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ABSTRACT

Generalizing the concept of a probabilistic Cauchy space, we intro-
duce quantale-valued Cauchy tower spaces. These spaces encompass
quantale-valued metric spaces, quantale-valued uniform (convergence)
tower spaces and quantale-valued convergence tower groups. For spe-
cial choices of the quantale, classical and probabilistic metric spaces
are covered and probabilistic and approach Cauchy spaces arise. We
also study completeness and completion in this setting and establish
a connection to the Cauchy completeness of a quantale-valued metric
space.
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1. INTRODUCTION

Cauchy spaces, axiomatized in [17], are a natural setting for studying com-
pleteness and completion [32]. In the probabilistic case such spaces are intro-
duced as certain “towers indexed by [0, 1]” by Richardson and Kent [33] and
by Nusser [27]. The connection to probabilistic metric spaces [34], however,
was not clarified there. In this paper, we generalize the approaches of [33, 27]
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by allowing the index set to be a quantale. In this way, a quantale-valued
metric space, in particular a probabilistic metric space, possesses a “natural”
Cauchy structure, which then can in turn be used to study completeness and
completion. Further examples include quantale-valued uniform convergence
tower spaces and quantale-valued uniform spaces as well as quantale-valued
convergence groups. We study the basic categorical properties of the category
of quantale-valued Cauchy tower spaces and characterize those spaces that are
quantale-valued metrical. Finally we discuss completeness and completion and
we establish a connection with the Cauchy completeness [6] of a quantale-valued
metric space.

2. PRELIMINARIES

Let L be a complete lattice with distinct top element T and bottom element
1. In L we can define the well-below relation o <1 3 if for all subsets D C L
such that 8 < \/ D there is 6 € D such that « < §. Then o < 8 whenever
a <1 (3 and, for a subset B C L, we have a < \/BeBﬂ iff @ <t 8 for some S € B.
Sometimes we consider also a weaker relation, the way-below relation, o <
if for all directed subsets D C L such that 5 < \/ D there is 6 € D such that
«a < 9. The properties of this relation are similar to the properties of the well-
below relation, replacing arbitrary subsets by directed subsets. But we also
have aV 8 < v if o, 8 < 7, [9].

A complete lattice is completely distributive, if and only if we have a =
V{B : B <a}for any o € L [31] and it is continuous if and only if we have
a=\V{8 : B < a}forany a € L, [9]. Clearly o < 8 implies o < S and
hence every completely distributive lattice is also continuous. For more results
on lattices we refer to [9].

Lemma 2.1. Let L be a continuous lattice. Then

(1) \/5<<a(6*5):a*a.
(2) If e < ao* «x, then there is § < « such that € < § = 4.

Proof. (1) We have /5, (0%0) <axa=V;,0*V, 7= Vs, cad*7 <
Visvyca@V ) *(0VY) <V, 0m=n).
(2) follows directly from (1) as the set {§ € L : § < a} is directed. O

The triple L = (L, <, %), where (L, <) is a complete lattice, is called a
commutative and integral quantale if (L,*) is a commutative semigroup with
the top element of L as the unit, and * is distributive over arbitrary joins, i.e.
if we have (\/,c; i) * B = V¢, (i x B) for all oy, 3 € L,i € J. In a quantale
we can define an implication operator, « — 8 =\/{y € L : axvy < 8}, which
can be characterized by v < a —» f <= vxa < 8. A quantale is called
divisible [11] if for 8 < « there exists v € L such that § = a * . In a divisible
quantale we have \/5_ (0 *0) = a* a, see [30].

Prominent examples of quantales are e.g. the unit interval [0, 1] with a left-
continuous ¢-norm [34] or Lawvere’s quantale, the interval [0, co] with the op-
posite order and addition a * 8 = a + 8 (extended by a + 00 = 00 + @ = ),
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see e.g. [7]. A further noteworthy example is the quantale of distance distri-
bution functions. A distance distribution function ¢ : [0,00] — [0, 1], satisfies
o(r) = sup, ., p(y) for all z € [0,00]. The set of all distance distribution func-
tions is denoted by AT. With the pointwise order, the set AT then becomes
a completely distributive lattice [7] with top-element 9. A quantale operation
on AT, x: AT x AT — AT, is also called a sup-continuous triangle function
[34].

We consider in the sequel only commutative and integral quantales L =
(L, <, *) with underlying complete lattices that are completely distributive.

For a set X, we denote its power set by P(X) and the set of all filters F, G, ...
on X by F(X). The set F(X) is ordered by set inclusion and maximal elements
of F(X) in this order are called ultrafilters. The set of all ultrafilters on X is
denoted by U(X). In particular, for each z € X, the point filter [z] = {A C
X : x € A} is an ultrafilter. If F € F(X) and f: X — Y is a mapping, then
we define f(F) e F(Y) by f(F) ={G CY : f(F)C G for some F € F}. For
filters ®, ¥ € F(X x X) we define ®~! to be the filter generated by the filter
base {F~! : F € ®} where F7! = {(z,y) € X x X : (y,z) € F} and o ¥
to be the filter generated by the filter base {F oG : F € ® G € U}, whenever
FoG#@forall Fe® GeV, where FoG ={(z,y) e X xX : (z,8) €
F,(s,y) € G for some s € X}.

For details and notation from category theory we refer to [1] and [29)].

Definition 2.2 ([14]). Let L = (L, <, *) be a quantale. A pair (X,7 = (¢a)acL)
is called an L-convergence tower space [14], where (¢o: F(X) — P(X))acrL is
a family of mappings satisfying:
(LCTS1) z € ¢u([x]), Vo € X and Va € L;
(LCTS2) VF,G € F(X), with F < G, and « € L implies ¢o(F) C ¢o(G);
(LCTS3) Va, B € L with o < 8 implies ¢g(F) C ¢ (F), VF € F(X);
(LCTS4) 2 € q1 (F), Vo € X, F € F(X).
If, moreover, (X,q) satisfies
(LCTS5) qa(F)N@a(G) < ¢u(FAG), Va € L, for F,G € F(X),
then the pair (X,q) is called an L-limit tower space. If (X,q) satisfies x €
gva(F) whenever @ € ¢,(F) Va € A, it is called left-continuous. A mapping
[ (X,9) — (X', ¢’) between L-convergence tower spaces is called continuous
if, for all z € X, and for all F € F(X), f(z) € ¢, (f(F)) whenever = € g, (F).

The category of all L-convergence tower spaces and continuous mappings is
denoted by L-CTS.

b

If L = {0, 1}, then L-convergence tower spaces can be identified with clas-
sical convergence spaces, [5, 29]. If L = ([0, 00],> +) is Lawvere’s quantale,
then an L-limit tower space is a limit tower space [4] and a left-continuous
L-limit tower space is an approach limit spaces in the sense of Lowen [20]. For
L = (]0,1],<,x), we obtain probabilistic convergence spaces in the sense of
Richardson and Kent [33] and if L = (AT <, %), then an L-convergence tower
space is a probabilistic convergence space in the definition of [12].
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3. L-CAUCHY TOWER SPACES

Definition 3.1. Let L = (L, <, %) be a quantale. A pair (X,C) = (X, (Ca)acL)
is called an L-Cauchy tower space, where Co, C F(X) for all a € L, if

(LChyTS1) [z] € Cy forall z € X, € L;

(LChyTS2) G > F € C,, implies G € Cy;

(LChyTS3) a < ,F € Cp implies F € Cy;

(LChyTS4) C) = F(X).

(LChyTS5h) F € Cq,G € C3,F VG exists, implies F A G € Cyap.

An L-Cauchy tower space is called left-continuous if F € C, for all « € A C
L implies F € Cy 4. We call a mapping f : (X, C) — (X',C") Cauchy-
continuous if F € C,, implies f(F) € C/,. The category with the L-Cauchy tower
spaces as objects and Cauchy-continuous mappings as morphisms is denoted
by L-ChyTS.

For L = ([0, 1], <, *) with a continous t-norm #, an L-Cauchy tower space is
a probabilistic Cauchy space in the definition of Nusser [26] and if * = min,
then we obtain the probabilistic Cauchy spaces of Kent and Richardson [18].
In case of Lawever’s quantale L, an L-Cauchy tower space is a Cauchy tower
space in the definition of [25], which can be identified in the left-continuous
case with an approach Cauchy space [22].

We note that for (X, C) € |L-ChyTS|, the “top level” (X,C7) is a classical
Cauchy space [17].

Proposition 3.2. The category L-ChyTS is topological. If the quantale opera-
tion is the minimum, i.e. if * = A, then it is also a Cartesian closed category.

Proof. The topologicalness can be shown in a straight-forward way. We only
describe the initial constructions. For (f; : X — (X;,09));jc; we define for
FeF(X),FeC, < f;(F)€ CJ forall j €J. Then (X, C) is an L-Cauchy
tower space and a mapping g : (Y, D) — (X, C) is Cauchy-continuous if and
only if fj o g: (Y,D) — (X,,C) is Cauchy-continuous for all j € .J.

To show the Cartesian closedness, we can follow the proof in [18]. We only
state the function space structures. We define for two spaces (X, C), (X', (") €
|L-ChyTS| the set of all Cauchy-continuous mappings by Hom(X, X') = {f :
(X,C) — (X',C") : f Cauchy-continuous} and define for H € F(Hom(X, X')),

He C;, <= VB < aVF € Cs:ev(H xF) € Ch.

Here, ev : Hom(X, X'") x X — X', ev(f,z) = f(x), is the evaluation map-
ping. Then (Hom(X, X’),C¢) is an L-Cauchy tower space and the evaluation
mapping is Cauchy-continuous. Furthermore, for a Cauchy continuous mapping
f:(X,0)x(X',C") — (X",C") we define f* : (X,C) — (Hom(X, X'),C¢)
by f*(z) = f. with f.(2') = f(z,a’) for 2’ € X’. Then f* is Cauchy-
continuous. (]
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We define, for an L-Cauchy tower space (X, (), the underlying L-convergence
tower space (X, ¢C) by
x € qf(F) — FAlz] € C,.
If + = A, then the axiom (LCTS5) is satisfied: For F A [z] € Co, G A [z] € Cg,

then (F A [2]) V (G A [z]) exists and hence (FAG) Afz] = (FA[z]) A(GA[z]) €
Ca/\a = Oa-

Definition 3.3. An L-Cauchy tower space (X, C) is called a T1-space if [z] A
[y] € Cr implies x = y. It is called a T2-space if F A [z],F A [y] € Ct implies
x=uy.

As the concepts of T1-space and T2-space only involve the Cauchy space
(X, Ct) we immediately have that an L-Cauchy tower space (X,C) is a T1-
space if and only if it is a T2-space.

4. EXAMPLE: L-METRIC SPACES

An L-metric space, see e.g. [7, 19], is a pair (X, d) of a set X and a mapping
d: X x X — L which satisfies the axioms
(LM1) d(z,z) =T for all z € X;
(LM2) d(z,y) *d(y,z) < d(z,z) for all z,y, 2z € X.
We call an L-metric space symmetric if it satisfies
(LMs) d(z,y) = d(y,z) for all z,y € X.
A mapping between two L-metric spaces, f : (X,d) — (X', d’) is called an
L-metric morphism if d(x1,x2) < d'(f(x1), f(x2)) for all x1,22 € X. We de-
note the category of L-metric spaces with L-metric morphisms by L-MET, the
subcategory with symmetric L-metric spaces is denoted by L-sMET

In case L = ({0,1},<,A), an L-metric space is a preordered set. If L =
([0, 00], >, +) is Lawvere’s quantale, an L-metric space is a quasi-metric space.
If L = (AT, <, %), an L-metric space is a probabilistic quasi-metric space, see
[7].

In [14] we defined, for an L-metric space (X, d), the L-convergence tower ¢4
by

zegdiF) = \/ A dzy) >a
FeFyeF
Similarly, we define an L-Cauchy tower, W, by
FeCl < \/ A day >

FeFz,yeF

We note that F € C4 if and only if for all € < T there is F' € F such that F
has a “diameter” /\gwe rd(z,y) > e. For Lawvere’s quantale this is exactly
the definition of a Cauchy filter in a metric space. We note that because F is
a filter, \/ p g /\m,yeF d(x,y) is a directed join. Hence we can replace e < T by
€ < T here.

© AGT, UPV, 2021 Appl. Gen. Topol. 22, no. 2 465



G. Jager and T. M. G. Ahsanullah

Proposition 4.1. Let (X, d) € [L-MET|. Then (X,C9) € |L-ChyTS|.

Proof. (LChyTS1) From Ve, Ay ver d(u,v) 2 d(z,2) = « it follows [z] €
Cd

(LChyTS2), (LChyTS3) and (LChyTS4) are obvious.

(LChyTS5) Let F € C4, G € Cg and let FV G exist. Let o/ <« and 5/ <1 8.
Then there are F' € F such that for all z,y € F we have d(x,y) > o/ and G € G
such that for all u, v € G we have d(u,v) > 8. AsFVG exists, there is z € FNG
and hence we have, for all € F and all v € G, d(z,2) > o/, d(z,v) > ' and
d(z,z) > o and d(v,z) > B’. Hence, for all z € F,v € G we conclude
d(z,v) > d(z,2)*d(z,v) > o' %" and for all x € G, v € F we conclude likewise
d(z,v) > d(z,z)*d(z,v) > ' *x’. If both z,v € F, then d(z,v) > o' > o' x '
and if both z,v € G then d(x,v) > ' > o * §'. Hence for all z,v € FUG
we have d(xz,v) > o = 8" and as the sets F UG with F € F,G € G form
a basis of F A G we conclude \/ gyepng Ay pen d(@v) > o+ 3'. From the
complete distributivity finally we obtain VHeJF/\G Newer d(@,v) > a* 3 and

henceIF/\GEC’i* . O

It is not difficult to show that for a symmetric L-metric space (X,d), the
space (X, C?) is a T1-space if and only if (X, d) is separated, i.e. if d(x,y) =T
implies x = y.

Proposition 4.2. Let f: (X,d) — (X',d’) be an L-MET-morphism. Then

f: (X, 04 — (X',C?) is an L-ChyTS-morphism.

Proof. LetF € C2. Then Viaerm Nuvern @ (Wv) 2 Viper Ay yer @ (f(2), f(y))
> Viper N yer A2, y) > a and hence f(F) € o O

Hence we have a functor F : L-MET — L-ChyTS, F((X,d)) = (X,C4),
F(f) = f. This functor, restricted on L-sMET, is injective on objects. Let
(X,d) # (X,d"). Then there are z,y € X such that d(x,y) # d'(z,y), i.e
without loss of generality d(z,y) € d'(z,y). It is not difficult to show that
[z]Aly] € C¢ <= d(z,y)Ad(y,z) = d(z,y) > a. As we have [z]Aly] € C’dwu)

but [z] A [y] ¢ Cgém)y) we see that C4 £ C7'.
We define now for (X, C) € |L-ChyTS| a mapping d° : X x X — L by
da(x,y) = \/ a.

[z]Aly]€Ca

Proposition 4.3. Let (X,C) € |L-ChyTS|. Then (X, d°) e |L-sMET].
(X,0) is a T1-space and is left-continuous, then (X,d") is separated.

Proof. (LM1) We have d (z,z) = Vigec, @ =T by (LChyTS1).
~ (LM2) We have by the distributivity of the quantale operation over joins
d°(z,y) * d(y, 2) = \/[z]/\[y]eca,[y]/\[z]GCB ax B. Clearly ([z] A [y]) V ([y] A [2])
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exists and by (LChyTS5) and (LChyTS2) we conclude d°(z,y) * d°(y, z) <
Vigapiecns @* B < Vigapee, 1 = d° (2, 2).
(LMs) is obvious.

For the separation, let ¢ < T = d°(z,y). Then [z] A [y] € C.. The left-
continuity yields [z] A [y] € Ct and hence z =y by (T1). O

Proposition 4.4. Let f : (X,C) — (X', C7) be an L-ChyTS-morphism. Then
f:(X,d%) — (X',d“") is an L-MET-morphism.

Proof. We have, using f([z] A [y]) = f([z]) A f(ly]) = [f(2)] A [f(y)] that

d°(2,9) = Viaieon @ < Viwinwiee, @ = 47 (F(), f). O
Proposition 4.5. Let (X,d) € |L-sMET|. Then % =d.

Proof. We use again [z] A[y] € C¢ <= d(z,y) > a and conclude dﬁ(x, y) =
\/[m]/\[y]ecg a = Vd(z,y)Za o= d(.’II,y) U

Hence the functor G which assigns to an L-Cauchy tower space (X,C)

the symmetric L-metric space (X,d®) and leaves morphisms unchanged, is
left-inverse for F, in the sense that we have G o F((X,d) = (X,d) for all
(X,d) € |L-sMET|. However, L-sMET is in general not a reflective subcategory
of L — ChyTS. The example in Remark 7.9 [21] can be used as a counterexample
in the case of Lawvere’s quantale.

We consider now the following axiom for (X, C) € |L-ChyTS|.

(LChyM) FeC, < Ve<adF,. e FVx,y € F, : [z] A\ [y] € C..
Proposition 4.6. Let (X, d) € |L-sMET|. Then (X,C%) satisfies (LChyM).

Proof. Let first F € C¢ and let € < a. Then there is F, € F such that for all
x,y € F. we have d(x,y) > e. The latter is equivalent to [z] A [y] € C9.

Let now for all € < a exist F, € F such that for all z,y € F. we have
[z] A [y] € C4. Then

\/ /\ d(u,v) > /\ d(u,v) > /\ d(u,v) = /\ d(u,v) > e.

FeFu,veF U, VEF, [u]Afv]eCd d(u,v)>e

The complete distributivity yields \/ pcp /A d(u,v) > a,ie. FeCl. O

u,veF
Proposition 4.7. Let (X,C) € |L-ChyTS|. If (X,C) satisfies (LChyM), then
Cgc =C, foralla e L.

C
Proof. Let first F € C&". Then \/ pep Nayer Vigapec, B = . Let e < a.
Then there is F' € F such that for all z,y € F there is § > € with [x] A [y] €
Cs C C.. The axiom (LChyM) then implies F € C,.
Conversely, let F € C,. The axiom (LChyM) implies that for all € < «
there is F, € F such that for all z,y € F. we have [z] A [y] € C.. Therefore
Virer Noyer Vigapiecs B = Nayer. Vigjapiec, B = € and again the complete

distributivity yields F € C4° . O
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From this we conclude the following result.

Theorem 4.8. The subcategory of L-ChyTS with objects the spaces that satisfy
the aziom (LChyM) is isomorphic to the category L-sMET.

Now we shall look into alternative characterizations of the L-Cauchy tower
of an L-metric space in terms of the L-convergence tower (X, g%).

Proposition 4.9. Let (X,d) € |L-MET|. Then the following are equivalent.
(i) For all € < « there is x € X such that B%(x,¢) € F;

(”) \/mEX \/mqu(]F) ﬂ Z a.

Proof. (i)=(ii): Let € < «. Then there is x € X and F € F such that
F C B%w,e). Hence for all y € F we have d(z,y) > e and we conclude
Vrer Ayer d(z,y) > €. This is equivalent to z € q%(F) and hence we conclude
\/zqu ) B = €. Therefore \/ \/zqu () B = € and the complete distributivity

yields V¢ x \/zqu(]F) B> a.

(ii)=(1): Let € < . Then there is z € X and S > € such that = € qg(IF).
Hence we have \/ pcp A, cp d(z,y) > B> € and there is I € F such that for all
y € F we have d(x,y) > e. As a <1 implies a < 3, we conclude F C Bé(z,¢),
i.e. BY(z,¢) €F. O

Proposition 4.10. Let (X,d) € |L-MET| and consider the following state-
ments:
(i) F e Ci;
(“) \/zGX \/xqu(]F) B > a;
(ii) F e C4,,,.
Then (i) implies (ii). If L is divisible and (X, d) is symmetric, (it) implies (iii).
Proof. Let first F € C’g. For F € F we fix xp € F. Then a <
Vrer Noyer 4@ 9) < Vipep Ayer d(@p,y). This shows zp € q%(F) for all
rr € F and we conclude \/ . \/mqu(F) B> a.

Let now L be divisible and (X, d) be symmetric and let \/ \/zqu ®) B =
a > €. Then there is . € X and 3 > € such that z € qg (F). This means that
Vrer A\yer d(ze,y) > B> € and hence there is F, € F such that for all y € F

we have d(z¢,y) > €. For u,v € F. we have by symmetry and the triangle
inequality d(u,v) > d(u,zc)*d(zc,v) > exe. Hence \/ p g /\u_’UGF d(u,v) > exe

and the complete distributivity yields F € C4,,. O
Remark 4.11. (1) For Lawvere’s quantale L = ([0, oc], >, +) and the idem-
potent T-element T = 0, the above characterization yields, using

x € qg(F) < infrepsup,epd(z,y) <5,

F e Cg <— 11161;’{ 1}}5?21612 d(z,y) =0.

This is the definition of a Cauchy filter in the metric space viewed as
an approach space [20].

© AGT, UPV, 2021 Appl. Gen. Topol. 22, no. 2 468



Quantale-valued Cauchy tower spaces and completeness

(2) A sequence (z,,) in a probabilistic metric space [34] is called a strong
Cauchy sequence if for all ¢ > 0 there is ng € IN such that for all
n,m > ng we have d(xy, Ty)(t) > 1 —t. This definition employs the
strong uniformity, i.e. the system of entourages generated by the sets
Ut)={(z,y) €e X x X : d(z,y)(t) > 1—t}, t > 0. Equivalently, as is
pointed out in [34], we can also use the system of entourages generated
by the sets U(t,e) = {(z,y) € X x X : d(z,y)(t) > 1—€}, t,e > 0. As
in [16], using the quantale of distance distribution functions (AT, <, x),
we can see that the sets B(p) = {(z,y) € X x X : d(x,y) > ¢},
© <€y generate the same uniformity. From this we can deduce that a
sequence (z,) is a strong Cauchy sequence in the probabilistic metric
space (X, d) if and only if the generated filter is in CZ .

Note that for a divisible quantale L, a symmetric L-metric space (X, d) and
an idempotent element o € L, in Proposition 4.10, (i) and (ii) are equivalent. In
particular, for a frame L, we can characterize the L-Cauchy tower of a symmetric
L-metric space by (ii) or by the equivalent statement (i) in Proposition 4.9. The
following example shows that we cannot omit the idempotency here.

Example 4.12. Let X = IR and L = ([0, 0], >, +) be Lawvere’s quantale and
d the usual metric on IR. We consider, for a > 0, the sequence z,, = § + % ifn
is even and x, = —§ — % if n is odd and denote F the filter generated by this
sequence. Then

\/ /\ d(z,y) = inf sup

FeF o,ycF kelN m,n>k

« «Q 1 .
3] -

a—i—z =«
| =

and hence we have F € C4.
a

a 1
However, as d(z,y) = inf inf sup(d(z, -+ —)Vd(z,—= —
m\e/X F\e/le/e\F z€R kelN m>k 2 m 2

1 . a a a N
) = e =G|V | 3) = 5 we have Voex Vacyy 8 = § bt ¥ ¢
Cd )y
Proposition 4.13. Let (X,d) € [L-MET|. Then qg_d(IE‘) C q4(F) and if (X,d)
is symmetric, we have ¢ (F) C ¢$2 (F).

Proof. Let first z € ¢S (F). Then FA[z] € C%. Let € <. Then there is F € F
such that for all u,v € F U {z} we have d(u,v) > e¢. We conclude for u = x
that d(z,v) > € for all v € F' and hence \/ ey A, cpd(2,y) > €. The complete
distributivity implies = € ¢¢(F).

Let now (X,d) be symmetric and = € ¢%(F). Let ¢ < . Noting that the
set D ={A cpd(z,y) : F €F}is directed, there is ' € F such that for all
y € F we have d(z,y) > e. Let u,v € F'U {z}. We distinguish four cases.

Case 1: u # xz,v # x. Then d(z,u),d(z,v) > € and hence d(u,v) > d(u, ) *
d(z,v) > exe.

yeF
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Case 2: w = x,v # z. Then d(u,v) = d(z,v) > e>exe

Case 3: u # x,v = x. Similar to case 2.

Case 4: w=v =z. Then d(u,v) =d(z,z) =T > exe.

Hence we have \/ i A\ d(u,v) > exe and the continuity of L yields

FAlz] € C4

akQo?

Nu,veFU{x}
ie. z € qSL, (). O

Again, for idempotent o € L, i.e. if a*a = o, we have the equality qST(IF) =
¢?(F). In particular in a frame L, this equality is guaranteed for all o € L.

Example 4.14. We use Example 4.12 and show that @ eq¢ (IF) To this end,
we consider the sequence (y,) = (v1, T, %2, T, 23, T, ) the generated filter of

which is G = F A [§] We then have VoA, cqdlz,y) =
irﬂcelN supmﬁnzﬂyn — Ym| = a and hence we have F A [2] € CZ, ie. & €
G (F) = qo(f/dQ +ay2(F). However, we see in a similar way that
inf, |\ SUP,> |% — xn} a £ §,sothat § ¢ qa/2( ). So we have q§72+a/2(lﬁ‘)
Z qq(F).

5. EXAMPLE: L-UNIFORM CONVERGENCE TOWER SPACES AND L-UNIFORM
TOWER SPACES

Definition 5.1 ([15]). A pair (X,A = (Aq)acr), is called an L-uniform con-
vergence tower space, if A, C F(X x X), a € L, satisfy the following;:

LUCTS]) [(z,x)] € Aq for all z € X, a € L;
LUCTS2)
LUCTS3)
LUCTS4) A,g C A, whenever o < 3;
) @
)

® € A, whenever & < ¥ and U e Ay
D U € A, implies PAY € A,;

¢ A, whenever ® € Ay;

A mapping f: (X , K) — (X ! ,N) is called uniformly continuous if, for all
D e F(X xX), (f xf)(®)e AL, whenever ® € A,. The category of L-uniform
convergence tower spaces and uniformly continuous mappings is denoted by
L-UCTS.

If L = ([0,1], <, ), then we obtain Nusser’s probabilistic uniform conver-
gence spaces [26, 27]. For L = (AT, <, ) we obtain the probabilistic uniform
convergence spaces in [2].

For (X,A) € |L-UCTS|, F € F(X), € X and a € L we define

z€ ¢ (F) < Fx[z] €A,

It is not difficult to show that (X,q_K = (¢})aer) € |L-CTS| is an L-limit tower
space. B
For (X,A) € [LLUCTS| and a € L, a filter F € F(X) is called an a-Cauchy

filter, written as F € C2 if and only if F x F € A,,.
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Proposition 5.2. Let (X,R) € |L-UCTS|. Then (X,C%) € |L-ChyTS|.

Proof. (LChyTS1) Since for all z € X and o € L, [z] X [¢] € Ay, we have
[z] € CA.

(LChyTS2) Let G > F with F € CA. Then FxF € A, and hence, by (LUCTS2),
G xGe A, ie GeCh

(LChyTS3) Let « < B and F € CBK. Then F x F € Ag, then by (LUCTS4),
F x F € A, which in turn yields F € CA.

(LChyTS4) Follows at once from the definition.

(LChyTS5) Let a, 8 € L, and let F € CA and G € C? such that F vV G exists.
Then FxF e Ay, and G xG € Ag. Then Fx G = (F x G) o (F x G) € Apsp.
Also, G x F € Ay.p. Since

FAG)X(FAG)=FxF)AFXxG)A(GxF)A (G xG) € Apss,
this implies FA G € C2, . O

Proposition 5.3. Let (X, A) € |L-UCTS|. Then qT(IF) C@E) C qgjxa (F).

Proof. Let x € quX(F), then FA[z] € CA. This implies that (FA[z]) x (FA[2]) €
Ao As (F A fz]) x (F A fz]) <F x [z], (LUCTS2) implies z € g} (F).
If € ¢(F), then F x [z] € A, and with (LUCTS5) then also [z] x F =

(Fx[x])~! € Ay. From (LUCTS6) we obtain F xF = (F x [x])o([z ] F) € Agra-
This yields with (LUCTS3) (F A [z]) x (F A [z]) = (F x F) A (F x [2]) A ([z] x
F) A ([2] X [2]) € Agsa. Thus, F A [z] € C2,, which means = € ¢ (F). O

Again, for idempotent o € L, we have equality, T(F) = qg(lﬁ‘) In partic-
ular this is the case if L is a frame
Definition 5.4 ([15]). Let L = (L, <,x) be a quantale. A pair (X,U) with
U = (Ua) 4, a family of filters on X x X is called an L-uniform tower space if
for all @ € L the following holds:

(LUTS1) Uy < [A] with [A] = A, e[z, )]
(LUTS2) Uy < Uo)

(LUTS3) Unsp < Un o Us:

(LUTS4) U, <Up Whenever a < B;

(LUTS5) Uy = AF(X x X);

(LUTS6) Uy a4 <V y4eqUa whenever @ # A C L.

A mapping f: (X U) — (X’ W) is called uniformly continuous if U!, <
(f x f)Uy) for all & € L. The category with objects all L-uniform tower
spaces and uniformly continuous mappings as morphisms is denoted by L-UTS.

If L = ([0,1], <, *) with a t-norm *, then we obtain Florescu’s probabilistic
uniform spaces [8], for L = (AT, <,*) we obtain the probabilistic uniform
spaces in [2]. For Lawvere’s quantale an L-uniform tower space is an approach
uniform space [23].
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For (X,U = (Ua)aer) € |L—UTS| and a € L, a filter F € F(X) is called an
a-Cauchy filter written as F € CY if and only if F x F > U,

Lemma 5.5. Let (X,U) € |L-UTS|. Then (X,CY) e |L-ChyTS].

Proof. (LChyTS1) Clearly by (LUTS1), Uy < [2] x [2], implies [z] € CY, for all
z€Xanda e L. (LChyTS2) Let F, G € F(X) with F < G, and F € C¥. Then
F x F > U, but then G x G > Uy, which in turn implies G € CY. (LChyTS3)
Let a < pand F € Cg, implying F x F > Ug. But then Ug > U, by (LUTS4)
for « < B. So, F x F > U, which gives F € CY. The condition (LChyTS4)
is trivially true. Finally, we check the condition (LChyTS5): let F € C¥ and
G € CY such that FV G exists. Then F x F > Uy, and G x G > Up. Then
(FxF)o (G xG) > U, olUs which in view of the condition (LUTS3) yields that
FxG = (FxF)o(GxG) > Uysp. This means that Fx G > U,.g. Furthermore,
note that we also have: G X F > Uy, F X > Unwp, and G X G > Uqy.p; this is
due to the condition (LUTS5) and the fact that o x 8 < o, 8. Hence we arrive
at the following:

FAG)X(FAG)=FxXxF)AGXxG)A(F xG)A (G X TF) > Upsp,
that is, (FAG) x (F AG) > Uq+p which in turn implies that FAG € Cg*ﬁ. O

Given an L-metric space (X, d) we define A2 C F(X x X) for a € L, by [15]
®c Nl = Vico /\(w,y)eF d(z,y) > a.

Theorem 5.6. The L-Cauchy tower space (X,C9) of an L-metric space (X, d)
is the same as the L-Cauchy tower space (X, CAd) induced by the L-uniform
convergence tower space (X, F) of an L-metric space. That is, Cd = (A7,

Proof. This follows from \/cp g /\(z,y)eH d(x,y) = Vier /\myyeFd(x,y) for
F € F(X), as the sets F' x F with F € F are a basis of F x F. O

For an L-metric space (X, d) we define U, = {(z,y) € X x X : d(x,y) > €}.
For € < a, these sets form the basis of a filter ¢¢ and we have US = Agepa @,

see [15]. We call (X,U4) the L-uniform tower space induced by the L-metric
space (X, d).

Proposition 5.7. Let (X,d) € |L-MET|. Then CT =C4 for all a € L.

Proof. LetF € C’T. Then FxF € Y2 and for all € < « there is F' € F such that
F x F C Ue. Hence for all € < « there is F' € F such that A\,  pd(z,y) > €.

This implies A, ,cp d(z,y) > o from which we conclude F € cd.

Conversely, we note that the set {A, cpd(z,y) : F € F} is directed. If
F € CZ, then \/ pep Neyer d(@,y) > . Hence, for € < o there is F' € F such
that for all z,y € F we have d(z,y) > e. This means F' x F' C U, and we have
Fx F > Ul O
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6. EXAMPLE: L-LIMIT TOWER GROUPS

Let (X, -) be a group with identity element e € X and let F,G,H € F(X). We
define FOG as the filter with filter basis {F-G : F € F,G € G} and F~! as the
filter with filter basis {F~! : F € F}. Then, for F,G,H € F(X) and z,y € X,
the following properties are easily verified: F © F~! < [e]; [2] © [z]7! = [e];
7 =[] -yl =[]y FOG) OH=F0 (GoH); F )" =TF
FoOG)t=G1oF Y5 oF=Fol=F, FAG)'=F1AG™! and
FAG)OH = (FoH)A (G o H).

Definition 6.1. Let L = (L, <, %) be a quantale, and (X, -) be a group with
identity e. Then a triple (X,-,7 = (¢a)acr) is called an L-convergence tower
group (respectively, an L-limit tower group) if the following conditions are ful-
filled:
(LCTG) If (X,7q) is an L-convergence tower space (resp. an L-limit tower space)
(LCTGM) z € qo(F), y € q3(G) implies zy € gasp (F© G), for all F,G € F(X),
for all o, 8 € L, and z,y € X;

(LCTGI) z € qo(F) implies 27! € go(F~ 1), forall F € F(X), 2z € X and a € L.
The category of all L-convergence tower groups and continuous group homo-
morphisms is denoted by L-CTGrp (respectively, the category of all L-limit tower
groups and continuous group homomorphisms is denoted by L-LIMGrp.)

If L = {0,1}, then we obtain classical convergence groups [28]. If L =
([0,1], <, %) with a continuous t-norm *, then we get probabilistic convergence
group under a t-norm in the sense of [13]. If L = ([0, 0], >,+), then a left-
continuous L-convergence tower group is an approach group [24]. If L = (AT, <
,*), we obtain a probabilistic convergence group in the definition of [3].

For (X,-,q) € |L — LIMTGrp|, a filter F € F(X) is called an a-Cauchy filter,
written F € CZ, if and only if e € ¢, (F~! ©F).

Proposition 6.2. Let (X,-,g) € |L-LIMGrp|. Then (X,ﬁ) € |L-ChyTS|.

Proof. (LChyTS1) Since e € go([z]™! ® [2]) implies [z] € CY.
(LChyTS2) Let F < G with F € C4. This implies e € g, (F~! ©®F). But then
e € ¢o (G™' ® G) which gives G € C4.
(LChyTS3) Let a,8 € L with o < 8 and F € C§. Then e € qg (F' OF)
implies e € gqq (F_l ® F) Hence F € C4.
(LChyTS4) Obvious.
(LChyTS5) Let F € C,, and G € Cf such that FV G exists. It is not difficult
to prove that F© G™! < [e]. Ase € go (F'OF) and e € gg (G' ©G), we
obtain with condition (LCTGM) e = ee € ga.p (F! ©F© G~ ®G) which
implies that e € gu«s (F_l ® G). Similarly, we can get e € ga«p (G_l @IF).
Since

FAG) 'O (FAG)=F'AGHO(FAG)

=F'ORNAFTOGAGOF)A(GTOG),
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we conclude from condition (LCTS5) € € gasp (FAG)™ ® (FAG)). Hence
FAG e CL,s O

Definition 6.3 ([14]). A triple (X,-,d) is called an L-metric group if d is
invariant, i.e., d(z,y) = d(zz,yz) = d(zz,zy) for all z,y,z € X. A group
homomorphism f: (X, ) — (X’,-’) between the L-metric groups (X, -,d) and
(X’,",d’) is called an L-MET Grp-morphism if it is an L-MET-morphism between
(X,d) and (X'd’). The category of L-metric groups is denoted by L-METGrp.

Lemma 6.4. Let (X,-,d) be a symmetric L-metric group. Then (X, -,q_d) 18
an L-convergence tower group.

Proof. We need to show the conditions (LCTGM) and (LCTGI). For (LCTGM),
let x € ¢¢(F) and y € qg(G). For e <« and 6 < 3, thereis F € F and G € G
such that for all u € F' and for all v € G we have d(z,u) > € and d(y,v) > .
Then d(e, 27 u) > € and d(yv~t,e) > § and hence d(yv=!, 27 1u) > e+ §. This
implies d(xy,uv) > e+ d for all u € F,v € G and hence d(zy, h) > € *J for all
h € F'® G. Therefore \/ ;cpog Apen d(®y, h) > €+ 0 and from the complete
distributivity we obtain zy € ¢2, s(FOG).
(LCTGI) follows with the symmetry from d(z,y) = d(xy~',e) = d(y~ !,z 1).
(]

Proposition 6.5. Let (X,d) ba a symmetric L-metric group. Then C¢ = Cg?
foralla € L.

Proof. F € Cg? is equivalent to Vpep A, yer d(e,x=1y) > «, which is, by
the invariance of the L-metric, equivalent to \pep A, yepd(z,y) > a, ie.
equivalent to F € CZ. 0

7. COMPLETENESS AND COMPLETION

Following [33, 27] we call (X,C) € |L-ChyTS| complete if for all a € L,
F € C, implies the existence of € X such that F A [z] € Cl,.

With this definition, the “point of convergence” x = z(F, ) not only de-
pends on the filter F but may also depend on the “level” @ € L. In the
left-continuous case, we can omit this extra dependency.

Proposition 7.1. Let (X,C) € |L-ChyTS| be left-continuous. Then (X, C) is
complete if for all F € F(X) there is x = x(F) such that for alla € L, F € C,
implies F A [z] € C.

Proof. Let F € F(X) and define A = {a¢ € L : F € C,} and 6 = \/ A. By
left-continuity F € Cs and hence there is z = z(F, §) such that F A [z] € Cs. If
F € C,, then @ < 6 and hence F A [z] € Cs C C,, and we can choose z for each
Q. O

The following examples show that the left-continuity is essential.
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Example 7.2. Let L = {1, «, 8, T} with «, 8 incomparable, * = A and let X
be an infinite set. There is an ultrafilter U € U(X) with U 2 [z] for all z € X.
We fix xg,y0 € X with ¢ # yo and define an L-Cauchy tower as follows. We
let C; =F(X),FeCyiff F>UA|[xg] or if F = [z] for some x € X. Similarly,
Fe Csiff F>UA[yo] or F = [z] for some z € X, and finally F € Ct if F = [z]
for some z € X. We only show (LChyTS5) as the other axioms are easy. Let
Fedl,, GeCs and FVG exist. We distinguish three cases.

Case 1: v =0o,0 = 5. Then a A = 1 and hence FA G € Cyng.

Case 2: F,G € C,. If F = [z] and G = [y] then 2 = y because F V G exists
and hence FAG = [z] € Cy. If F = [z] and G = U A [z0], then [z] V (U A [z0])
exists. If x # xo we define F' = X \ {z}. Then either F' € U or its complement
F¢ € U and also F' € [xo]. If F € U then F € UA [z9] and hence also
F € [z] V (U A [z0]), in contradiction to F¢ € [z] and FNF*=@. If F ¢ U
then F°¢ € U and hence U = [z], again a contradiction. We conclude x = xo,
i.e. F = [zg] and G = U A [zg] and therefore FAG =G € Cy = Cypa-

Case 3: F,G € Cg. This is similar.

We note that (X, C) is complete but since we have U € C,,, U € Cj and
U ¢ Cqvp = C7, it is not left-continuous.

Clearly, U € C, and U A [zg] € Cy. Likewise, U € Cg and U A [yo] € Cjs.
As we have seen above U A [z] € C, implies © = z¢ and hence in particular
U A [yo] ¢ Co. This shows that the point of convergence for U is different for
« and (.

Example 7.3. We consider X = [0, 00) and Lawvere’s quantale L = ([0, o], >
,+). Again we choose an ultrafilter U € U(X) with U # [x] for all z € [0, c0).
We define Co, = F(X) and for a@ < oo we define F € Cy, if F = [z] for some
v € X orif F > UA [z] for some 0 < x < a. Then ([0,00),C) is an L-Cauchy
tower space. We again only show (LChyTS5). LetF € C,,G € Cp and let FVG
exist. The case F = [z] and G = [y] implies © = y and then FAG = [z] € Canp.
IfF = [z] and G > UA [y] with 0 < y < /8 implies again = y and we obtain
FAG =G € Cg C Caqp. It remains the case G > UA[z],G > UAJy]. If z =y,
trivially FA G € Cyyp. If © # y, then we choose two sets Fy, Fy C [0, 1] with
non-empty and finite complement and F} N F» = & such that « € Fy,y € Fb.
Then Fy € UA [z], as F» € [z] and if Fy ¢ U, then the complement F§ € U
and as F¥ is a finite set, then U = [2] for z € F§. Similarly, F; € UA [y]. As
H= (UA[z]) V(UA [y]) exists, we get the contradiction @ = F; N F; € H.

As U € C, for all 0 < a but U ¢ Cy we see that ([0,00),C) is not left-
continuous. Clearly, the space is complete. However, the point of convergence
varies with the level a: We have U € C,, for all 0 < o < co. We fix « € (0, 00).
Then there is x with 0 < z < « such that UA [z] € C,,. For § with 0 < 8 < z,
however, U A [z] ¢ Cgs, because U A [z] 2 U A [y] for « # y. Hence we cannot
choose for each level the same point of convergence for U.

We note that for (X, d) € |L-MET]|, the space (X, C9) is left-continuous.
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Proposition 7.4. Let (Xj,ﬁ) be complete L-Cauchy tower spaces for all j €
J. Then the product space ([];c; X;,7-C) is also complete.

Proof. Let F € (m-C)o. Then, for all j € J, pr;(F) € CJ. By completeness
there is, for each j € J, a point z; € X; such that pr;(F) A [z;] € CJ. Hence
with # = (z;);es, then for all j € J, prj(F A [z]) = pr;j(F) A [prj(z)] =
pr;(F) A [z;] € CJ which implies F A [z] € (7-C),. O

Remark 7.5 (Completeness in L-UTS). We define for an L-uniform convergence
tower space (X,U) the underlying L-convergence tower ¢4 by = € qg(IF) —
F x [2] > Uy Noting that (FA[z]) x (FA[z]) = (FxF)A(F x [z]) A (F x [z]) 7! A
[(x,2)] and F xF = (F x [z]) o ([z] x F) we immediately obtain z € ¢ (F) <=

r € ¢4, (F). For the definition of completeness however, we can use either

L-convergence tower, i.e. if we define (X,U) complete if (X, C_U) is complete,
then this is equivalent to demanding that F x F > U,, implies F x [z] > U, for
some z € X.

Remark 7.6 (Completeness in L-UCTS.). Similarly, if we define in L-UCTS that
a space (X,A) is complete if (X,C?) is complete, then this is equivalent to
F x F € A, implies F x [z] € A, for some z € X.

Let (X,C) be a non-complete L-Cauchy tower space. We call a pair
((X',C"), k) with a complete L-Cauchy tower space (X’,C’) and an initial and
injective mapping x : (X,C) — (X', ") such that x(X) is dense in (X', C"),
a completion of (X,C). Here, a set A C X is called dense in (X,C) if for all
x € X there is F € F(X) such that A € F and F A [z] € C7 and a mapping
k: (X,C) — (X',C") is initial if F € C,, if and only if x(F) € C,.

In the sequel, we describe a completion construction which goes back to [18]
and [27]. The proofs in [27] can simply be adapted, replacing the quantale
L = ([0,1], <, *) with a continuous t-norm * on [0, 1] by an arbitrary quantale.
For this reason, they are not presented.

We consider a non-complete L-Cauchy tower space (X, C) and define N =
{FeFX) : FeCr,FA[z] ¢ CrVz € X}. Furthermore, we consider the
following equivalence relation on Ct: F ~ G <= FA G € Ct and we denote
the equivalence class of F € Ct by (F) = {G € Ct : F ~ G}. We define
X*={([z]) : ® € X}U{(F) : F € Ng} and denote the inclusion mapping
ix =1: X — X*, o — 1(z) = ([z]). We note that if (X,C) is a Tl-space,
then ¢ is an injection. In fact, if ¢(x) = ¢(y), then [z] A [y] € Ct and by (T1)
then z = y.

Let ® € F(X*) and let a # L. We define ® € C if there is F € C, such
that @ > (F) or if there is F € C,, and there are Fy,...,F,, € Nz such that
F VF; exists for all i = 1,...,n and ® > «(F) A A" [(F;)]. Furthermore, we put
Ch = F(X).

We will consider the completion aziom (LCA): for all F € C,, with F A [z] ¢
C, for all x € X, there is V € Nz such that FAV € C,,.
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Then ((X*,C*),1) is a completion of (X, C) if (LCA) is true. We can say
more.

Proposition 7.7 ([27, 18]). Let (X,C) € |L-ChyTS|. Then (X,C) has a com-
pletion if and only if it satisfies (LCA).

For the completion ((X*,C*),t), the following universal property is true.

Theorem 7.8 ([27, 18]). Let (X,C),(Y,D) € |L-ChyTS| and let f : X — Y
be Cauchy-continuous. Then there exists a Cauchy-continuous mapping f* :
(X*,C*) —s (Y*, D*) such that the following diagram commutes:

x,0) L (v
tx 4 Ly
x+o L v, D)
Corollary 7.9 ([27)). Let (X,C),(Y,D) € |L-ChyTS| and let (X,C) satisfy
(LCA) and let (Y,D) be a complete T1-space. If f : X — Y is Cauchy-
continuous then there is a unique Cauchy-continuous extension f* : (X*,C*) —
(Y, D) such that f* o1 = f.

It is at present not clear if for an L-metric space (X,d) the completion
(X, (C49)*) is again L-metrical, i.e. if there is an L-metric e in X* such that
(CH: = C¢ for all & € L. We can, however, show the one half of the axiom
(LChyM).

Proposition 7.10. Let (X,d) € |[L-MET|. If ® € (C9)?, then for all € < «

(e

there is ¢. € ® such that for all x*,y* € ¢ we have [x*] A [y*] € (C?)r.

Proof. Let ® € (C?)%. Then there are F € C¢ and Fy,...,F, € N5 such that
F V Fy exists for k = 1,..,n, n > 0, and ® > o(F) A;_;[(Fx)]. Let € < o
By the axiom (LChyM) there is F. € F such that for all z,y € F. we have
[z] A [x] € C4. We define ¢ = 1(F.) U{(Fy), ..., (F,)} € ®. Let z*,y* € ¢p.. We
distinguish three cases.

Case 1: x*,y* € 1(F.). Then z* = (x),y* = ((y) for z,y € F. and as
[z] A [y] € C4 we conclude [z*] A [y*] = «([z] A [y]) € (C9)r.

Case 2: x* = (Fg),y* = (F;). Then trivially [(Fi)] A [(F)] > o(F) A
Ar—1[(Fr)] and hence [z*] A [y*] € (C?):.

Case 3: z* = ([z]) € «(Fo),y* = (Fr). We have [F,] ={GC X : F.C
G} < F and [F] < [z] as ¢ € F.. As FV I}, exists therefore also F V [F]
exists. Moreover, we have Ve (p) Auveq d(u,v) = A, ,ep d(u,v) > € as
d(u,v) > € is equivalent to [u] A [v] € CZ. This shows [F.] € C?. We conclude
[T A y*] = u([2]) A [(Fr)] = o([Fe]) A [(EFr)], e [27] A Jy*] € (COr O

8. THE L-METRIC CASE: CAUCHY COMPLETENESS

We follow concepts and notations introduced in [6], see also [10]. Let (X, d) €
[L-MET|. A mapping ® : X — L is an order ideal if d(y, z) * ®(z) < ®(y) for
all z,y € X. Tt is called an order filter if ®(z) *d(x,y) < ®(y) for all 2,y € X.

© AGT, UPV, 2021 Appl. Gen. Topol. 22, no. 2 |477



G. Jager and T. M. G. Ahsanullah

Clearly, d(y,z) < ®(z) — ®(y) and using the L-metric d, : L x L — L
defined by dr(o,8) = o — B for o,8 € L, we see that an order ideal is
an L-metric morphism from (X, d°?) to (L,dy) and similarly, an L-order filter
is an L-metric morphism from (X,d) to (L,dr). The following lemmas give
important examples.

Lemma 8.1 ([6]). Let (X,d) be an L-metric space and a € X. Then | (a)
defined by | (a)(x) = d(x,a) is an order ideal and 1 (a) defined by 1 (a)(x) =
d(a,x) is an order filter.

Lemma 8.2. Let (X, d) be an L-metric space and let F be a filter on X. Then
®: X — L, defined by ®(x) = Vpep Nyer d(@,y) is an order ideal and
V: X — L defined by ¥(z) =\ pep \yep d(y, ) is an order filter.

Proof. We only show the first case. We have for z,y € X

d(y,») «@(x) = dy,z)* \/ N dz.z2) = \/ dy,z)* )\ d=,2)

FeFzeF FeF zeF
< \//\d(y, ) * d(z, z) \//\dy, = P(y).
FeF zeF FeF zeF

O

Definition 8.3 ([6]). Let (X,d) be an L-metric space and let ® : X — L be
an order ideal and ¥ : X — L be an order filter. The pair (®, V) is called a
cut on X

(1) T'=V,ex ®(@) « ¥(2);
(2) ®(z) *x¥(y) < d(z,y) for all z,y € X.

We note that for a given a € X, the pair (J (a),1 (a)) is a cut on X.

Proposition 8.4. Let (X,d) be an L-metric space and let F € C%. Then
(®,¥) as defined in Lemma 8.2 is a cut on X.

Proof. Let € <« T and choose § < T such that ¢ < d *d. Then § <« T =
Vrer Asyer d(x,y) and hence there is F' € F such that for all z,y € F' we
have d(x,y) > § and d(y,x) > 6. We conclude for all z € F

e < §x6 < Nday)x )\ dyx)

yeF yel
< \//\d(:z:y \//\dy, = ®(z) * U(x).
FeFyeF FeFyeF

Hence € <V, cx ®(z) * ¥(x) and taking the join for all ¢ < T we obtain
T = Vyex () * ¥(2).

Moreover, we have

O(x)xU(y) = \/ /\ d(z,z) * \/ /\ d(z,y)

FeF zeF GEeF zeG

\/ /\ d(z,z) *d(z,y) < d(z,y).

F,GEF 26 FNG

IN
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Hence (®,P) is a cut on X. O

We call a symmetric L-metric space (X, d) complete if for F € CZ there is
a € X such that a € ¢4 (F). From Proposition 4.3 we know that ¢4 (F) = ¢¢* (F)
and hence the completeness of (X, d) is the completeness of the Cauchy space

(X,C%). Clearly, the requirement that (X, C4) is complete is stronger.
We shall now establish a relation to the concept of Cauchy completeness of
an L-metric space as defined by Lawvere [19], see also [6].

Definition 8.5. Let (X, d) be an L-metric space. Then (X, d) is called Cauchy
complete if for all cuts (P, ¥) there is a € X that represents the cut (P, ¥) in
the sense that ® =| (a) and ¥ =1 (a).

Theorem 8.6. Let (X,d) be a symmetric L-metric space. Then (X,d) is
complete if and only if (X,d) is Cauchy complete.

Proof. Let (X, d) be Cauchy complete and let F € C%. We consider the order
ideal ® and the order filter ¥ defined in Lemma 8.2. From Proposition 8.4
we see that (®, V) is a cut on X. By assumption, there is a € X such that
®(z) = d(z,a) for all z € X and ¥U(x) = d(a,z) for all x € X. Then T =
¥(a) <V per Asep d(z, a). which means that a € ¢4 (F) and (X, d) is complete.

Conversely, let (X, d) be complete and let (®,¥) be a cut. For e < T we
define F = {z €: ®(x)*V(z) > e}. From T =/ ®(z)* ¥ (z) we conclude
that F. # @ and hence {F, : € < T} is a basis for a filter F. We show that
F e C%. Let € < T and choose § < T such that € < § * . For all 2,y € Fs
we then have

Gx6 < O(x) x U(x) * D(y) * U(y) < @(x) * ¥(y) < d(z,y),

and hence

e Ixd< \/ /\ d(z,y).

FeF x,yeF

Taking the join over all e < T yields F € C—ﬁi—. Hence there is a € X such that
a € ¢ (F).
We note that this means

T = \/ /\ d(z,a)

e T zeF,
and, ¥ : (X,d) — (L,dy) being an L — MET-morphism, this yields
T=\ A@k-=%0w) =\ 2:) - Ta)
e T z€F, eLa z€eF.

For 6 <« T there is s < T such that

5+ \/ ¥(z) < ¥(a).

ZEF&S
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As €5 < €5V < T we have F,ys C F,; and hence

5« \/ W(z) < ¥(a).

z2€Fc vs

For z € F¢,vs we know U(z) > ®(2)*x ¥ (2) > €5V > ¢ and we conclude §*§ <
U(a). Taking the join over all 6 < T we obtain T = ¥(a). Similarly we can
show T = ®(a). ® being an order ideal implies d(z,a) = d(z,a) * ®(a) < ®(x)
for all z € X and from ®(z) = ®(z) * ¥(a) < d(z,a) we obtain ®(z) = d(z,a)
for all z € X. Hence ® =| (a). Similarly we can show ¥ =t (a) and hence
a € X represents the cut (@, V) and (X, d) is Cauchy complete. O
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