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Abstract

A new class of functions called ‘pseudo perfectly continuous’ functions is
introduced. Their place in the hierarchy of variants of continuity which
already exist in the literature is highlighted. The interplay between
topological properties and pseudo perfect continuity is investigated.
Function spaces of pseudo perfectly continuous functions are considered
and sufficient conditions for their closedness and compactness in the
topology of pointwise convergence are formulated.
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1. Introduction

The class of pseudo perfectly continuous functions properly contains the class
of quasi perfectly continuous functions [36] which in its turn strictly contains
the class of δ-perfectly continuous functions [27] and so includes all perfectly
continuous functions due to Noiri [48] and hence contains all strongly continu-
ous functions of Levine [37].

It is well known that the set C(X,Y ) of all continuous functions from a space
X into a space Y is not closed in Y X in the topology of pointwise convergence.
However, Naimpally [46] showed that in contrast to continuous functions the
set S(X,Y ) of strongly continuous functions is closed in Y X in the topology
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of pointwise convergence if X is locally connected and Y is Hausdorff. Naim-
pally’s result is extended in ([25], [27], [36], [55]) for larger classes of functions
and spaces. The main purpose of this paper is to further strengthen these re-
sults to show that if X is sum connected and Y is a DδT0-space, then several
classes of functions are identical and closed in Y X in the topology of pointwise
convergence. Moreover, conditions are formulated for these classes of func-
tions to be compact Hausdorff subspaces of Y X in the topology of pointwise
convergence.

The organization of the paper is as follows: Section 2 is devoted to prelim-
inaries and basic definitions. In Section 3 examples are included to ascertain
the distinctiveness of the notion so defined from the existing notions in the
mathematical literature. Section 4 is devoted to the study of basic properties
of pseudo perfectly continuous functions wherein, in particular, it is shown that
(i) pseudo perfect continuity is preserved under compositions and expansion of
range (ii) sufficient conditions are formulated for the preservation of pseudo
perfect continuity in the passage to the graph function and under restriction
of range. The notion of pseudo partition topology is introduced and sufficient
conditions are given for its direct and inverse preservation under mappings. A
sum theorem is proved showing when the presence of pseudo perfect continuity
on parts of a function implies pseudo perfect continuity on the whole space. In
Section 5 we discuss the interplay between topological properties and pseudo
perfectly continuous functions. Section 6 is devoted to function spaces wherein
it is shown that if X is sum connected [16] (e.g. connected or locally connected)
and Y is a DδT0-space, then the function space Pp(X,Y ) of all pseudo perfectly
continuous functions from X to Y is closed in Y X in the topology of pointwise
convergence. Moreover, if Y is a compact DδT0-space, then Pp(X,Y ) and sev-
eral other function spaces are shown to be compact Hausdorff in the topology
of pointwise convergence.

2. Preliminaries and Basic Definitions

A collection β of subsets of a space X is called an open complementary

system [12] if β consists of open sets such that for every B ∈ β, there exist
B1, B2, . . . ∈ β with B = ∪{X \Bi : i ∈ N}. A subset A of a space X is called
a strongly open Fσ-set [12] if there exists a countable open complementary
system β(A) with A ∈ β(A). The complement of a strongly open Fσ-set is
called strongly closed Gδ-set . A subset A of a space X is called a regular

Gδ-set [42] if A is an intersection of a sequence of closed sets whose interiors

contain A, i.e., if A =
∞⋂

n=1
Fn =

∞⋂

n=1
F 0
n , where each Fn is a closed subset of X

(here F 0
n denotes the interior of Fn). The complement of a regular Gδ-set is

called a regular Fσ-set . A point x ∈ X is called a θ-adherent point [59] of
A ⊂ X if every closed neigbourhood of x intersects A. Let clθA denote the set
of all θ-adherent points of A. The set A is called θ-closed if A = clθA. The
complement of a θ-closed set is referred to as a θ-open set. A subset A of a
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spaceX is said to be regular open if it is the interior of its closure, i.e., A = A
0
.

The complement of a regular open set is referred to as a regular closed set .
Any union of regular open sets is called δ-open [59]. The complement of a
δ-open set is referred to as a δ-closed set . An open subset U of a space X is
said to be r-open [30] if for each x ∈ U there exists a closed set B such that
x ∈ B ⊂ U or equivalently, if U is expressible as a union of closed sets.The
complement of an r-open set is called r-closed set. A subset A of a space X
is said to be cl-open [54] if for each x ∈ A there exists a clopen set H such
that x ∈ H ⊂ A ; or equivalently A is expressible as a union of clopen sets.
The complement of a cl-open set is referred to as a cl-closed set.

Definitions 2.1. A function f : X → Y from a topological space X into a
topological space Y is said to be

(a) strongly continuous [37] if f(Ā) ⊂ f(A) for each subset A of X .
(b) perfectly continuous ([32], [48]) if f−1(V ) is clopen in X for every open

set V ⊂ Y .
(c) cl-supercontinuous [54] (≡ clopen continuous [51])if for each x ∈ X

and each open set V containing f(x) there is a clopen set U containing x
such that f(U) ⊂ V .

(d) z-supercontinuous [20] (respectively Dδ-supercontinuous [21], respec-
tively supercontinuous [45]) if for each x ∈ X and for each open set V
containing f(x), there exists a cozero set (respectively regular Fσ-set, re-
spectively regular open set) U containing x such that f(U) ⊂ V .

(e) strongly θ-continuous ([39], [47]) if for each x ∈ X and for each open
set V containing f(x), there exists an open set U containing x such that
f(U) ⊂ V .

Definitions 2.2. A function f : X → Y from a topological space X into a
topological space Y is said to be

(a) Dδ-continuous [22] (respectivelyD-continuous [18], respectively z-conti-
nuous [52]) if for each point x ∈ X and each regular Fσ-set (respectively
open Fσ-set, respectively cozero set) V containing f(x) there is an open
set U containing x such that f(U) ⊂ V .

(b) almost continuous [53] (respectively faintly continuous [40], respec-
tively R-continuous [35]) if for each x ∈ X and each regular open set
(respectively θ-open set, respectively r-open set) V containing f(x) there
is an open set U containing x such that f(U) ⊂ V .

(c) dδ-map [23] if for each regular Fσ-set U in Y , f−1(U) is a regular Fσ-set
in X.

(d) θ-continuous [10] if for each x ∈ X and each open set V containing f(x)
there is an open set U containing x such that f(U) ⊂ V .

(e) weakly continuous [38] if for each x ∈ X and each open set V containing
f(x) there exists an open set U containing x such that f(U) ⊂ V .

(f) quasi θ-continuous function [50] if for each x ∈ X and each θ-open
set V containing f(x) there exists a θ-open set U containing x such that
f(U) ⊂ V .



118 J. K. Kohli, D. Singh, J. Aggarwal and M. Rana

(g) slightly continuous1[13] if f−1(V ) is open in X for every clopen set
V ⊂ Y .

Definitions 2.3. A function f : X → Y from a topological space X into a
topological space Y is said to be

(a) δ-perfectly continuous [27] if for each δ-open set V in Y , f−1(V ) is a
clopen set in X .

(b) almost perfectly continuous [55] (≡ regular set connected [7]) if
f−1(V ) is clopen for every regular open set V in Y .

(c) almost cl-supercontinuous [26] (≡ almost clopen continuous [9]) if
for each x ∈ X and each regular open set V containing f(x), there is a
clopen set U containing x such that f(U) ⊂ V .

(d) almost z-supercontinuous [34] (almost Dδ-supercontinuous) if for
each x ∈ X and for each regular open set V containing f(x), there exists
a cozero set (regular Fσ-set) U containing x such that f(U) ⊂ V .

(e) almost strongly θ-continuous [49] if for each x ∈ X and for each regular
open set V containing f(x), there exists an open set U containing x such
that f(U) ⊂ V .

(f) quasi perfectly continuous [36] if f−1(V ) is clopen inX for every θ-open
set V in Y .

(g) quasi z-supercontinuous [33] (quasi cl-supercontinuos [19]) if for
each x ∈ X and each θ-open set V containing f(x), there exists a coz-
ero (clopen) set U containing x such that f(U) ⊂ V .

(h) pseudo z-supercontinuous [33] (pseudo cl-supercontinuos [31]) if for
each x ∈ X and each regular Fσ-set V containing f(x), there exists a cozero
(clopen) set U containing x such that f(U) ⊂ V .

(i) δ-continuous [47] if for each x ∈ X and for each regular open set V
containing f(x), there exists a regular open set U containing x such that
f(U) ⊂ V .

3. Pseudo Perfectly Continuous Functions

We call a function f : X → Y from a topological space X into a topological
space Y pseudo perfectly continuous if f−1(V ) is clopen in X for every
regular Fσ-set V in Y .

The adjoining diagram (Figure 1) well exhibits the interrelations that exist
among pseudo perfect continuity and other variants of continuity that already
exist in the literature and are related to the theme of the present paper and thus
well reflects the place of pseudo perfect continuity in the hierarchy of known
variants of continuity.

Examples.

3.1. Let X denote the real line with usual topology and let Y be the real line
with cofinite (or cocountable) topology. Then the identity function f : X → Y
is quasi perfectly continuous but not continuous.

1Slightly continuous functions have been referred to as cl-continuous in ([22], [35]).
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3.2. Let X be the real line endowed with usual topology. Then the identity
function defined onX is continuous as well as z-supercontinuous but not pseudo
perfectly continuous.

The space E0 in the following example is due to Misra [44, Example 3.1,
p. 352].

3.3. Let w1 be the first uncountable ordinal. Let the space E0 be the union
of disjoint sets {a, b}, {aαβ : 0 ≤ α, β < w1}, {bαβ : 0 ≤ α, β < w1} and
{cγ : 0 ≤ γ < w1}. The basic neighbourhoods of various points be as follows:
all the points aαβ and bαβ, 0 ≤ α, β < w1 are isolated; for each fixed γ, a
typical basic neighbourhood of the point cγ contains the points aγβ and bγβ for
all but countably many indices β, 0 ≤ β < w1; a typical basic neighbourhood
of a (respectively b) contains for every α greater than some ordinal δ < w1,
all but countably many points aαβ (respectively bαβ). Then E0 is a Hausdorff,
non Urysohn P-space and every real valued continuous function defined on E0

takes the same value at the points a and b. It is easily verified that in the space
E0 every Fσ-set and hence every regular Fσ-set is clopen. Thus the identity
mapping IE0

: E0 → E0 is pseudo perfectly continuous. However, it is not a
quasi perfectly continuous function, since the inverse image of θ-closed set {a}
is not clopen.

4. Basic Properties of Pseudo Perfectly Continuous Functions

Proposition 4.1. If f : X → Y is a pseudo perfectly continuous function and
g : Y → Z is a dδ-map, then g ◦ f is a pseudo perfectly continuous function. In
particular, composition of two pseudo perfectly continuous functions is pseudo
perfectly continuous.

Corollary 4.2. If f : X → Y is a pseudo perfectly continuous function and
g : Y → Z is a continuous function, then g ◦ f is a pseudo perfectly continuous
function.

Proof. Every continuous map is a dδ-map. �

Proposition 4.3. Let f : X → Y be a slightly continuous function and let
g : Y → Z be a pseudo perfectly continuous function. Then g ◦ f is pseudo
perfectly continuous.

Remark 4.4. The hypothesis of ‘slightly continuity’ in Proposition 4.3 can be
traded of by any one of the weak variants of continuity in the following diagram,
since each one of them implies slight continuity.
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continuous almost continuous θ -continuous

R-continuous -continuous quasi -continuous weakly continuous

slightly continuous z-continuous continuous faintly continuous

q

D q

D
d
-

Figure 2.

Definition 4.5. A space X is said to be endowed with a

(a) pseudo partition topology if every regular Fσ-set in X is closed; or
equivalently every regular Gδ-set in X is open.

(b) partition topology [58] if every open set in X is closed.
(c) δ-partition topology [27] if every δ-open set in X is closed.
(d) almost partition topology [55] (≡extremally disconnected topol-

ogy [58]) if every regular open set in X is closed.
(e) quasi partition topology [36] if every θ-open set in X is closed.

The following implications are immediate from definitions.

partition topology -partition topology quasi partition topology

almost partition topology ( extremally disconnected topology) pseudo partition topology

!

º

Figure 3.

However, none of the above implications is reversible as shown in ([27], [55])
and the following examples.

Example 4.6 ([43, Example 3.20]). Consider the space R of reals with count-
able complement extension topology τ [58, Example 63, p. 85]. Let R \ Q be
the quotient space obtained from (R, τ) by identifying the set Q of rationals to
a point. Since Q is closed in (R, τ), the space R \Q is T1 and the quotient map
p : (R, τ) → R \ Q is a closed map. Let z be an irrational and let a and b be
any rationals such that a < z < b. Then G = {[x] : x ∈ (a, b), x irrational} is
a regular open set containing [z] in R \ Q. The quotient topology on R \ Q is
not an almost partition topology and hence not a δ-partition topology since G
is a regular open set but not closed in R \ Q. On the other hand R \ Q is the
only θ-open set in R \Q so it is equipped with a quasi partition topology.

Example 4.7. The Hausdorff space E0 also discussed in Example 3.3 which
is due to Misra [44, Example 3.1] has a pseudo partition topology since every
regular Fσ-set is clopen in E0 but it is not endowed with a quasi partition
topology.
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Theorem 4.8. Let f : X → Y be a function and g : X → X × Y , defined by
g(x) = (x, f(x)) for each x ∈ X, be the graph function. If g is pseudo perfectly
continuous, then so is f and the space X is endowed with a pseudo partition
topology. Further, if X has a pseudo partition topology and f is pseudo perfectly
continuous, then g is pseudo cl-supercontinuous.

Proof. Suppose that the graph function g : X → X × Y is pseudo perfectly
continuous. Consider the projection map py : X × Y → Y . Since it is continu-
ous, it is a dδ-map. Hence in view of Proposition 4.1, the function f = py ◦ g
is pseudo perfectly continuous. To prove that the space X possesses a pseudo
partition topology, let U be a regular Fσ-set in X . Then U × Y is a regular
Fσ-set in X × Y . Since g is pseudo perfectly continuous, g−1(U × Y ) = U is
clopen in X and so the topology of X is a pseudo partition topology.

Finally, suppose that X has pseudo partition topology and f is a pseudo
perfectly continuous function. To show that g is pseudo cl-supercontinuous, let
U × V be a basic regular Fσ-set in X × Y . Then g−1(U × V ) = U ∩ f−1(V ) is
a clopen set in X and so g is pseudo cl-supercontinuous. �

The following result gives sufficient conditions on mappings for domain or
range of the mapping to be endowed with pseudo partition topology.

Theorem 4.9. Let f : X → Y be a pseudo perfectly continuous surjection
which maps clopen sets to closed (open) sets. Then Y is endowed with a pseudo
partition topology. Moreover, if f is a bijection which maps regular Fσ-sets
(regular Gδ-sets) to regular Fσ-sets (regular Gδ-sets), then X is also equipped
with a pseudo partition topology.

Proof. Suppose f maps clopen sets to closed (open) sets. Let V be a regular
Fσ-set (regular Gδ-set) in Y . In view of pseudo perfect continuity of f , f−1(V )
is a clopen set in X . Again, since f is a surjection which maps clopen sets
to closed (open) sets, the set f(f−1(V )) = V is closed (open) in Y and hence
clopen in Y . Thus Y is endowed with a pseudo partition topology.

To prove the last part of the theorem assume that f is a bijection which
maps regular Fσ-sets (regular Gδ-sets) to regular Fσ-sets (regular Gδ-sets) and
let U be a regular Fσ-set (regular Gδ-set) in X . Then f(U) is a regular Fσ-
set (regular Gδ-set) in Y . Since f is a pseudo perfectly continuous bijection,
f−1(f(U)) = U is a clopen set in X and so X is endowed with a pseudo
partition topology. �

Remark 4.10. A space X is endowed with a pseudo partition topology if and
only if every dδ-map f : X → Y is pseudo perfectly continuous. Necessity is
obvious in view of definitions. To prove sufficiency, assume contrapositive and
let V be a regular Fσ-set in X which is not clopen. Then the identity mapping
defined on X is a dδ-map but not pseudo perfectly continuous.
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Proposition 4.11. If f : X → Y is a surjection which maps clopen sets to
open sets and g : Y → Z is a function such that g ◦ f is pseudo perfectly
continuous, then g is a Dδ-continuous function. Moreover, if f maps clopen
sets to clopen sets, then g is a pseudo perfectly continuous function.

Proof. Let V be a regular Fσ-set in Z. Since g◦f is pseudo perfectly continuous,
(g ◦ f)−1(V ) = f−1(g−1(V )) is clopen set in X . Again, since f is a surjection
which maps clopen sets to open sets, f(f−1(g−1(V ))) = g−1(V ) is open in Y
and so g is a Dδ-continuous function. The last assertion is immediate, since in
this case g−1(V ) is a clopen set in Y . �

Proposition 4.12. If f : X → Y is a pseudo perfectly continuous function
and g : Y → Z is a Dδ-supercontinuous function, then their composition is
cl-supercontinuous.

Proof. Let V be an open set in Z. In view of Dδ-supercontinuity of g, g−1(V )
is a dδ-open set in Y and so g−1(V ) =

⋃

α

Vα, where each Vα is a regular Fσ-set.

Since f is pseudo perfectly continuous, each f−1(Vα) is a clopen set. Hence
(g ◦ f)−1(V ) = f−1(g−1(V )) = f−1(

⋃

α

Vα) =
⋃

α

f−1(Vα) is cl-open. So g ◦ f is

cl-supercontinuous. �

Proposition 4.13. If f : X → Y is a pseudo perfectly continuous function and
g : Y → Z is an almost Dδ-supercontinuous function, then their composition
g ◦ f is almost cl-supercontinuous.

Proposition 4.14. If f : X → Y is a pseudo perfectly continuous function
and g : Y → Z is quasi Dδ-supercontinuous, then their composition g ◦ f is
quasi cl-supercontinuous.

Theorem 4.15. Let f : X → Y be a function and let Q = {Xα : α ∈ Λ} be
a locally finite clopen cover of X. For each α ∈ Λ, let fα = f|Xα

: Xα → Y
denote the restriction map. Then f is pseudo perfectly continuous if and only
if each fα is pseudo perfectly continuous.

Proof. Necessity is immediate in view of the fact that quasi perfect continuity
is preserved under the restriction of domain. To prove sufficiency, let V be a
regular Fσ-set in Y . Then f−1(V ) =

⋃

α∈Λ

(f|Xα
)−1(V ) =

⋃

α∈Λ

(f−1(V ) ∩ Xα).

Since each f−1(V )∩Xα is clopen in Xα and hence in X . Thus f−1(V ) is open
being the union of clopen sets. Moreover, since the collection Q is locally finite,
the collection {f−1(V )∩Xα : α ∈ Λ} is a locally finite collection of clopen sets.
Since the union of a locally finite collection of closed sets is closed, f−1(V ) is
also closed and hence clopen. �

Definition 4.16. A subset S of a spaceX is said to be regular Gδ-embedded

[6] in X if every regular Gδ-set in S is the intersection of a regular Gδ-set in X
with S; or equivalently every regular Fσ-set in S is the intersection of a regular
Fσ-set in X with S.
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Proposition 4.17. Let f : X → Y be a pseudo perfectly continuous function.
If f(X) is regular Gδ-embedded in Y , then f : X → f(X) is pseudo perfectly
continuous.

Proof. Let V1 be a regular Fσ-set in f(X). Since f(X) is regular Gδ-embedded
in Y , there exists a regular Fσ-set V in Y such that V1 = V ∩ f(X). In view of
pseudo perfect continuity of f , f−1(V ) is clopen in X . Now f−1(V ∩ f(X)) =
f−1(V ) ∩ f−1(f(X)) = f−1(V ) and hence the result. �

Definition 4.18. A topological space X is called an Alexandroff space [2]
if any intersection of open sets in X is itself an open in X , or equivalently any
union of closed sets in X is closed in X .

Alexandroff spaces have been referred to as saturated spaces by Lorrain
in [41].

Theorem 4.19. For each α ∈ Λ, let fα : X → Xα be a function and let
f : X →

∏

α∈Λ

Xα be defined by f(x) = (fα(x)) for each x ∈ X. If f is pseudo

perfectly continuous, then each fα is pseudo perfectly continuous. Further, if
X is an Alexandroff space and each fα is pseudo perfectly continuous, then f
is pseudo perfectly continuous.

Proof. Let f be pseudo perfectly continuous. Now for each α, fα = pα ◦ f ,
where pα :

∏

α∈Λ

Xα → X denotes the projection map. Since each projection

map pα is continuous and hence a dδ-map, in view of Proposition 4.1 it follows
that each fα is pseudo perfectly continuous.

Conversely, suppose that X is an Alexandroff space and each fα is a pseudo
perfectly continuous function. SinceX is Alexandroff, to show that the function
f is pseudo perfectly continuous, it is sufficient to show that f−1(S) is clopen for
every subbasic regular Fσ-set S in the product space

∏

α∈Λ

Xα. Let Uβ ×
∏

α6=β

Xα

be a subbasic regular Fσ-set in
∏

α∈Λ

Xα, where Uβ is a regular Fσ-set in Xβ.

Then f−1(Uβ ×
∏

α6=β

Xα) = f−1(p−1
β (Uβ)) = f−1

β (Uβ) is clopen in X and so f

is pseudo perfectly continuous. �

5. Interplay between Topological Properties and Pseudo

Perfectly Continuous Functions

Definition 5.1. A space X is called a DδT0-space if for each pair of distinct
points x, y in X , there is a regular Fσ-set U containing one of the points x and
y but not the other.

Definition 5.2. A spaceX is said to beDδ-Hausdorff [22] (ultra Hausdorff

[57]) if every pair of distinct points inX are contained in disjoint regular Fσ-sets
(clopen sets).
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In particular, every DδT0-space is Hausdorff.
The following diagram illustrates the relationships that exist among DδT0-

spaces and other strong variants of Hausdorffness.

ultra Hausdorff

functionally Hausdorff

q-Hausdorff

Hausdorff

D T
δ 0-space D

δ
-Hausdorff

Urysohn

Figure 4.

The following example shows that even a Hausdorff regular space need not
be a DδT0-space.

Example 5.3. Let X be the Skyline space due to Heldermann [12, Exam-
ple 7.7]. The space X is a Hausdorff regular space. It is not a DδT0-space since
X is the only regular Fσ-set containing the points p− and p+. So there exists
no regular Fσ-set containing one of the points p− and p+ and missing other.

Proposition 5.4. Let f : X → Y be a pseudo perfectly continuous injection
into a DδT0-space Y . Then X is an ultra Hausdorff space.

Proof. Let x, y ∈ X , x 6= y. Then f(x) 6= f(y). Since Y is a DδT0-space,
there exists a regular Fσ-sets V containing one of the points f(x) and f(y) but
not both. To be precise, suppose that f(x) ∈ V . Since f is pseudo perfectly
continuous, f−1(V ) is a clopen set containing x but not y. Then f−1(V ) and
X \ f−1(V ) are disjoint clopen sets containing x and y, respectively. Hence X
is an ultra Hausdorff space. �

The following theorem is related to a class of spaces, important in the theo-
ries studying the p-adic topologies and the Stone duality for Boolean algebras,
namely spaces having large inductive dimension zero or ultranormal spaces [57].
These are precisely the spaces in which each pair of nonempty disjoint closed
sets can be separated by disjoint clopen sets.

Theorem 5.5. Let f : X → Y be a closed, pseudo perfectly continuous injec-
tion into a normal space Y . Then X is an ultranormal space.

Proof. Let A and B be any two disjoint closed sets in X . Since the function f
is closed and injective, f(A) and f(B) are disjoint closed subsets of Y . Again,
since Y is normal, by Urysohn’s Lemma there exists a continuous function
ϕ : Y → [0, 1] such that ϕ(f(A)) = 0 and ϕ(f(B)) = 1. Then V = ϕ−1([0, 1/2))
and W = ϕ−1((1/2, 1]) are disjoint cozero sets in Y containing f(A) and f(B),
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respectively. Since every cozero set is a regular Fσ-set, f
−1(V ) and f−1(W ) are

disjoint clopen sets containingA and B, respectively and soX is an ultranormal
space. �

Definition 5.6. A space X is said to be Dδ-compact [23] (mildly compact

[57]) if every cover of X by regular Fσ-sets (clopen sets) has a finite subcover.

Proposition 5.7. Let f : X → Y be a pseudo perfectly continuous function
from a mildly compact space X onto a space Y . Then Y is Dδ-compact.

Proof. Let Ω = {Uα : α ∈ Λ} be a cover of Y by regular Fσ-sets. Since f
is pseudo perfectly continuous, the collection β = {f−1(Uα) : α ∈ Λ} is a
clopen cover of X . Since X is mildly compact, let {f−1(Uα1

), . . . , f−1(Uαn
)}

be a finite subcollection of β which covers X . Then {Uα1
, . . . , Uαn

} is a finite
subcollection of Ω which covers Y . Hence Y is Dδ-compact. �

Proposition 5.8. Let f : X → Y be a pseudo perfectly continuous function
from a space X onto a space Y . If (i) f is an open bijection; or (ii) f is
a closed surjection, then any pair of disjoint regular Gδ-sets in Y are clopen
in Y .

Proof. Let A and B be disjoint regular Gδ-subsets of Y . Since f is pseudo
perfectly continuous f−1(A) and f−1(B) are disjoint clopen subsets of X .
(i) In case f is an open bijection, f(f−1(A)) = A and f(f−1(B)) = B are
disjoint open sets and hence clopen sets in Y .
(ii) In case f is a closed surjection, the sets A = Y \ f(X \ f−1(A)) and
B = Y \ f(X \ f−1(B)) are disjoint clopen sets in Y . �

Definition 5.9. A space X is said to be δ-completely regular space ([22],
[24]) if for each regular Gδ-set F and a point x /∈ F , there exists a continuous
function f : X → [0, 1] such that f(x) = 0 and f(F ) = 1.

Theorem 5.10. Let f : X → Y be an open closed pseudo perfectly continuous
surjection. Then Y is a δ-completely regular space.

Proof. Let K ⊂ Y be a regular Gδ-set and let z /∈ K. Since f is pseudo
perfectly continuous, f−1(K) is clopen. Let x0 ∈ f−1(z). Then x0 /∈ f−1(K).
Since f−1(K) is clopen, its characteristic function φ : X → [0, 1] is continuous
and φ(x0) = 0 and φ(f−1(K)) = 1. Define ϕ̂ : Y → [0, 1] by taking ϕ̂(y) =
sup{φ(x) : x ∈ f−1(y)}. Then ϕ̂(z) = 0, ϕ̂(K) = 1 and by [8, Exercise 16] ϕ̂ is
continuous. Hence Y is a δ-completely regular space. �

Remark 5.11. There exists no open closed pseudo perfectly continuous surjec-
tion from a space onto a non δ-completely regular space.

Proposition 5.12. Let f, g : X → Y be pseudo perfectly continuous functions
from a space X into a Dδ-Hausdorff space Y . Then the set A = {x : f(x) =
g(x)} is cl-closed in X.
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Proof. Let x ∈ X \ A. Then f(x) 6= g(x), and so by hypothesis on Y , there
are disjoint regular Fσ-sets U and V containing f(x) and g(x), respectively.
Since f and g are pseudo perfectly continuous, the sets f−1(U) and g−1(V )
are clopen and containing the point x. Let G = f−1(U) ∩ g−1(V ). Then G is
a clopen set contain x and G ∩ A = ∅. Thus A is cl-closed in X . �

Proposition 5.13. Let f : X → Y be a pseudo perfectly continuous function
from a space X into a Dδ-Hausdorff space Y . Then the set A = {(x1, x2) ∈
X ×X : f(x1) = f(x2)} is cl-closed in X ×X.

Proof. Let (x1, x2) ∈ X × X \ A. Then f(x1) 6= f(x2). Since Y is a Dδ-
Hausdorff space, there exist disjoint regular Fσ-sets U and V containing f(x1)
and f(x2), respectively. Since f is pseudo perfectly continuous, f−1(U) and
f−1(V ) are disjoint clopen sets in X containing x1 and x2, respectively. Let
G = f−1(U)×f−1(V ). Then G is a clopen subset of X×X containing (x1, x2)
and G ∩ A = ∅. Thus A is cl-closed in X ×X . �

Definition 5.14. A space X is said to be

(i) pseudo hyperconnected if there exists no nonempty proper regularGδ-
set in X or equivalently there exists no nonempty proper regular Fσ-set
in X (≡ X is the only regular Fσ-set in X).

(ii) hyperconnected ([1], [58]) if every nonempty open subset of X is dense
in X (≡ X is the only regular open set in X).

(iii) quasi hyperconnected [19] if there exists no nonempty proper θ-open
set in X or equivalently there exists no nonempty proper θ-closed set in
X (≡ X is the only θ-open set in X).

Following implications are immediate from definitions.

hyperconnected         quasi hyperconnected         pseudo hyperconnected

Figure 5.

Example 5.15. The space R \ Q given by Mancuso [43, Example 3.20] and
also discussed in Example 4.6 is quasi hyperconnected but not hyperconnected.

Proposition 5.16. Let f : X → Y be a pseudo perfectly continuous surjection
from a connected space X onto Y . Then Y is pseudo hyperconnected.

Proof. Suppose Y is not pseudo hyperconnected and let V be a nonempty
proper regular Fσ-set in Y . Since f is pseudo perfectly continuous, f−1(V )
is a nonempty proper clopen subset of X contradicting the fact that X is
connected. �

Remark 5.17. There exists no pseudo perfectly continuous surjection from a
connected space onto a non pseudo hyperconnected space.
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Definition 5.18. The graph G(f) of a function f : X → Y is said to be

(i) clopen θ-closed [19] if for each (x, y) /∈ G(f) there exists a clopen set U
containing x and a θ-open set V containing y such that (U×V ) ∩G(f)=∅.

(ii) clopen Dδ-closed if for each (x, y) /∈ G(f) there exists a clopen set U
containing x and a regular Fσ-set V containing y such that (U × V ) ∩
G(f) = ∅.

Proposition 5.19. Let f : X → Y be a pseudo perfectly continuous function
into a Dδ-Hausdorff space Y . Then the graph G(f) of f is a clopen Dδ-closed
set in X × Y .

Proof. Suppose (x, y) /∈ G(f). Then f(x) 6= y. Since Y is Dδ-Hausdorff, there
exist disjoint regular Fσ-sets V and W containing f(x) and y, respectively.
Since f is pseudo perfectly continuous, f−1(V ) is a clopen set containing x.
Clearly (f−1(V ) ×W ) ∩ G(f) = ∅ and so the graph G(f) of f is clopen Dδ-
closed in X × Y . �

Corollary 5.20. If f : X → Y is a pseudo perfectly continuous function into
a Dδ-Hausdorff space Y , then the graph G(f) of f is clopen θ-closed in X×Y .

6. Function Spaces and Pseudo Perfectly Continuous Functions

It is of fundamental importance in topology, analysis and other branches
of mathematics to know whether a given function space is closed/compact in
Y X in the topology of pointwise convergence. So it is of considerable signif-
icance both from intrinsic interest as well as from applications viewpoint to
formulate conditions on the spaces X , Y and subsets of C(X,Y ) or Y X to be
closed/compact in the topology of pointwise convergence. Results of this type
and Ascoli type theorems abound in the literature (see [3], [14]). Naimpally’s
result [46] that in contrast to continuous functions, the set S(X,Y ) of strongly
continuous functions is closed in Y X in the topology of pointwise convergence
if X is locally connected and Y is Hausdorff; is extended to a larger framework
by Kohli and Singh [25] wherein it is shown that if X is sum connected and Y
is Hausdorff, then the function space P (X,Y ) of all perfectly continuous func-
tions as well as the function space L(X,Y ) of all cl-supercontinuous functions
is closed in Y X in the topology of pointwise convergence. This result is further
extended in ([27], [55], [36]) for the set P∆(X,Y ) of all δ-perfectly continuous
functions as well as for the set Pδ(X,Y ) of all almost perfectly continuous (≡
regular set connected) functions and the set Pq(X,Y ) of all quasi perfectly con-
tinuous functions under the same hypotheses on X and Y . Herein we further
strengthen these results to show that if X is a sum connected space and Y is a
DδT0-space, then all the seven classes of functions are identical, i.e. S(X,Y ) =
P (X,Y ) = L(X,Y ) = P∆(X,Y ) = Pδ(X,Y ) = Pq(X,Y ) = Pp(X,Y ) and are
closed in Y X in the topology of pointwise convergence.
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Proposition 6.1. Let f : X → Y be a pseudo perfectly continuous function
into a DδT0-space Y . Then f is constant on each connected subset of X.
In particular, if X is connected, then f is constant on X and hence strongly
continuous.

Proof. Assume contrapositive and let C be the connected subset of X such
that f(C) is not a singleton. Let f(x), f(y) ∈ f(C), f(x) 6= f(y). Since Y
is a DδT0-space, there exists a regular Fσ-set V containing one of the points
f(x) and f(y) but not other. For definiteness assume f(x) ∈ V . Since f is a
pseudo perfectly continuous, f−1(V ) ∩ C is a non empty proper clopen subset
of C, contradicting the fact that C is connected. The last part of the theorem
is immediate, since every constant function is strongly continuous. �

Remark 6.2. The hypothesis of ‘DδT0-space’ in Proposition 6.1 cannot be omit-
ted. For let X be the real line with usual topology and let Y denote the real
line endowed with cofinite topology. Let f denote the identity mapping from
X onto Y . Then f is a nonconstant pseudo perfectly continuous function.

Corollary 6.3. Let f : X → Y be a pseudo perfectly continuous function from
a sum connected space X into a DδT0-space Y . Then f is constant on each
component of X and hence strongly continuous.

Proof. Clearly, in view of Proposition 6.1 f is constant on each component of
X . Since X is a sum connected space, each component of X is clopen in X .
Hence it follows that any union of components of X and the complement of
this union are complementary clopen sets in X . Thus f is constant on each
component on X . Therefore, for every subset A of Y , f−1(A) and X \ f−1(A)
are complementary clopen sets in X being the union of component of X . So f
is strongly continuous. �

We may recall that a space X is a δT0-space [26] if for each pair of distinct
points x and y in X there exists a regular open set containing one of the points
x and y but not the other. In particular, every Hausdorff space is a δT0-space.

Next, we quote the following results from ([27], [36], [55]).

Theorem 6.4 ([27, Theorem 5.3]). Let f : X → Y be a function from a
sum connected space X into a δT0-space Y . Then the following statements are
equivalent.

(a) f is strongly continuous
(b) f is perfectly continuous
(c) f is cl-supercontinuous
(d) f is δ-perfectly continuous.

Theorem 6.5 ([55, Theorem 4.5]). Let f : X → Y be a function from a
sum connected space X into a δT0-space Y . Then the following statements are
equivalent.

(a) f is strongly continuous
(b) f is perfectly continuous
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(c) f is cl-supercontinuous
(d) f is δ-perfectly continuous
(e) f is almost perfectly continuous.

Theorem 6.6 ([36, Theorem 5.6]). Let f : X → Y be a function from a sum
connected space X into a Hausdorff space Y . Then the following statements
are equivalent.

(a) f is strongly continuous
(b) f is perfectly continuous
(c) f is cl-supercontinuous
(d) f is δ-perfectly continuous
(e) f is almost perfectly continuous
(f) f is quasi perfectly continuous.

Theorem 6.7. Let f : X → Y be a function from a sum connected space X
into a DδT0-space Y . Then the following statements are equivalent.

(a) f is strongly continuous
(b) f is perfectly continuous
(c) f is cl-supercontinuous
(d) f is δ-perfectly continuous
(e) f is almost perfectly continuous
(f) f is quasi perfectly continuous
(g) f is pseudo perfectly continuous.

Proof. Since every DδT0-space is Hausdorff, the equivalence of the assertions
(a)-(f) is a consequence of Theorem 6.6. The implications (a)⇒(b)⇒(d)⇒(f)
⇒(g) are trivial and the implication (g)⇒(a) is immediate in view of Corol-
lary 6.3. �

Theorem 6.8. Let X be a sum connected space and let Y be a DδT0-space.
Then S(X,Y ) = P (X,Y ) = L(X,Y ) = P∆(X,Y ) = Pδ(X,Y ) = Pq(X,Y ) =
Pp(X,Y ) is closed in Y X in the topology of pointwise convergence.

Proof. It is immediate from Theorem 6.7 that the above seven classes of func-
tions are identical and its closedness in Y X in the topology of pointwise con-
vergence follows either from [27, Theorem 5.4] or [55, Theorem 4.6] or [36,
Theorem 5.7].

The above results are important from applications view point since in partic-
ular it follows that if X is sum connected (e.g. connected or locally connected)
and Y is DδT0-space, then the pointwise limit of a sequence {fn : X → Y : n ∈
N} of pseudo perfectly continuous functions is pseudo perfectly continuous. �

We conclude this section with the following result which seems to be of
considerable significance from applications view point.

Theorem 6.9. If X is a sum connected space and Y is a compact DδT0-space,
then the spaces S(X,Y ) = P (X,Y ) = L(X,Y ) = P∆(X,Y ) = Pδ(X,Y ) =
Pq(X,Y ) = Pp(X,Y ) are compact Hausdorff subspaces of Y X in the topology
of pointwise convergence.
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7. Change of Topology

The technique of change of topology of a space is prevalent all through
mathematics and is of considerable significance and widely used in topology,
functional analysis and several other branches of mathematics. For example,
weak and weak∗ topology of a Banach space, hull kernel topology and the
multitude of other topologies on Id(A) the space of all closed two sided ideals of
a Banach algebra A ([4], [5], [56]). Moreover, to taste the flavour of applications
of the technique in topology see ([11], [15], [17], [30], [60]).

Here we show that if the range of a pseudo perfectly continuous function
is retopologized in an appropriate way, then it is simply a cl-supercontinuous
function.

Let (X, τ) be a topological space and let Bdδ
denote the collection of all

regular Fσ-subsets of (X, τ). Since the intersection of two regular Fσ-sets is a
regular Fσ-set, the collection Bdδ

is a base for a topology τdδ
on X which is

coarser than τ (see [21], [22]). For interrelations and interplay among various
other coarser topologies obtained in this way for a given topology we refer the
interested reader to [30]. Finally, we conclude with the following result.

Proposition 7.1. If f : (X, τ) → (Y, ϑ) is a pseudo perfectly continuous
function, then f : (X, τ) → (Y, ϑdδ

) is cl-supercontinuous.
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