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ABSTRACT

Given a coarse space (X, &), we endow X with the discrete topology
and denote X* = {p € BG : each member P € p is unbounded }. For
p,q € X¥, p||l¢ means that there exists an entourage E € &£ such that
E[P] € q for each P € p. We say that (X, &) is orbitally discrete if, for
every p € X*, the orbit p = {q € X" : p||q} is discrete in SG. We prove
that every orbitally discrete space is almost finitary and scattered.
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1. INTRODUCTION AND PREIMINARIES

Given a set X, a family £ of subsets of X x X is called a coarse structure
on X if

e cach E € £ contains the diagonal Ax = {(z,z) € X 1z € X};

o if £, ' € £ then Eo E' € £ and E~! € €, where Eo B/ = {(x,y) :
Fz((w,2) € E, (2,y) € BN} B ={(y,2): (z,y) € E};

eif Fecfand Ax CE CFE then E' € &;

° ngXXX.
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A subfamily £ C & is called a base for £ if, for every E € &, there exists
E' €& suchthat ECFE'. Forx € X, AC X and E € &, we denote

Elz]={ye X : (z,y) € E}, E[A] = U Ela], Ealz]=FE[z]NA
acA

and say that E[z] and E[A] are balls of radius E around z and A.

The pair (X, £) is called a coarse space [19] or a ballean [12], [18].

For a coarse space (X, ), a subset B C X is called bounded if B C E[z] for
some E € £ and x € X. The family B(x ¢ of all bounded subsets of (X, &)
is called the bornology of (X, &). We recall that a family B of subsets of a set
X is a bornology if B is closed under taking subsets and finite unions, and B
contains all finite subsets of X.

A coarse space (X, &) is called finitary, if for each E € £ there exists a
natural number n such that |E[z]| < n for each z € X.

Let G be a transitive group of permutations of a set X. We denote by Xq
the set X endowed with the coarse structure with the base

H(z,g97): g€ F}}: F €G], id € F}.

By [8, Theorem 1], for every finitary coarse structure (X,€), there exists
a transitive group G of permutations of X such that (X,€) = X¢. For more
general results, see [10].

Let X be a discrete space and let 5X denote the Stone-Cech compactification
of X. We take the points of 83X to be the ultrafilters on X, with the points
of X identified with the principal ultrafilters, so X* = X \ X is the set of
all free ultrafilters. The topology of X is generated by the base consisting of
the sets A = {p € BX : A € p}, where A C X. The universal property of 3X
states that every mapping f : X — Y to a compact Hausdorff space Y can
be extended to a continuous mapping f? : BX — X.

Given a coarse space (X,&), we endow X with the discrete topology and
denote by X* the set of all ultrafilters p on X such that each member P € p
is unbounded. Clearly, X* is a closed subset of X* and X* = X* if (X, &) is
finitary.

Following [7], we say that two ultrafilters p,q € X* are parallel (and write
pllq) if there exists F € &£ such that E[P] € ¢ for each P € p. Then || is an
equivalence on X ¥ We denote

p=1{qe X":q|lp}

nd say that P is the orbit of p. If (X,€) is finitary and (X,€) = X¢g then
= Gp.

Tl

A coarse space (X, &) is called orbitally discrete if, for every p € X*, the
orbit P is discrete. Every discrete coarse space is orbitally discrete. We recall
that (X, &) is discrete if, for each E € &, there exists a bounded subset B such
that E[z] = {x} for each x € X \ B. In this case, p = {p} for each p € X*.
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Every bornology B on a set X defines the discrete coarse structure on X with
the base {Ep: B € B}, Eglx] =B if x € B, and Fp[z] = {z} if z € X \ B.

By [15, Theorem 5.4], for a finitary coarse space (X, &), the following con-
ditions are equivalent: X¢ is orbitally discrete, X¢ is scattered, X has no
piecewise shifted FP-sets.

A coarse space (X, &) is called scattered if, for every unbounded subset A
of X, there exists E' € £ such that A has asymptotically E-isolated balls: for
each E' € £, there is a € A such that E'y[a] \ Eala] = @.

This notion arouse in the characterization of the Cantor macrocube [3] and,
in the case of finitary coarse groups, was explored in [2].

Let G be a group of permutations of a set X. Let (g5)necw be a sequence in
G and let (zy,)new be a sequence in X such that

(1) {g6" - g5 wn = (a)ing € {0,131 0 {gl® .. gir am : (€)iig €
{0,1}"T1} = & for all distinct n, m € w;
(2) {g5° ... g5 xn (€))7 € {0,131} = 27+ for every n € w.

Following [15], we say that a subset Y of X is a piecewise shifted F P-set if
there exist (gn)new; (Tn)new satisfying (1), (2) and such that

Y ={g"...97" ©n € €{0,1}}, n € w}.

After exposition of results in Section 2, we survey some known classes of
orbitally discrete spaces in Section 3.

2. RESUTS

A coarse space (X, &) is called almost finitary if, for every E € £ | there
exists a bounded subset B and a natural number n such that |E[z]| < n for
each z € X \ B. Every discrete space and every finitary space are almost
finitary.

Theorem 2.1. FEvery orbitally discrete coarse space is almost finitary.

Proof. We suppose the contrary and choose E € £, E = E~! such that, for
any bounded subset B and a natural number n, there exists x € X \ B such
that |E[z]| > n.

We claim that there exists p € X* such that, for every P € p, {x € P :
|E%[z] N P| > 1} € p. Otherwise, for every p € X*, there exists Q, € p
such that {z € @, : E*[z] N Q,| = 1} € p. We consider the open covering
{ij :p € X!} of X* and choose its finite subcovering le, ce Qf)m. Then the
set B = X\(Qp, U, ...,UQ,,.) is bounded and | E[z]| < m for each z € X\ E[B],
but this contradicts the choice of F.

We show that the orbit P is not discrete. Given any P € p, we choose Q € p,
Q C P such that |E?[z] N P| > 1 for each z € Q. For every x € Q, we take
f(z) € E?[x] N P such that  # f(z). Then we extend the mapping = — f(z)
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from Q to X by f(x) = x for each z € X \ Q. Clearly, f%(p) # p, P € f%(p)
and f#(p)||p because (z, f(r)) € E? for each z € X. O

To clarify the structure of an almost finitary coarse space, we use the fol-
lowing construction from [6]. A bornology B on a coarse space (X, ) is called
E-compatible it E[B] € B for all B € B, E € £. Every £-compatible bornology
B defines the B-strengthening (X, H) of (X, ), where H has the base

{HB7EZB€B, EES},

(BB, ifzeB,
He.pla] = {E[x], ifre X\ B.

For description of the upper bound € V &£’ of coarse structures, see [13].

Theorem 2.2. For a coarse space (X, &), the following statements are equiv-
alent
(1) (X,E) is almost finitary;
(i1) (X,E&) is the B-stregthening of some finitary coarse space (X,E") by the
bornology B of bounded subspaces of (X, E);
(iit) & is the upper bound of a discrete and a finitary coarse structures on
X.

Proof. (i) = (ii). For B € B and E € &, we pick B € B and a natural
number n such that B C Bp p and |E[z]| < n for each z € X \ B 5. We note
that {By p: B€ B, £ €} is abase for B. For Be B, E €& we put

, x if x € By g,
EB,E: . )
Elz] ifz € X\ By,

denote by &’ the smallest coarse structure on X containing all entourages
{Hp,g : B € B, E € £}, observe that & is finitary and (X,&) is the B-
strengthening of (X, &’).

(11) = (4i7). If (X, &) is the B-strengthening of (X, &’) then & is the upper
bounded of £’ and the discrete coarse structure on X defined by the bornology
B.

(i4i) = (i). We assume that & is the upper bound of finitary coarse struc-
ture £’ and discrete coarse structure on X defined by some bornology B. We
choose the smallest bornology B’ on X such that B C B’ and E'(B’) € B’ for
all B’ € &'. Then B’ is the bornology of bounded subsets of (X, &) and (X, €)
is the B’-strengthening of (X, '), so (X, £) is almost finitary. O

Remark. Let (X,€) be the B-strengthening of a finitary coarse space

(X,€&). If (X,&') is orbitally discrete then (X,€&) is orbitally discrete, but
the converse statement needs not to be true. Let X be the disjoint union of
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two infinite subsets Y, Z. We endow Y with the finitary coarse structure &
such that (Y, Ey) is not orbitaly discrete, and denote by £z the discrete coarse
structure on Z defined by the bornology of finite subset. We take the smallest
coarse structure &’ on X such that £'|y = Ey, &'|z = €. Clearly, £’ is finitary
but not orbitally discrete. We denote by B the smallest bornology on X such
that Y € B. Then the B-strengthening of (X, &’) is discrete.

Theorem 2.3. For almost finitary coarse space (X,E) and p,q € X*, we have
pllg if and only if there exist E € € and a permutation g of X such that gp = q,
gp={gP : P € p} and (x,gx) € E for each x € X.

Proof. Let pl||lqg. We take E € € such that E = E~! and E[P] € ¢ for each
P € p. Since (X, &) is almost finitary, there exist a bounded subset B of X
and a natural number n such that |E[z]| < n for each z € X \ B. We put
Y = X \ E[B], note that Y € p and define a set-valued mapping F : X —
[]<¥. F(z) = Elz] if z € Y and F(x) = {z} if x = X \ Y. By Theorem 1
from [10], there exists bijection fi,..., fm of X such that fi(z) € F(x) and
fi(@)U---Ufn(x) = F(x). We take i € {1,...,m} such that f;(P) € ¢ for each
P € p and put g = f;.

The converse statement follows directly from the definition of the parallelity
relation ||. O

Corollary 2.4. If (X, &) is almost finitary, p € X* and p is an isolated point
of p then p is discrete.

Proof. We assume that some point g € P is not isolated in p, use Theorem 2.3
to choose a permutation g of X such that gg = p and note that p is not isolated
in p. O

For a subset A of (X,€) and p € X*, we denote A,(A) =pnN A%

Theorem 2.5. An almost finitary coarse space (X, &) is scattered if and only
if, for every unbounded subset A of X, there exists p € A such that A,(A) is
finite.

Proof. We suppose that X is scattered and choose E € £ such that A has an
asymptotically isolated E-balls. For each H € £, we denote Py = {x € A :
Halz] \ Ealr] = @} and take p € A* such that Py € p for each H € £. If
q € A* and ¢||p then E[P] € ¢ for each P € p. We take the bijections fi, ..., fm
from the proof of Theorem 2.3. Since ¢ = gp for some g € {f1,..., fm}, we
have A,(A) <m.

Let Ap(A) = {p1,...,pm}. Foreachi € {1,...,m}, we pick E; € £ such
that E;[P] € p; for each P € p. Then we take E € £ such that E; C F for each
1€ {1,...,m}, and observe that A has an asymptotically isolated E-balls. [

Theorem 2.6. Every orbitally discrete space is scattered.
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Proof. To apply Theorem 2.5, we take an arbitrary unbounded subset A of X
and find p € A such that A,(A) is finite.

We use the Zorn lemma to choose a minimal (by inclusion) closed subset S
of A* such that A,(A) C S for each ¢ € S. Let p € S but A,(A) is infinite. We
take the limit point ¢ of A,(A). By the minimality of S, we have p € clA4(A).
Applying Theorem 2.3, we conclude that p is not isolated in p. (|

Question. Let X be an almost finitary scattered space. Is X orbitally discrete?

3. COMMENTS

1. For a natural number n, a coarse space (X, &) is called n-thin if, for
every E € &, there exists a bounded subset B of X such that |E[z]| < n,
for every x € X \ B. A space (X, &) is n-thin if and only if [p| < n for
each p € X*.

For finite partitions of an n-thin space into discrete subspaces, see
[5], [14], [17], [1, Section 6].

2. A coarse space (X, &) is called sparse if each orbit p, p € X* is finite.
Sparse subsets of groups are studied in [4], [16]. For sparse metric
spaces, see [9)].

3. A coarse space (X, £) is called indiscrete if each discrete subspace of X
is bounded. By Theorem 3.15 from [11], a finitary indiscrete space has
no unbounded orbitally discrete subspaces. We do not know whether
this statement holds for any almost finitary indiscrete spaces.
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