows that the condition “A is C*-embedded in X” cannot be
removed from Theorem 3.2.

4. TorPOLOGICAL GROUPS: CONTINUOUS ISOMORPHISMS

We recall that a topological group G is w-narrow if it can be covered by
countably many translates of any neighborhood of the identity of G.

The following results show that the conditions on X in Theorem 3.2 are
not sufficient to ensure the existence of a continuous isomorphism of X onto a
separable topological group in the case when X is a topological group.

Theorem 4.1. Let k be an infinite cardinal with k < 2, T the circle group, and
G a subgroup of XT"%. Then there exists a continuous isomorphism ¢ : G — H
onto a separable topological group H if and only if ¥(G) < w.

Proof. Let ¢ : G — H be a continuous isomorphism onto a separable topolog-
ical group H and D C H a countable dense subset. There exists a continuous
homomorphism @ : oG — pH that extends ¢. Note that the Raikov completion
of G is the closure of G in T%, H C $(oG) C pH, and $(pG) is a compact
group containing H as a dense subgroup. Therefore (oG) = oH.

Clearly o~ 1(D) C G € X(T*) and |¢~!(D)| = w, therefore B = ¢~1(D) (the
closure in T*) is a compact metrizable subspace of ¥T* (see [1, Propositions
1.6.29 and 1.6.30]). So $(B) is compact and contains D as a dense subspace,
which implies that B(B) = oH. Also oH is compact and has a countable
network as a continuous image of B, so w(pH ) and w(H) are less or equal than
w. Thus ¢ : G — H is a continuous isomorphism of G to a metrizable space,
therefore ¢(G) < w.
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Let us verify the other implication. Observe that the identity element e of
G is a Gs-set, because 1(G) < w. Since G is a subgroup of a compact group, it
is w-narrow. By Corollary 3.4.25 of [1], there exists a continuous isomorphism
of G onto a second countable (hence separable) group. O

The next corollary follows from Theorem 4.1.

Corollary 4.2. Let G = o(T") be the o-product of k-many copies of the circle
group, where k is an infinite cardinal. If there exists a continuous isomorphism
¢ : G — H onto a separable topological group H, then k = w.

Proof. Tt is easy to verify that ¢ (o(T")) = &, so the conclusion follows from
Theorem 4.1. (]

The topological group G = o(T") contains infinite, closed, discrete, C*-
embedded subspaces. By Theorem 3.2, if K < 2% we can find a condensation
of G onto a separable Tychonoff space, but if kK > w, there is no continuous
isomorphism of G onto a separable topological group.

Theorem 4.1 can be generalized if we replace T* by the product of any family
of compact metrizable Abelian groups:

Theorem 4.3. Let n = {G, : « € k} be a family of compact metrizable groups
with kK < 2¥, and G be a subgroup of ¥ = XIIn. Then there exists a continuous
isomorphism ¢ : G — H of G onto a separable topological group H if and only

ifY(G) S w.

The proof of this fact is almost the same as in the Theorem 4.1, and we
omitted.

Arhangel’skii showed in [4, Corollary 12] that every continuous homomor-
phism of a countably compact topological group onto a compact group of Ulam
nonmeasurable cardinality is open. In particular, if there exists a continuous
isomorphism of a countably compact topological group G onto a compact group
of Ulam nonmeasurable cardinality, then G is compact.

The next example shows that one cannot extent this result to topological
spaces.

Example 4.4. There exists a condensation of a countably compact non-separable
Tychonoff space onto a separable compact space of Ulam nonmeasurable car-
dinality, 2°¢.

Let Y = BN be the Cech-Stone compactification of the natural numbers and
Z =Y \N. By [7, Example 3.6.18], Z contains a family A of cardinality ¢
consisting of pairwise disjoint non-empty open sets. Let m : Y X Z — Y and
mo 1 Y X Z — Z be the natural projections to the first and the second factor
respectively. Since Y is compact, mo is a closed mapping. By [7, Theorem
3.5.8], Z is a compact space because it is the remainder of a locally compact
space and so, 71 is a closed mapping too.

By [7, Theorem 3.6.14], every infinite closed subset S of both Y and Z has
cardinality equal to 2¢. Let M be an infinite subset of Y x Z. It is clear that
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at least one of the set, m (M) or ma(M), is infinite. Suppose that w1 (M) is
infinite. Since the projection m is closed, m (M) is a closed subset of Y, so
711 (M) and M have cardinality equal to 2°.

Our goal is to construct a countably compact non-separable subspace X C
Y x Z such that m (X) =Y, m1|x is a one-to-one mapping, and ma(X)NA # &
for every A € A.

Recall that [Y]“ is the family of subsets of Y with cardinality w. Let A =
{As : @ < ¢} be a faithful enumeration of A and choose z, € A, for each
a<c LetalsoY = {yg: 8 <2°% and [Y]* = {F, : ¢ <y < 2 be faithful
enumerations of Y and [Y]“ respectively such that F. C {yz: 8 < c}.

We shall define a transfinite sequence {X, : ¢ <~y <2} of subsets of Y x Z
satisfying the following conditions for each v with ¢ <~ < 2%

(iy): XpC X, ifc < B <y
(iiy): the restriction of m; to X, is a one-to-one mapping;
(iiiy): F, C m(X5);
(iv,): 7 ' (F,) N X, has an accumulation point in X.;
(v): X5 <ol

For every o < ¢ put T, = (Ya,2q) and let X! = {7, : @ < ¢}. By our
enumeration of [Y]¥, F. C m1(X!). Put B, = 7y *(F.) N X!. Since m; is closed
and F, C m1(B,), the cardinality of 7 (B,) is equal to 2¢, so we can choose
xc € B, such that 7 (z.) & m1 (X)).

Put X, = X/ U {z.}. Conditions (ii), (iii¢), (iv¢), and (v¢) are clearly
satisfied, condition (i.) is vacuous.

Suppose that for some v with ¢ < < 2, X, are defined for all {, ¢ < & < 7.
Let X, = Uc<e<r Xe. We have two possibilities. If F,, C m1(X,), then put
X! = X,. If E,\ m(X,) # @, then choose an arbitrary point z,, € m; *(y)
for each y € F, \ m1(X,) and put X = X, U{z, :y € F,\m(X,)}. Inboth
cases, I, C m1(X)).

Since conditions (i¢) and (vg) are satisfied for all ¢ <& <, [X]| < |y] < 2°.

Let B, = 7 '(F,) N X!. Since 7 is a closed mapping, |m1(B)| = 2¢, so
there exists x., € B, such that 7 () & 71 (X))

Let X, = X/ U {x,}. Clearly condition (i,) is satisfied.

Since conditions (i¢) and (ii¢) are satisfied for every ¢ with ¢ < £ < 7,
1| <, is a one-to-one mapping. By our definition of X;, 1| x is a one-to-one
mapping too. Finally, by our choose of ., mi(z,) ¢ m (X)), so m|x, is a
one-to-one mapping by (ii,).

As F, ¢ m (X)) and x,, € X, (iii,) and (iv,) are satisfied.

Since (v¢) and (i¢) are satisfied for every € with ¢ < & <, |X,| < |y|. As
|X,\ X,| <w, we conclude that | X,| < |7

Put X = Uc§v<2‘ X, and let f : X — Y be the restriction of m to X.
Since conditions (iy) and (ii,) are satisfied for all v with ¢ < v < 2°, f is a
continuous one-to-one function. Let y € Y be an arbitrary element of Y and
F € [Y]¥ be a subset of Y with y € F. Then there exists v, ¢ <y < 2° such
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yeF=F,Cm(X,)Cm(X)= f(X)

so f(X) =Y. Therefore f is a condensation of X onto Y.

Let B be an arbitrary infinite countable subset of X. Then F = f(B) is an
infinite countable subset of Y and there exists v < 2° such that F' = F,,. By
(iv,), B = f~Y(F) = 7 '(F,) N X,, has an accumulation point in X, and in
X. This means that X is countably compact.

Since ANma(X) D ANma(X,) # & for every A € A, X cannot be separable.

5. SEPARABLE GROUP TOPOLOGIES FOR ABELIAN GROUPS

In this section we prove that every Abelian group G with |G| < 2¢ admits a
separable precompact Hausdorff group topology. To do this, we divide the job
in three parts:

Case 1.: There is ¢ € G with o(z) = oc.
Case 2.: (G is a bounded torsion group.
Case 3.: (G is an unbounded torsion group.

We say that a topological group is monothetic if it has a dense cyclic sub-
group. The next result is proved in [12, Corollary 25.15]:

Lemma 5.1. The group T" is monothetic if and only if k < c.
Let us begin with the case when G is a non-torsion group (Case 1).

Theorem 5.2. Let G be an Abelian group. Suppose that |G| < 2¢ and there is
an element x € G of infinite order. Then there exists a separable precompact
Hausdorff group topology on G.

Proof. The main idea of the proof is to define a monomorphism @ : G — T*¢
such that B(G) will be separable. First we do this in the case when G is
divisible.

Let H be a minimal divisible subgroup of G with € H. Since o(z) is
infinite, H is isomorphic to Q. By Lemma 5.1, there exists a € T® such that
{a) = T¢. Let ¢ : H — T¢ be a monomorphism such that ¢(z) = a. For every
B < ¢, put 95 = pg o ¢, where pg = T® — T g is the projection of T¢ to the
[’s factor.

Let k = |G| > w. Since G is divisible, it is isomorphic to the direct sum
H @ @, c 4 Ga, where each G, is a subgroup of G isomorphic either to Q or
Zpe for some prime number p, and A is an index set of cardinality & (see [10,
Theorem 23.1]). For each o € A, let g, : G, — F be the isomorphism of G,
onto F', where F'is either Q or Zp~ for some prime number p.

Consider A as a subspace of the space 2¢ with the product topology. Let B
be the canonical base of 2°, we know that |B| = c.

For each g € G, let hy € H and k € @, 4 Ga be such that g = hy + k.
If g € G\ H, then k # e and there exists a non-empty finite subset c¢(g) C A
such that k € @, ¢ ) Ga- For every a € c(g), take ko € Gq such that k =
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2 ace(g) Fa- Choose an arbitrary a(g) € c(g) such that k() is not the identity
of the group Gy (g). Let Uy € B be an open set satisfying U, Nc(g) = {a(g)}
Thus for each g € G\ H we have defined a pair (hy,U,) € H x B.

The cardinality of the set P = {(hy,U,) : g € G\ H} is less than or equal
to |HxB|=w-c=c. Let P={Ps:f < ¢} be an enumeration of P, where
Pg is a pair (hg,Ug) with hg € H and Ug € B. For each § < ¢, we define a
homomorphism ¥ : @ aca Ga — T as follows:

If pg(hg) = 1, we can define 93 such that ¥g|lq, = 0o if @ € Ug, and
Ygla, = 1, otherwise. If wg(hg) # 1, we define 15 = 1.

Let ©3 be the homomorphism defined by 93 = g © 1pg. It is clear that, for
each 8 < ¢, P is an extension of pg, therefore p = Ag< P is an extension of
¢ and ker(p) N H = ker(y) = {e}.

Choose g € G\ H. Then g = hy + ZQEC(g) ko, where k, € G, for each
a € ¢(g). There exists 8 < ¢ such that hy = hg and Ug = Ug, so

Bs(9) = wp(hg) - va( Y ka) =¢s(hs)- [ ¢s(ka) = 0s(hs) - s(kag)).
acc(g) acc(g)

We have two cases. If pg(hg) = 1 then ¥5(kag)) = 0a(qg)(9(a(g))) # 1 and,

therefore ©4(g) # 1. If pg(hg) # 1, then 1 = 1. It follows that B(g) # 1.

Since P is a monomorphism of G to the group T¢, with $((x)) = (a), and
(a) is a dense subset of T¢, it follows that @(G) is a precompact, separable,
Hausdorff topological group.

In general, every infinite Abelian group G can be seen as a subgroup of a
divisible group G with |G| = |G| (see [10, Theorem 24.1]). As shown above,
there exists a monomorphism ¢ : G — T such that ¢(x) = a, where z € G is
an element of infinite order and a € T° with (a) dense in T¢. Therefore ¢(G)
contains (a) as a dense subset. So, the restriction ¥ = ¢|¢ : G — ¢(G) is the

isomorphism we are looking for.
O

The next step is to consider a bounded torsion group G (Case 2). In this
case we are going to use the next lemmas.

Lemma 5.3. Let p be a prime number, m € N, and P the subgroup of T
consisting of all p"-th complex roots of unity. For every s € P and k < m with

K lo(s
o(s) < p", there exists s, € P such that o(sx) = p* and s = s}, fols)

Proof. Since s € P, the o(s) = p™ for some n < m and there exists a, a non-
negative integer number a < p”, such that s = €2¢™/P" _ Observe that a is not
divisible by p. Let s, = €2a™/P" It is clear that o(s;) = p* and

p*fo(s) _ (e2am'/p" )p’“/O(S) — p2ami/p" _ o

Sk
O

Lemma 5.4. Let p be a prime number, m € N, P the subgroup of T consisting
of all p™-th complex roots of unity and H = P¢. For every h € H there exists
g € H with o(g) = p™ and h € {g).
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Proof. Let h be an element of H. For every a < ¢, let n, € N such that
o(h(a)) = p™. Since n, < m for every a < ¢, there exists

np, = max{ky, : @ < c}.

Denote by d = m — ny and, for every a < ¢, let ky, = no + d. It is clear
that ko < m. By Lemma 5.3 for each o < ¢ we can find h}, € P such that

o(h?) = pFe and h(a) = h(’;pka/o(h(“)). Note that % = gi% =p?.

Let g be the element of H such that g(a) = hY. Observe that for every
a<c p-gla) = h(a), then h = p?.g.

By our definition of ny,, there exists 8 < ¢ such that o(h(8)) = p™. Since the
order of h(f3) is equal than p™, o(h}%) = p*-o(h(53)) = p™ and then o(g) = p’g

Theorem 5.5. Let G be an Abelian bounded torsion group such that |G| < 2°.
Then there exists a separable precompact Hausdorff group topology for G.

Proof. We can assume that |G| > w. Suppose first that for every g € G, the
order of g is a power of a fixed prime number p. Since G is a bounded torsion
group, we can find k& € N with o(g) < p* for each ¢ € G. Hence there exists a set
{ga 1 @ € A} C G such that G = @, 4(9a) (see [10, Theorem 17.2]). For each
a € A, let g4 : (ga) = T be the monomorphism defined by 04 (ga) = e2mi/ o
where n, = 0(gq)-

For every n < k, put 4, = {a € A : 0(ga) = p"} and m = max{n :
|A,] > w}. Let Jy = {@; : j € w} be an infinite countable subset of A,,,
Go = Docs,(9a)s J = Up<m An) \ Jo and F = U,.,, An. Observe that
G' =B, cr(ga) is finite and [Go| = w. So G = G" © Go O P, ;(9a)-

Let H = P, where P is the subgroup of T consisting of all p™-th complex
roots of unity. By the Hewitt-Marczewski-Pondiczery theorem, H is separable.
Let D be a countable dense subgroup of H. Since D is a bounded torsion
group, it is direct sum of cyclic groups, i.e., D = ®j6w<dj>' By Lemma 5.4 we
can assume that o(d;) = p™ for every n € w.

Let ¢ be a monomorphism ¢ : Go — H such that ¢(ga;) = d; for every
n € w. We will extend this monomorphism to G = Go ® @, (ga). For every
B < ¢ let g = pg o, where pg : H — Py is the natural projection of H
onto the -th factor.

Consider J as a subspace of the space 2¢ endowed with the product topology.
Let B be the base of canonical open sets in 2¢, |B| = c.

For every g € G, there exists go € G and a finite set ¢(g) C J such that
g = go+lg, where [ € @aec(g) (ga). If g € G\ Go, then c(g) # @. Let o € c(g)
be an arbitrary element of ¢(g) and choose Uz € B such that Uz Ne(g) = {ag}-

The set S = {(g0,Uj) : § € G\ Go} has cardinality less than or equal to
|Go x Bl =w-c=c. Let S ={Ss: 5 < ¢} be an enumeration of S, where Sz
is a pair (ag, Ug) with ag € Gy and U € B.

If pg(ap) = 1, then let Y5 : @, ;(9a) — P be a homomorphism such that
Y8l(g.) = 0a for each a € Ug and 15(ga) = 1if a € J\ Ug. If pg(ag) # 1, put
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g =1. Let 93 = @p @ . It is clear that, for each 8 < ¢, Py is an extension
of pg. Therefore o = APy is an extension of ¢ and ker(@) NGo = ker(p) =
{e}.

Choose g € G'\ Go. Then g = go + I where Iy =3 (o) la € Baeerg)(9a)-
There exists 8 < ¢ such that go = ag and Uy = Ug. By our definition of Ug,
UsNec(g) = {ag} and l,, is different from the identity element. It follows that

B5(9) = Bp(do+lg) = walap)-vs(ly) = palas) [ vslle) = vslas)-tsla,).
a€gc(g)
If g(ag) = 1 then ¥5(la,) = 0a(la,) # 1 because g, is an isomorphism and
la, is different from the neutral element. Therefore

©5(9) = pslas) - ¥Yplla,) =1-¢p(la,) # 1.
If pg(ag) # 1, then ¢s(la,) = 1. It follows that
©5(9) = pslag) - ¥plla,) = pplap) -1 # 1.
So P is a monomorphism of G' to P* such that D C B(Gy). Hence B(G) is
a precompact, separable topological group.
Let us consider G’ as a finite subgroup of T¥. If ¢ € G, then there exist
g € G'and g € G such that g = ¢’ +g. Let ¢ : G — G' x P*, $(g) = (¢',2(79)).
Then ¢ is a monomorphism of G to G’ x P® and therefore G has a precompact,
separable, Hausdorff group topology.
Now, suppose that G is an arbitrary bounded torsion Abelian group and let
G = @,-,, Gp, be the decomposition of G into the direct sum of p-primary
components (see [10, Theorem 8.4]). As shown above, each G, admits has a
precompact, separable, Hausdorff group topology. Since the number of factors
is finite, @,.,, Gp, is algebraically isomorphic to [[,., G,,, so G admits a
precompact, separable, Hausdorff group topology as well.
O

5.1. The Case of Unbounded Torsion Groups. The case when G is an
unbounded torsion Abelian group requires special attention. In this case, we
will adapt some ideas from the proof of [5, Theorem 2.3].

We call a connected open subset V' of T an open arc, and we denote by [(V)
the length of V.

Lemma 5.6. Suppose that V is an open arc in T, z1, z0 € T, n, m € N,
1<n<m, and4rw/m < 1(V). Then there exists y € V such that my = z1 and
ny # za.

Proof. Let z € T and k € N. The distance between any two different k-th roots
of z is a multiple of 27 /k. Since [(V') > 47 /m, there are two distinct m-th roots
of z1 in V. Let y1, y2 be two elements of V such that my; = mys = z; and
the distance between y; and y, is 27 /m. Note that y; and y can not be both
n-th roots of z3, otherwise the distance between them would be greater than or
equal to 27/n, and it would follow that m < n contradicting the assumptions
of the lemma. (]
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Lemma 5.7. Let K be a countable subgroup of T¢ and f' € K, m > 2. Suppose
that {Vy, : a < ¢} is a family of open arcs of T such that 47 /m < [(Vy), for
every a < ¢. Then there exists [ € [[{Va : @ < ¢} such that mf = f' and
nf & K for each n with 1 <n < m.

Proof. Let K x {1,....m — 1} = {(hg,nk) : k € w} be an enumeration of
K x{1,...,m—1}. For each k < w we will define o), < ¢ and z,, € T satisfying
the following conditions:
(ik): o # o if j <k
(iik): Lo, € Vak;
(ilig): mzq, = f'(on);
(ive): nixa, # hi(ak).

Let a9 < ¢ be an arbitrary ordinal. By Lemma 5.6 (with V =V, 21 =
(@), 22 = ho(a), n = ng) we can choose an element z,, € V,, that satisfies
(iip), (iilp) and (ivp). Condition (ig) is vacuous.

Suppose that for every j < k we have chosen ; and ., such that conditions
(i) - (iv;) are satisfied. We can pick oy < ¢ that satisfies (ix). By Lemma 5.6
with V = V,,, 21 = f'(ax), 22 = hi(ax), and n = ng, we can choose z,, that
satisfies (iix) - (ivg).

Finally, for each a € ¢\ {a : k € w} we use Lemma 5.6 again with V =1,
z1 = f(a), 22 =1, n =1 to select z, € V,, such that mz, = f'(a).

We define f € T by f(a) = x, for each a < ¢. Then:

o f(a) €V, for each a < ¢, therefore f € [[{Va : o < c}.

e mf(a) =mz, = f'(a) for each a < ¢, s0 mf = f'.

e Given n € {1,....,m — 1} and h € K, there exists k¥ € w such that
(h,n) = (hi,nk). By conditions (iiiy) and (ivy), we have that

nf(ar) = nkxa, 7 hie(ar) = h(ag).
Since h € K is arbitrary, nf ¢ K for every n < m.

The proof of the following lemma can be found in [1, Lemma 1.1.5]:

Lemma 5.8. Let G and G* be Abelian topological groups, K and K* subgroups
of G and G*, respectively. Suppose that there evist v € G, x* € G*, m € N,
m > 2 and an isomorphism 1 : K — K* that satisfy the following conditions:
e mx € K and mz* € K*;
e nx & K and nx* & K* for everyn e N, 1 <n < m;
e Y(mzx) = ma*.
Then there exists a unique isomorphism ¢ : K + () — K* 4 (x*) extending ¢
such that o(x) = x*.

Now we are going to give some definitions from group theory. A system
{ai,...,a;} of a group G is called independent if
nia + ... +ngap =0 (n; € Z)
implies
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niay = ... = ngay = 0.

We say that an infinite system L of the group G is independent if any finite
subset of L is independent. By the rank r(G) of an Abelian group G is meant
the cardinal number of a maximal independent system in G. The torsion-free
rank ro(G) is the cardinal of the maximal independent system which contains
only elements of infinite order. For each prime number p, the p-rank r,(G) of G
is the cardinal of a maximal independent system which contains only elements
whose orders are powers of p.

The next lemma can be found in [6, Lemma 3.17].

Lemma 5.9. Let G and G* be Abelian groups such that |G| < r(G*) and
|G| < rp(G*) for every prime number p. Suppose that H is a subgroup of G
satisfying r(H) < r(G*) and rp(H) < rp(G*) for every prime p. If G* is a
divisible group, then every monomorphism ¢ : H — G* can be extended to a
monomorphism ¢ : G — G*.

Now we are in position to prove the following theorem.

Theorem 5.10. Let G be an unbounded torsion Abelian group with |G| < 2°.
Then G admits a separable, precompact, Hausdorff group topology.

Proof. Let V be a countable base for the topology of T consisting of open arcs
such that T € V. Since G is an unbounded torsion group, we can choose a
subset S C G'\ {e} such that |nS| = w for every n € N, where e is the unity of
G.

Consider ¢ as the topological space 2“ and let 8 be the canonical base for
2% consisting of non-empty clopen subsets of 2. Then |B| = w.

Let U be the set of all finite open covers of 2% formed by pairwise disjoint
sets. For Y € U and o < ¢ let Uy gy denote the unique U € U such that o € U.
Put E = {(UU,v) : U € Uand v : U — V is a function}. For (U,v) € E, let
FU,v) =T[{v(Uau) : a < c}.

Clearly E is countable. Let E = {(Uy, vy) : k € w} be an enumeration of E
such that Uy = {2¥} and vo(2¥) = T.

For each k < w, choose n; € N such that

4 /ng, < min{l(v(U)) : U € Uy }.

By recursion on k € w we will choose an element z;, € S and define a map
o Hy = ({zj 1 j < k}) — T° satistying the following conditions:
(ir): or(zr) € F(U,vr);
(iix): ¢k is a monomorphism;
(iiir): wrlm, = @; for all j < k.

Pick any element z in S and let g : (xg) — T° be an arbitrary monomor-
phism. Then conditions (ig) and (iig) are satisfied, while condition (iiip) is
vacuous. Now let k& € N, and suppose that z; € S and a map ¢, satisfying (i),
(ii;) and (iii;) have already been constructed for every j < k.

Put Hy = (U, Hj. Since (ii;), (iii;) hold for every j < k, the function
¢, = Uj<rwj + Hy — T is a monomorphism. Since {z; : j < k} C S is
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finite, ny!S \ Hj, # @. Therefore there exists x, € S such that ngle, ¢ Hy.
In particular, nxy ¢ Hj, for all n < ng. Let K = ¢} (H}). For a < ¢, put
Voo = v5(Uq ). By the choice of ny, we have that 47 /ny, < (v (Uau)) = 1(Va)
for every o < «¢.

Let m = min{n € N:nzy € H.} and f' = ¢} (may) € K. Then m > ny,
and 47 /m < 4w /ny < (V) for every a < ¢. Note that m > 2. By Lemma 5.7
we can find f € F(U,v) = [[{v(Uau) : a < ¢} such that mf = f' and nf ¢ K
for n < m. Put H, = ({z; : j < k}). By Lemma 5.8 we can extend ¢}, to a
monomorphism ¢y : H — T¢ with @i (xr) = f.

We are going to verify that ¢y satisfies (i), (iix) and (iiix). As pp(zg) = f €
F(U,v), the condition (ix) is satisfied. By Lemma 5.8, ¢ is a monomorphism
that extends ¢, so (iix) and (iiiy) are satisfied.

Let H = Upe, Hr and ¢ = U, ¢k Since (iix) and (iiix) are fulfilled for
every k € w, we have that ¢ : H — T is a monomorphism.

We claim that o(HN.S) is a dense subset of T¢. Let W be a non-empty open
set of T¢. Then there exist a finite subset I = {1, ..., a,} of ¢ and non-empty
open arcs Vi, ..., V,, € V such that Ha<c Wy € W, where W, =V, ifa el
and W, = T otherwise. Let U = {Uy,...,U,} € U be such that «; € U; for
every i < n and take v : U — V, v(U;) = Vi,. Then (U,v) € E and therefore
there exists k € w such that (U,v) = (U, vi). Clearly F(Uy,vi) = F(U,v) C
[[occ Wo CW. Since 2, € SN Hy C HNS and @(ax) = wx(ar) € F(Uy, v),
it follows that o(H N.S) N W # @. This implies the density of o(H N.S) in T*.

By Lemma 5.9, the monomorphism ¢ can be extended to a monomorphism
1 : G — T¢. Therefore 1)(G) is a dense separable subgroup of T¢.

]

By Theorems 5.2, 5.5 and 5.10 we conclude:

Theorem 5.11. Let G be an Abelian group with |G| < 2°. Then G admits a
separable, precompact, Hausdorff group topology.
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