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ABSTRACT

Universal elements are one of the most essential parts in research fields,
investigating if there exist (or not) universal elements in different classes
of objects. For example, classes of spaces and frames have been studied
under the prism of this universality property. In this paper, studying
classes of sheaves of Abelian groups, we construct proper universal el-
ements for these classes, giving a positive answer to the existence of
such elements in these classes.
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1. INTRODUCTION AND PRELIMINARIES

The notion of “universal object” is considered in many branches of Mathe-
matics. The problem of the existence of such objects is naturally arised when-
ever a new category of objects is appeared. Especially for the branch of Topol-
ogy, the problem of the existence of universal elements in different classes of
topological spaces was considered at the first steps of its development. Now, in
the bibliography there are lots of papers concerning universal objects. Many
of them are indicated in the book [9].

In the paper [7] and in the above mentioned book, a method of construction
of so-called Containing Spaces is developed. This method can be used for the
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construction of universal objects in different categories. Such categories are,
for example, topological spaces (with different dimension invariants)(see [3],
Chapter 3 of [9]), separable metric spaces (see Chapter 9 of [9], [10], [12], [13],
[15]), mappings (see [8], Chapter 6 of [9], [10], [11]), topological groups ([11],
[14], [17]), G-spaces (see Chapter 7 of [9], [10], [11], [17], [18]) and frames (see
2, [4], {5, 6], [16]).

In the present paper we use this method for construction of universal objects
in the category of sheaves of Abelian groups, which play an important role in
the study of cohomology theories of general topological spaces.

General notation and assumptions. An ordinal is considered as the set
of all smaller ordinals. A cardinal is identified with the least ordinal of this
cardinality. By 7 we denote a fixed infinite cardinal. By F we denote the set
of all non-empty finite subsets of 7. The symbol = in a relation means that
one or both sides of the relation are new notations. All spaces are assumed to
be Ty-spaces of weight < 7. An equivalent relation on a set X is considered as
a subset of X x X.

1.1 On the sheaves. We consider the notion of a sheaf according to [1]. A
sheaf of Abelian groups is a triad (A, w, X) satisfying the following conditions:

(i) A and X are topological spaces and 7 is a map of A onto X.

(i4) 7 is a local homeomorphism, that is each point a € A has an open
neighbourhood V' in A such that the restriction of 7 on V' is a homeomorphism
of V onto an open subset of X;

(iii) for each point z € X the set A, = m~!(z), which is called fiber of A in
x, is an Abelian group;

(iv) the group operations are continuous. (This condition means the follow-
ing. Let AKX A be the set of all pairs (a,b) € A x A such that w(a) = «(b).
Then, the mapping w4 : AKA — A for which w(a,b) = a+ b is continuous.
Similarly, the mapping i 4 : A — A for which i 4(a) = —a is continuous.)

Below we give some well-known notions of sheaves and introduce some no-
tations, which will be used in the paper. Let p; = (A1, m,X1) and py =
(A2, ma, X2) be two sheaves. A continuous mapping f of A; into Ay is called
homomorphism if the restriction of f onto each fiber of A; is a homomorphism
of this fiber into a fiber of As. The unique mapping g of X into X5 satisfying
the relation g o 1 = 7y o f is called induced by f. The homomorphism f is
called isomorphism (or embedding) of p; into py if f and the induced mapping
g are embeddings. The isomorphism f of p; into ps is called proper if for each
x € X the restriction of f onto the fiber A; ; of A; in x maps A, , onto the
fiber Ay 4(z) of Az in g(z). The sheaves p; and py are called isomorphic if there
exists an isomorphism of p; onto ps.

Let (A, 7, X) be a sheaf and U a non-empty subset of X. A continuous mapping
s: U — A, for which the maping 7 o s is the identical mapping of U, is called
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section of A on U. We shall consider sections on the open subsets of X and
the set of all such sections will be denoted by A(sec). The set of all sections
on an open subset U of X will be denoted by A(sec)(U). The set A(sec)(U)
is an Abelian group under the pointwise operations. For two subsets U and V
such that U C V we denote by T‘év the mapping of A(sec)(V') into A(sec)(U)
by setting rﬁv(s) = s|y for each s € A(sec)(V). The section s|y will be
called restriction of the section s and the mapping Tév restriction mapping.
Obviously, 77, is a homomorphism of the group A(sec)(V) into the group
A(sec)(U). Moreover, if U, V,W are subsets of X and U € V C W, then

Té,v o Té,w =T w-
For each section s : U — A the set dom(s) = U is called the domain of s and
the set ran(s) = s(U) is called the range of s. For each subset B C A(sec) and
z € X we put
dom(B) = {dom(s) : s € B}, ran(B) = {ran(s) : s € B}
and
dom(B)(x) = {dom(s) : s € B,x € dom(s)}.
Also, for each non-empty subset U C X, we put
B(U) ={s € B:dom(s) =U}.

We note that for each s € A(sec) the set ran(s) is an open subset of A and
that the set ran(A(sec)) is a base for the open subsets of A.

The set dom(A(sec))(z) is directed by inclusion “C”. Thus, for each z € X
we have a direct spectrum of Abelian groups

Ef = {A(sec)(U), Tév, dom(A(sec))(x)},

where U,V € dom(A(sec))(z) with U C V and r{}, is the restriction mapping
of cuts. The mapping

07 lim S5t = Ay,
of the limit group hﬂEf of the spectrum o' into A,, defined by relation
92 (0) = s(x), where o is an arbitrary element of the limit group 1132);4 and
s € o, is an isomorphism of HEE;“ onto A,.

1.2 On the Containing Spaces. In this section we briefly explain the con-
struction of the Containing Spaces (see [7], [9]). The spaces of the universal
sheaves in the main result of the paper (see below Theorem 1.3.1) will be
Containing Spaces. A Containing Space is constructed for a given indexed col-
lection S of spaces and it is uniquely determined by a base B for S (in [7] and
[9] the base B is called mark and it is denoted by M):

B={{U;:0¢e7}: X €8S},
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where {U{ : § € 7} is an indexed base for the open subsets of X € S, and by
a family R of equivalence relations on S:

R={~"teF}

It is required that R satisfies the following conditions:

(a) for each t € F the number of equivalence classes of ~! is finite;

(b) for each t; C ty € F, ~'2 C ~l1;

(¢) for each X,Y € S the condition X ~!' Y for some ¢ € F, implies that
the algebra of subsets of X, generated by the set {U;* : § € t}, and the
algebra of subsets of Y, generated by the set {UY : § € t}, are isomorphic
and the correspondence U gf — Ugf , 0 € t, generates an isomorphism of these
algebras. Such a family is called B-admissible. Also, for each ¢ € F we denote
by C(~") the set of equivalence classes of ~' and put C(R) = U{C(~') : ¢ €
F}. The corresponding Containing Space is denoted by T = T(B,R) and its
construction is done as follows.

Let ~B be the equivalence relation on a set of all pairs (x, X ), wherex € X € S,
defined as follows: two such pairs (z, X) and (y,Y) are ~B-equivalent if and
only if: (a) X ~'Y for each t € F and (b) for each § € 7, z € U;* if and only
ify € Ug/. Then, T is the set of all equivalence classes of NE and the set

B"={U{fH):§ e, He CR)},

where U (H) is the set consisting of all points a € T such that there exists
an element (z, X) € a for which X € H and z € US", is a base for a topology
on T, called standard base (see Corollary 2.8 of [7]). We note that if for some
k C 7 and for each X € S the set {U;* : § € k} is a base for the open subsets
of X, then the set

{UF(H):6 € k,He C(R)}

is also a base for the open subsets of the space T (see Corollary 2.8 of [7]).

The mapping ix : X — T, defining by the relation i3 (z) = a € T, where
z € X € S and a is the point of T containing the pair (z, X), is an embedding
of X into T, which is called natural (see Proposition 2.10 of [7]).

In the paper, we shall use also the following notions. Let
B ={{U{s:0e€7}:X eS8} and Bo={{Us;:0€7}:X €S},

where {U; : § € 7} and {U3'5 : 6 € 7} are indexed sets of subsets of X € S
(in particular, they may be indexed bases of X) and Bg is a base for S. The
base By is an extension of By if there exists an one-to-one mapping ¥ : 7 — 7,
called extension mapping, such that Ui),((s = U2},/19(5)’ 0 € 7. We shall also say

that for a given X € S, {Uss : § € 7} is an extension of {U[; : § € 7} with the
extension mapping v. Let

Ry ={~:t€ F}, and Ry = {~h: t € F}
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be two families of equivalence relations on S. We say that Rs is a final refine-
ment of Ry if for each t € F there exists ¢’ € F such that ~§ C ~4.

A class S of spaces is called saturated if for each indexed collection S of elements
of S, there exists a base By for S such that for each extension B of By, there
exists a B-admissible family R® of equivalence relations on S with the property
that for each admissible family R of equivalence relations on S being a final
refinement of RB, the containing space T(B, R) belongs to S (see Section 3 of
[7] and Chapter 2 of [9]). The base By is called initial base for S (corresponding
to the class S) and R® initial family of equivalence relations on S corresponding
to B (and the class S). Below, we give some examples of saturated classes of
spaces of weight < 7.

1) the class of all Ty-spaces (see Propositions 2.9 of [7]);

the class of all regular spaces (see Propositions 3.5 of [7]);

the class of all completely regular spaces (see Propositions 3.8 of [7]);
the class of all spaces of small inductive dimension ind < n € N;

the class of all countable-dimensional spaces;

the class of all strongly contable-dimensional spaces;

the class of all locally finite-dimensional spaces;

8) the intersection of any two saturated classes of spaces.

(For the above example (4) see Corrolary 3.1.6 of [9], for (5), (6) and (7) see
Proposition 4.4.4 of [9] and for example (8) see Proposition 3.3 of [7]).

(
(2)
(3)
(4)
(5)
(6)
(7)
(

1.3 The results. Let S be a class of sheaves. A sheaf p is called proper
universal in the class S if p € S and for each p € S there exist a proper
isomorphism of p into p.

The main result of this paper is the following theorem.

Theorem 1.3.1. Let Sy and S, be two saturated classes of spaces of weights
< 7. Then, in the class of all sheaves (A, , X), for which A € Sq and X € S,,

there exists a proper universal element (A, 7, X).

Since the class of Ty-spaces of countable weight and the class of separable
metric spaces are saturated classes we have the following corollary.

Corollary 1.3.2. In the class of all sheaves (A, w, X), where A is a To-space
of countable weight and X is a separable metrizable space there exists a proper
universal element.

2. PROOF OF THE RESULT

Lemma 2.1. Let (A, 7, X) be a sheaf of Abelian groups. There exists a subset
B C A(sec) such that:

(a) ran(B) is a base for the open subsets of A of cardinality w(A) < T and,
therefore, the set dom(B) is a base for the open subsets of X ;

(b) for each U € dom(B), B(U) is a subgroup of the group A(sec)(U).
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(¢) for each U,V € dom(B) with U C V the restriction s|ly of any cut
s € B(V) belongs to B.

Proof. Since A(sec) is a base for A, there exists a subset B® C A(sec) such that
ran(BP) is a base for the open subsets of A of cardinality w(.A). By induction
we define the subset B™ C A(sec), n € N, setting

B" =B" U (U{B}'(U) C A(sec)(U) : U € dom(B"1)})

U{sly :s € B"1(V),U,V € dom(B" 1), U C V},
where B}~ (U) is the subgroup of A(sec)(U) generated by the set B"~1(U).
It is easy to see that the set B = U{B™ : n € w} is the required set. O

The direct spectrum %5. Let (A, 7, X) be a sheaf, B a subset of A(sec),
satisfying the conditions of Lemma 2.1, and € X. By property (a) of this
lemma, ran(B) is a base of A and, therefore, the set dom(B) is a base for the
open subsets of X. Hence, the set dom(B)(x) is directed by inclusion “C”.
By property (¢) of Lemma 2.1, for each U,V € dom(B)(z) with U C V the
restriction of Tév onto B(V) is an isomorphism of B(V') into B(U). We shall

denote this restriction by Tgv. Thus, for each x € X we have a direct spectrum
2B of groups:

P ={B(U),r{ . dom(B)(x)}. (2.1.1)
Let o be an arbitrary element of the limit group lim B of the spectrum (2.1.1)
and s € oB. We define the mapping 92 : ligEf — A, setting 98 (cP) = s(x).

Lemma 2.2. Let
074 lim X7 — lim 271
be the mapping defined as follows: for each o € h_rr;Ef we put 95A(aB) =

oA, where o

is the element of thf containing o®. Then, 984 is well-
defined (that is, the element o is uniquely determined), one-to-one, onto and
preserves the group operations, that is it is an isomorphism of hﬂEzB onto
HEE;“. Moreover, 98 = 92 0 984 and, therefore, 92 is an isomorphism and
onto mapping.

Proof. Since the mappings 7“57‘, of the spectrum X5 are the restrictions of the
corresponding mappings T‘é v of the spectrum ¥ each element o of h_rr>1 ¥B s

contained in an uniquely determined element o of hﬂ ¥4, that is the mapping
9584 is well-defined.

We prove that 92+ is one-to-one. Let of and 0 be two distinct elements of
lim 237 and let oft o35t € ligZ;c“ such that of C of* and 08 C o3'. Suppose
that o' = o' and let 51 € of and sy € 0 and, therefore, 51, s2 € of'. Then,
there exists s3 € a{‘, which is a restriction of s; and a restriction of s5. Since
dom(B) is a base for the open subsets of X (see property (a) of Lemma 2.1)
there exists sgp € B such that x € dom(sg) C dom(s3) and ran(sg) C ran(ss).
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Then, sg is the restriction of s3 and, therefore, the restriction of s; and so,
which contradicts the fact that s; and so belong to distinct elements of hﬂ Zf .

Thus, 924 is one-to-one.

We prove that 924 is onto. Let o be an element of lim 2 and s € o,
Consider an element sg € B such that = € dom(sg) C dom(s) and ran(sg) C

ran(s). Then for the element o containing sy we have 954(cB) = o4,
proving that 924 is onto.
We prove that 19137“4 preserves the group operations. Let o, 08 € li_ngEf and

let 924(0B) = ot and 9BA(68) = 05!, Let s; € oF and s, € 0. Consider
an element sg € B such that dom(so) C dom(s1)Ndom(sz). Let s = s1]qom(so)
and sy = 82|dom(so)- Then, by proprety (c) of Lemma 2.1, s7,s5 € B and by
property (b) of this lemma, s} + s, € B. Therefore, s§ + s5 € 0P +of. On
the other hand, s} € of' and s} € o3' and, therefore, s} + s, € of* + o3,
proving that 9¥5 A preserves the sum operation. Similarly, we can prove that
195“4 preserves the taking of the inverse element. Thus, the mapping 195“4 is
an isomorphism of hg 5 onto hﬂ ¥4 The relation 98 = 92 0 984 is easy to
verify. O

The indexed collections S, A and X. Consider the saturated classes Sy
and S, of the theorem. By set-theoretical reasons we can suppose that there
exists a collection S of sheaves (A, m, X) such that A € Sy, X € S, and each
sheaf (A, 7', X'), for which A’ € S; and X’ € S,., is isomorphic to an element
of S. Moreover, we can suppose that S is indexed by a set A:

SE{(.A)\JD\,XA):)\EA}.

We put
A={A\: e}, X={X,: e A}
and consider A and X as indexed by A sets of topological spaces.
The bases BA and BX for A and X, respectively. For each element
(Ax, 7, X)) € S we consider a subset By C Ay (sec) satisfying the conditions

of Lemma 2.1. Since |By| = w(Ax) < 7 (see the property (a) of Lemma 2.1),
we can suppose that B) is indexed by the set 7:

B)\:{Sf]\:nET}.
Furthermore, we put
B:b = {I/'nAk = ran(sfl) :ner}, and B = {VWXA = dom(sz) :n €T}
Let 6y and 6; be two one-to-one mappings of 7 into itself such that

|6o(7)] = 101(7)], Bo(7) N B1(7) =& and Oy(7) U 61(7) = 7.
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(We note that these mappings are independed on A € A.) For each A € A we
put

W = VA O Cebo(r) and W =m (V)5 ) if C e ().

Therefore, the indexed set

Bf‘* E{WéA’\ (et}

is an extension of the indexed base B(;‘A of A, and, simultaneously, an extension
of the indexed set
—1/pXsy — [ —11/X
my (Bg) =A{m, (V;*)ineT}
of subsets of A, with the extension mappings 6y and 61, respectively.

Now, we consider a base
BA={BY ={UM:cer}: e A}

for A, which is an initial base corresponding to the saturated class S; and,
simultaneously, is an extension of the base

B‘?E{{WCA*:CET}:/\EA}

for A with an extension mapping 64 .

Also, we consider a base
BX = (B ={U:6e7}: A€ A}

for X, which is an initial base corresponding to the saturated class S, and,
simultaneously, is an extension of the base

B()J(E{{VWX*:nET}:)\EA}

for X with an extension mapping 6x.

The families Ro and Rx of equivalence relations. We denote by
Ra = {~:te F}

a BA-admissible family of equivalence relation on A and by
Rx = {~k:te F}

a BX-admissible family of equivalence relations on X. We suppose that Ra
and Rx satisfy the following conditions:
(1) for each A\, € A and ¢ € F the equivalence X ~4% X, is true if and
only if the equivalence Ay ~% A, is true;
(2) for each A\, € A, t € F, and n1,1m2,m € t the equivalence Ay ~% A,
implies that the conditions:
(21) dom(sfh) = dom(sf‘m) and sf‘n + 522 = 52 and
(22) dom(sl ) = dom(sl,) and sf +sh = st
are equivalent;
(3) for each A\, € A, t € F, and n1,7n2 € ¢ the equivalence Ay ~% A,
implies that the conditions:
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(31) dom(sfh) = dom(sf‘m) and sf‘h = —522 and
(32) dom(sl ) = dom(sl,) and sf = —sh,

are equivalent ;
(4) for each A\, € A, t € F, and n1,7n2 € ¢ the equivalence Ay ~% A,
implies that the conditions:
(41) ran(s) ) C ran(s),) and
(42) ran(sy,) C ran(sh,)
are equivalent;
(5) for each A\, pu € A, t € F, and n1,m2 € t the equivalence Ay ~% A,
implies that the conditions:
(51) dom(s), ) C dom(s;,) and
(52) dom(sh ) C dom(s),)
are equivalent.

Lemma 2.3. The BA-admissible family Ra and the BX-admissible family Rx
satisfying conditions (1) — (5) exist.

Proof. Since the class Sy is saturated there exists a B“-admissible family
Roa = {NB,A: t € F}, which is initial for the base BA and the class S,.
Similarly, there exists BX-admissible family Rox = {~f x: t € F}, which is
initial for the base BX and the class S,.

Let t € F and n1,1m2,m € t. We denote by ~!, i € {2,3,4,5}, the equivalence
relation on A defined as follows: Ay ~! A,, \,u € A, if and only if the
conditions (1) and (i2) are equivalent for all indexes 11,72, 7, which belong to
t. Obviously, the relations ~f, i € {2, 3,4, 5}, are admissible.
Let Ria = {~] o1t € F} be the family of equivalence relations on A, where
~a=~0a N(N{~i: i € {2,3,4,5}}) for each t € F. Now, for each t € F
we define the equivalence relation ~% on A as follows: Ay ~% A,, A\, € A,
if and only if A, Ni,A A, and Xy Né,x X,. Also, we define the equivalence
relation ~4, ¢ € F, on X as follows: X, ~% X, if and only if Ay ~4 A,. It
is easy to see that

Ra ={~4:t€ F} and Rx = {~k:t € F}

are the required families of equivalence relations. O

The equivalence relations ~a and ~x. We put
~a=N{~h it € F} and ~x=N{~k:t € F}.
The following two lemmas can easily be proved.
Lemma 2.4. Let Ay ~a A,, A\, € A. Then, the algebra of subsets of Ay,
generated by the set BA>, and the algebra of subsets of A, generated by the set

BAx | are isomorphic and the correspondence Ug“A — UEA”, € € T, generates this
isomorphism. Therefore, for any k C T the algebra of subsets of Ay, generated
by the set {UEA* : € € Kk}, and the algebra of subsets of A, generated by the
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set {UQA" € € K}, are isomorphic and the correspondence UEAA — Ug““, € EK,
generates this isomorphism. Moreover, for each n,m1,m2 € T we have:

(a) the cut 87)7‘1 is a restriction of the cut 87)7‘2 if and only if the cut st is the
restriction of the cut sl ;

(b) the equalities dom(s;}l) = dom(s;%) and s;} = 87)7‘1 + 522 are true if and
only if the equalities dom(s}) ) = dom(s};,) and sh = sh + sh are true;

(c) the equalities dom(sfh) = dom(sf‘m) and S7A71 = —522 are true if and only
if the equalities dom(sly ) = dom(s},,) and sl = —si are true.

Lemma 2.5. Let X\ ~x X, A\, € A. Then, the algebra of subsets of Xy,
generated by the set BX*, and the algebra of subsets of X, generated by the set

BX« | are isomorphic and the correspondence U;Q — U(;X", 0 € T, generates
this isomorphism. Therefore, for any k C T the algebra of subsets of Xy,
generated by the set {U(;X* : 0 € K}, and the algebra of subsets of X,,, generated

by the set {Ug(“ : 0 € K}, are isomorphic and the correspondence U;Q — Ug(“,
0 € K, generates this isomorphism.

The triad (A, 7, X). We put A ziT(BA,RA), X = T(BX,Rx) and define
the mapping 7 as follows. Let a € A and (a, Ay) € a for some A € A. Then,

we put 7(a) = x, where x is the point of X containing the pair (m(a’), X)).
In what follows we shall prove that the triad (A, 7, X) is the required universal
sheaf.

Lemma 2.6. The mapping T is correctly defined (that is, it is independent
from the element (a*, Ay) € a considered in its definition).

Proof. Let a € A and (a*, Ay), (b, A,) € a, that is (a*, A\) and (b*, A,) are
NEAA—equivalent. We must prove that if my(a*) = 2* and 7,(b*) = y#, then
(z*, X,) and (y*, X,) are Ngi—equivalent, that is X\ ~x X, and for each
§ € T either 2} € U; and y* € U(;X“ or z* ¢ US> and y* ¢ U(;X“. Since
(a*, Ay) and (b, A,) are Ngi-equivalent, Ax ~a A,. By the condition (1) of
the definitions of Ra and Rx we have X ~x X,. Suppose that there exists
8o € 7 such that, for example, 2* € U;{fA and y* ¢ U;i“. Then, a* € w)fl(Ugg*)
and b ¢ 7,1 (Uy").

Since the set Béﬁ is a base for the open subsets of X, there exists n € 7
such that z* € V;*» C U;gk. Let 61 = 0x(n) and, therefore, V> = U;l(X
and V;** = Uy*. Then, Up» C U, By Lemma 2.5 we have U;.* € Uy."
and, therefore, y* ¢ U;f“ = VnX“. Since BA is an extension of 7y '(By™)
with the extension mapping 6a o 6; we have UA» = m, (V) for each v € A
and € = 04 (61(n)). Therefore, for A and u we have U/» = F;l(VnX’\) and

EA“ = w;l(VnX“), respectively, and hence a* € Ug“A and b* # UEA“7 which
contradicts the fact that (a*,.4y) and (b*, A,) are Ngi-equivalent. O
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The following lemma can easily be verified.

Lemma 2.7. For each A € A the following relation is true:
Toi =ik om, (2.7.1)

A A

where iﬁ is the natural embedding of Ay into A and z§ s the natural em-

bedding of X into X.
Lemma 2.8. For eachn € 7 and H € C(Ra) we have
T(UZ(H)) = U* (L),

where € = 04 (00(n)), § = 0x(n) and L is the element of C(Rx), consisting of
all elements X € X for which Ay € H (we shall say that L and H correspond
each other).

Proof. Let n € 7, e = 0a(60(n)), § = 6x(n) and H € C(Ra). Then, for each
ANEA UM = zm(s%) By the definition of the elements of the standard base
of the Containing Spaces, we have

UAH) = Ui (UM - Ay € HY = Ufi2 (ran(s)) - Ay € H.
Therefore, using relation (2.7.1), we have
F(UA(H)) = U{7 (i3 (ran(s))) : Ay € H} =
U{i;A (w,\(ran(sfl))) :X)y€eL} = U{i;A (dom(sz)) :XyeL} =
(i (UF) - X e LY = U (L).

Proposition 2.9. The mapping 7 is continuous.
Proof. Since the set
{UX(L): 6 € 6x(7),L € C(Rx)}
is a base of the space X it suffices to prove that the set 7= *(Us (L)) is open
in A for each ¢ € 0x(7) and L € C(Rx).

Let § be a fixed element of Ox(7) and L a fixed element of C(Rx). Let n =
0x"(8) and € = 0 (01(n)). Then, for each v € A we have

T, (US) = Ud. (2.9.1)
We shall prove the following equality, which will prove the continuity of 7:
T (U (L) = UAH), (29.2)

where H is the element of C(Ra) corresponding to L. Let a € ﬁfl(Ug((L)),
that is 7(a) = x € U (L). Let (z*, X)) € x and (a#,.4,) € a. Since 7(a) = x,
by the definition of @ we have (m,(a*), X,) € x. This means that X\ ~x Xy,
that is X, € L and, therefore, A, € H. Also, m,(a") € U(;X“ and, therefore,

a' € m,  (US) = U (2.9.3)
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(seerelation (2.9.1)). Since A, € H, the relation (2.9.3) shows that a € UAH),
proving that the left side of the relation (2.9.2) is contained in the right.

Conversly, let a € UA(H) and (a*, A,) € a. Then, A, € H and a, € o
Therefore, X,, € L and a* € w;l(U(;X") (see relation 2.9.1) or m,(a*) € U(;X“.

This means that 7(a) € U;X(L) and, therefore, a € 7~ (UX (L)), proving that
the right side of (2.9.2) is contained in the left, completing the proof of the
proposition. (I

The set A,, x € X. For each x € X we put
Ax ={a€ A:7(a) =x}.
We shall prove that A, is an Abelian group. First we shall prove the following

lemma.

Lemma 2.10. Let (Ax,mx, X») and (A, 7., X)) be two elements of S such
that Ay ~a A, and let x € X. Then, for each two elements
(2}, X)), (", X,) €ex e X
there exists an isomorphism U3 of Ay z» onto Ay zu such that:
(a) 932 is the identical isomorphism;
(b) V2" o U3 =93, where (27, X,) € x.
Moreover, for each a* € Ay zx, we have

(X, Ax) ~B (97.(a*), Ap). (2.10.1)

Proof. Let (2%, X)), (z#,X,) € x € X for some fixed A\, € A. Then, 2* €
U for some § € Ox(7) if and only if z# € UéX“, that is 2* € dom(s)) for
some 7 € 7, if and only if 2# € dom(s};). Denote by & all such n. By Lemma
2.5 it follows that the mapping dom(sf‘,) — dom(sh), n € K, is an isomorphism
of the directed by inclusion set dom (B, )(z*) onto the directed by inclusion set
dom(B,,)(x"). Let
ot = {87)7\ :neT(c?)}

be an element of the limit group liﬂEfﬁ, where 7(c?) is the set of all n € T

for which s;} € o*. Consider the set

at'(\) = {sﬁ in € T(o)‘)}
of sections of A,,. Let 53\717522 € o such that ran(sf‘h) C rcm(sfh), that is the
section s;\h is the restriction of the section s;\n. By relation Ay ~a A, and
Lemma 2.4 it follows that ran(sl; ) C ran(s},), that is the section sl is the
restriction of the section s} . This means that the set o/()) is a subset of an

unique determined element o* of the limit group hg Eft.

Similarly, the constructed element o of the limit group liﬂEﬁ’f defines a
set o*(u) of sections of Ay. By construction, 0 C o*(u) and, therefore,
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o = o*Mp). Similarly, o#* = o#(\). We will say that o* € ligEfj and
ot e hg Efﬁ correspond each other. Thus, we have defined mutually inverse,
one-to-one and onto mappings

I, zh) IEZ > —>1_n>12 and 9(z*, 2) : hﬂEﬁ’f %hﬂZfﬁ

We prove that the mapping 9(z*, 2#) is an isomorphism that is it preserves the
group operations. Let 07,03 € li EB* and let s € o and s , € o%. Since
the set dom(B,)(2?) is a base of X* at the point x’\ there ex1sts ‘977 € B, such
that U = dom(s;) C dom(s) ) Ndom(s),). By condition (¢) of Lemma 2.1 the
restrictions s, | and 53‘72|U belong to BA and by condition (b), s}, v + 57, U
belongs to By. Then, there exist n},n5, 7 € 7 such that

A A A
sy =8y |lu €07, s

A A A A A A AL A
" s =sp,lu €0y and 53 =5 + 53 € 07 + 0.

2
Let

Iz, ") (07) = obf, O(a, 2")(op) = o, and D(z,2")(0) = ot
By Lemmas 2.4 and 2.5 we have

V = dom(s))) C dom(s)) ) Ndom(s;s,),

SZ{ =sh v €of, sﬁ;é—s“ lv € of, and, sﬁ;(,)zs ,+ 8] : ol +o

Therefore,
I, 2 (o] + 03) = 9@, ) (07) + Iz, ) (03).

Similarly, we prove that 9(z*, 2#)(—07) = —9(2*, 2#)(07). Thus, the mapping
J9(x*, x") and, therefore, the mapping ¥(z*, 2*) is an isomorphism and onto.

The required isomorphism ﬁ;: of Ay ,» onto A, zu is defined by setting
9%, = 90 0 a2y o (952) 71
Conditions (a) and (b) of the lemma can easily be verified.
We prove relation (2.10.1). Let a* € Ay ,» and o = (1933)_1((1)‘). Then,
D5u(a®) = 07k (0, ") (03)) = 072 (o),

where o) is the element hg Efﬁ corresponding to UO . Thus, it suffices to prove
that the pairs (195} (0),Ax) and (95! (o), A,) belong to the same element of
A. Let U2 be an element of B4 containing 19]%A (0*). We need to prove that

05 (ot) € UA. (2.10.2)

Since the set {ran(s) : s € 0} is a base for the open subsets of Ay at the point
95r (o), there exists ) € 7 such that s) € o* and

19;5;A (o) € ran(s%‘) c UM,
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Since o* corresponds to o?, sy € o. By the definition of the mapping 95

xH

o5 (oF) = sh(at) € ran(s“) Since Ay ~a Ay, the condition ran(s)) C c UM
implies that ran(s}) C U, proving relation (2.10.2). O

Proposition 2.11. For each x € X the set Ay is an Abelian group and for
each (2, X)) € X, A € A, the natural embedding iﬁ* of Ay into A maps the
fiber Ay ,» of A\ onto the set Ax.

Proof. Let x € X, (2 X,\) € x for some fixed A € A and a € A,. By relation
(2.7.1) it follows that z D (Ay ) C Ax. We must prove that z D (Av ) =
Ax. By the definition of the Containing Spaces there exists ,u € A and a
point a# € A, such that (a*,A,) € a. Using relation (2.7.1) we can see that
(z#,X,) € x, where #* = 7,(a*). Let a* = (9%.)"'(a,). Then, by the
relation (2.10.1), (a*, A,) NR:: (a*,A,) and, therefore, (a*, Ay) € a, that is
iﬁ* (a*) = a, proving that ZA* maps the fiber A, ;1 of Ay onto the set Ax.

Now, on the set Ay, x € X, we define the group operations. Let a;,as € A,

and let (a}, A)) € a; and (aQ,A,\) € az. Then, We put a; + az = a, where a
is the element of Ay, containing the pair (a3 + a3, AA) Also, we consider that
—a; is the element of Ay, containing the pair (—a},.Ay). Obviously, by these
operations Ay becomes an Abelian group such that the restriction onto A >

of the natural embedding 1’4*

Asx.

of A, into A, is an isomorphism of A, ,» onto

It remains to prove that the defined operations are independent of the element
(z*, X)) € x. Let (z¥,X,) € x for some v € A, (a¥,A,) € a; and (a}, A,) €
as. We need to prove that the pair (a} + a3, Ay) and (a¥ + ab, A,) belong
to the same element of A,. Since, by Lemma 2.10, 195?, is an isomorphism we
have

950 (a} + a3) = 05 (a3) + 05 (a3).
On the other hand, since the palrs (a3, Ay) and (199” (a}),A,) belong to the
same element of A we have (9%, (a}), A,) € a; and since (a’l’, A,) € a; we have
195?, (a}) = a¥. Similarly, ¥2 A(a%) = a}. Therefore, 19”” (a? +a}) = ay + ay.
Since, by Lemma 2.10, the pairs (a} + a3, Ay) and (92, (a} + a3), A,) belong
to the same element of A, the pairs (a} +a3,.4,) and (a1 +a%, A,) also belong
to the same element of A, proving that the sum operation is independent of
the element (z*, X)) € x. Similarly, we prove that the operation of taking the
inverse element is independent of (z*, X)) € x. The proof of the proposition
is completed. ([

The mappings w ;1 and i ;. We put
AR A= {(a,b) e Ax A:7(a) =7(b)}
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and define the mappings

wi ARA— A and ig: A— A
setting
wji(a,b) =a+b and i4(a) = —a.

Proposition 2.12. The mappings w 5 and i 5 are continuous.

Proof. We prove that w 4 is continuous. Let (ar,a2) € AX A and a = aj + as.
Let U be an open neighbourhood of a in .\A. We must find open neighbourhoods
U; and U, of a; and ag, respectively, in A such that

w1(Uy x Us) N (AR A)) C U. (2.12.1)

Without loss of generality, we can suppose that U is an element Ug‘i(H) of
the standard base of A, where € is a fixed element of 7 and H is a fixed
element of C(~Y%) for some fixed t € F. Moreover, we can suppose that ¢ €
0a(0o(7)). This means that for each A, € H we have U = ran(s}), where
n = (0a o 0y)~!(c) and, therefore,

UAH) = U{i7" (U2 : A, € HY = U{iy" (ran(s)) : A, € H}.

Let A be a fixed element of A such that Ay € H and a € iﬁk (ran(sy))).

Therefore, there exists a point a* € rcm(s%) C Ay such that iﬁk (a*) = a,
that is (a*,4)) € a. Let m\(a®) = 2 € X). Then, by relation (2.7.1),
ig*(x’\) = 7(a) = x € X and, therefore, (z*, X)) € x. By Lemma 2.10,
there are points af,ay € Ay, such that (a7, A\) € ai, (a3, A\) € az and
(at + a3, Ax) € a. Since (a*, Ay) € a we have a] + a3 = a* € ran(s)).
Since the mapping wy is continuous, there exist £1,&2 € 7 such that a} € U, 5"1‘*,
ay € Ug‘zlA and

@A(UL> x U ) N (AN KAL) C ran(s)). (2.12.2)

Without loss of generality, we can suppose that €1,e2 € 04 (69(7)), that is there
exist cuts 37)7‘1 and s} such that ran(s) ) = U™, ran(s))) = U dom(s;}l) =

72 m €1’ n2 €2
dom(sgz) C dom(s%). Condition (b) of Lemma 2.1 implies that there exists
no € T such that s) = s + sp, and, therefore, dom(s) ) = dom(s;,), i =1,2.
In this case, the left side of the relation (2.12.2) takes the form

wA((Tan(sf‘h) X rcm(sfh)) N (Ax X Ay)). (2.12.3)
Since

Ay XAy = U{A)\)I)\ X A)\)I)\ : LL‘>\ S X)\},
the expression (2.12.3) takes the form

wA(U{(ran(sf‘h) NAy 22 ) X (rcm(sfh) NAy 1) s 2t € X0 }). (2.12.4)

Since
Tan(sf;i) NAy» =@ if 2t ¢ dom(s;;i), i=1,2, (2.12.5)
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and
Tan(s,);i) NAy . = {sﬁh (M)} if 2t e dom(sfh), i=1,2, (2.12.6)
the expression (2.12.4) takes the form
wA(U{{sfh (a:)‘)} X {522 (ar)‘)} = dom(sf‘m)}) =
@ (U{{(sy, (@), s, (@)} : 2 € dom(sy))}) =
U{{sf‘,1 (z*) + 33‘72 (2N} a2t e dom(sfm)} =
U{{(s;;l + 87)7\2)(1,')\)} st e dom(sf;o)}) = ran(s’\ ).

no
Thus, relation (2.12.2) implies that ran(s;) ) C ran(sy).

’

Let ¢ € F and {ni,n2,n,m0} Ut C t. Denote by H' the element of C(~%)
containing Ay. Therefore, H" C H. Then, for each A, € H' we have

A, ~hAy, ran(sh ) = Ui, ran(s),) = Ule. (2.12.7)

By condition (4) and (5) of the definitions of the families Ra and Rx, we have
dom(sh ) = dom(s}),) = dom(s}) ), (2.12.8)

ran(sy, +sp,) = ran(sh ) C ran(sh). (2.12.9)

We shall prove that the sets

UAH') = Ul (ran(st)) - A, e H'}, i=1,2,
are the required open neighbourhoods U; of a;. Obviously, a; € U;. By Lemma
2.11 we have

AAA = U{ A x Ay i x € X} = (i (Avar) X i7" (Aper) Ay € Ajz” € X, }

Using this relation and the relation (2.12.7) we have
wA((UZ () x UL (H)) N (AR A)) =

wA(U{(iﬁ" (ran(sy,)) N7 (Apzv)) X (zﬁg (rcm(sfh)) N Z':%" (Ay ) :
tAe e H A, € A 2" € X})). (2.12.10)
If A, ¢ H’, then the intersections in the right side of the above equality are
empty. Therefore, we can suppose that .4, € H'. In this case, relations (2.12.7)-

1 ¢ U ” A
(2.12.9) are true if we replace the letter “p” by “v”. Let a; € 73" (ran(s}) ))N

iﬁ“ (Ay,zv). Then relation a; € iﬁ“ (ran(st )) implies that there exists af €

ran(sy ) and (af, A,) € a; and the relation a; € iﬁ“ (A, ) implies that

there exists aj € A, ;v such that (af, A,) € a; and 7, (ay) = 2¥. From these

it follows that A, ~a A, and since af € U;l‘“ = ran(s}; ) we have af €

(x¥). Similarly, if ay € iﬁg (ran(s5,)) N

v v

A,
Ul = Tan(sm "
iﬁ” (Ayzv), then there exists ay € ran(sy,) and m,(ay) = x¥. Thus, af, a3 €
Ay zv. Then, the equality (2.12.10) can be continued as follows:

). Therefore, a¥ = s

w;(U{(iﬁ”(s,”n (:CU)),Z'AV (s¥ (z¥))): A, e H' 2" € dom(sy )}) =
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Ui (sy, (&) + sy, (2")) A, € H  2¥ € dom(sy )} =
Ui (s, +sp,)(2")) + A, € B 2¥ € dom(sy )} =
U{if—l” (ran(sy;)) : A, € H'} C
U{i (ran(s)) : A, € H'} = UAH')  UA(H).

We note that for the first equality of the above expression we use the fact that
the restriction of the mapping iﬁ” on the set A, ;v is an isomorphism.

Thus, we proved relation (2.12.1), which means that the mapping w z is con-
tinuous. Similarly, we prove that the mapping ¢ 7 is continuous. The proof of
the proposition is completed. (I

Proposition 2.13. For each point a € A there exists an open neighbourhood
U of ain A such that T maps U homeomorphically onto an open set of X.

Proof. Let a € A and (a*, A)) for some A € A. There exists an open neigh-
bourhood of a* in Ay, which 7y maps homeomorphically onto an open subset
of X. Since B(;‘A is a base for the open subsets of Ay, without loss of gener-
ality, we can suppose that this open neighbourhood is an element VUA% of this
base. Let t € F such that n € ¢ and H be the element of C(~) containing
Ax. We prove that UZA(H), where ¢ = 0 (65(n)), is the required open subset
U.

By Lemma 2.8 we have ) )

T(UZ(H)) = Us* (L),
where 0 = 6x(n) and L is the element of C(Rx) corresponding to H. First,
we prove that the restriction of 7 onto the open subset UA(H) of A is one-
to-one. Indeed, if not, there are two distinct points by and by of UZ(H) such

that 7(b;) = 7(bs) = x € X, that is by,by € Ax. Let (z¥,X,) € x for
some v € A. By Proposition 2.11 there exist points by,b5 € A, v such that
4 (bY) = by and 4" (b%) = by, that is (b}, A,) € by and (b}, A,) € ba. We
have by, by € U2 = VA = ran(s?), by # b4 and m, (b}) = m,(b%) = ¥, which
contradicts the fact that the 7, maps homeomorphically the set ran(sy) onto
an open subset of X,,.

Since the restriction of the mapping 7 onto the set UZA(H) is one-to-one we can
consider the inverse mapping, denoted by 5. 11, of the set Ug( (L) onto Uf(H).
We shall prove that 5. g is continuous. Let x; € U(;X (L) and a3 = 5. m(x1).
Let also U; be an arbitrary open neighbourhood of a; in UEA(H). Since ngl(H)
is open in A, without loss of generality, we can suppose that U; belongs to the
standard base of A, that is it has the form Ug‘}(Hl). Moreover, we can suppose
that e = 0a(6p(n1)) for some 7y € 7 and H; € C(NR), where t; is an element

of F such that ¢ C t1. Thus, we have a; € UZ(H;) C UZ(H). By Lemma 2.8,
7(UZ (Hy) = U5, (L),
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where 07 = Ox (1) and L; is the element of C(Rx) corresponding to Hj.
As the above, the restriction of the mapping 7 onto Ug‘}(Hl) is one-to-one
and, therefore, we can consider the inverse mapping, denoted by 5., r1,, of
the set U(;);{(Ll) onto the set Ug‘}(Hl). The mapping 5., m, coincides with the
restriction of the mapping s, i onto the set U(;);((Ll), that is §€VH(U('§ (Ly)) =
Ug‘}(Hl), which shows that 5. g is continuous. Thus, 7 maps the set UA(H)
homeomorphically onto an open subset of X. The proof of the proposition is
completed. (Il

The final of the proof of Theorem 1.3.1 Relation (2.7.1) implies that for
each (Ay, 7y, X)) € S the natural embedding zé* of X, into X is the induced

A

mapping of the natural embedding i:% of Ay into A. Proposition 2.11 shows

that the embedding iﬁk is proper. The rest of the proof of Theorem 1.3.1
follows immediately from Propositions 2.9, 2.11, 2.12 and 2.13.
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