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On domains witnessing increase in
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ABSTRACT. The paper considers algebraic directed-complete
partial orders with a semi-regular Scott topology, called regular
domains. As is well known, the category of Scott domains and
continuous maps is Cartesian closed. This is no longer true, if
the domains are required to be regular. Two Cartesian closed
subcategories of the regular Scott domains are exhibited: regular
dI-domains with stable maps and strongly regular Scott domains
with continuous maps. Here a Scott domains is strongly regular if
all of its compact open subsets are regular open. If one considers
only embeddings as morphisms, then both categories are closed
under the construction of dependent products and sums. More-
over, they are w-cocomplete and their object classes are closed
under several constructions used in programming language seman-
tics. It follows that recursive domains equations can be solved and
models of typed and untyped lambda calculi can be constructed.
Both kinds of domains can be used in giving meaning to program-
ming language constructs.

2000 AMS Classification: 68Q55, 06B35, 03B15, 03B40, 18B30

Keywords: Scott domains, dI-domains, semi-regular topology, programming
language semantics, recursive domain equations, dependent product, dependent
sum, lambda calculus

1. INTRODUCTION

Domains and domain-theoretic models of the lambda calculus were discovered
by Dana Scott [12] in the fall of 1969 when he was working with Christopher
Strachey at Oxford on the semantics of programming languages. In developing
his approach he built on well understood ideas from recursive function theory
using higher type functionals. But while people in this area were mainly inter-
ested in total functions, he started right away to consider also partial objects.
Similar work was done by Yuri L. Ershov [6] in Russia at nearly the same time.
He too was motivated by the theory of functionals in computability theory.
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A domain is a structure modelling the notion of approximation and of com-
putation. A computation performed using an algorithm proceeds in discrete
steps. After each step there is more information available about the result of
the computation. In this way the result obtained after each step can be seen as
an approximation of the final result.

To be a bit more formal, a domain is a structure having one binary relation
C, a partial order, often called information order, with the intended meaning
that x C y just in case x is an approximation of y or y contains at least as
much information as . We also require that a domain should include a least
element modelling no information. To guarantee the existence of the result of
a computation, that is, of a consistent set of approximations, every directed
subset of a domain must have a least upper bound. Directed subsets contain
consistent information. The information contained in a finite set of elements is
consistent, if the set is bounded from above.

In any step of a computation a computing device can process at most a finite
amount of information. Domain elements containing only finite information are
called compact. We shall consider only algebraic domains in this paper. This
means that every point is the least upper bound of all compact elements below
it.

As has already been said, for elements z and y of a domain, z C y means
that y contains at least the information contained in z. In this paper we are
interested in domains with the property that if the information contained in
a compact element can be enlarged, then it can be enlarged in at least two
essentially different ways. This means that for any two distinct compact ele-
ments x and y with z C y there is a further compact element z above & which
is inconsistent with y. It follows in this case that z T y not only indicates
that y properly includes the information contained in x, but that there is also
a witness for this, namely a point z with £ T z such that y and z are not
bounded from above. This excludes situations in which x C y, but z uniquely
determines .

Each domain comes with a canonical order-consistent topology, the Scott
topology. It turns out that the just mentioned requirement on the information
order is equivalent to the fact that the Scott topology is semi-regular. Therefore,
we call domains satisfying the above condition regular. It is the aim of this
paper to show that large subclasses of regular domains have sufficient closure
properties so that they can be used for defining the meaning of programming
language constructs.

As we shall see, both the separated and the coalesced sum of families of (at
least two) regular domains are regular again. The same holds for the prod-
uct and—in the case of finite families—for the smash product. Moreover, the
category of regular domains with embedding/projections as morphisms is w-
cocomplete: the inverse limit of any w-cochain of regular domains is regular
again. In addition, this category is closed under the construction of dependent
sums.
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An important closure property needed for the interpretation of programming
languages that allow procedures taking functions as inputs is closure under the
function space construction. As is well known, the class of algebraic domains
is not closed under this construction. Therefore, one usually restricts oneself to
the subclass of Scott domains, when giving meaning to programming language
constructs. Unfortunately, the Scott domain of continuous maps between two
regular Scott domains need not be regular again. However, we shall present two
subclasses of the regular Scott domains that are closed under the corresponding
function space construction.

First, we consider the subclass of regular dI-domains. dI-domains have been
introduced by Gérard Berry [4] in order to show that certain continuous maps
are not lambda definable. With stable maps as morphisms their category is
Cartesian closed. The same is true for the full subcategory of regular dI-
domains. We show more generally that the category of dl-domains and rigid
embedding/projections is closed under the construction of dependent products.
Since the dI-domains are also closed under the other constructions mentioned
above, regular dI-domains can be used in giving meaning to functional pro-
grams. Recursive domain equations have a solution [13] and stable regular
models for typed and untyped lambda calculi can be constructed [2].

The second way we take is to strengthen the regularity requirement. The
stronger condition is such that not only all basic Scott open sets are regular
open, but all finite unions of such sets. These are exactly the compact open
subsets of the domain. We call domains satisfying the stronger requirement
strongly regular. As we shall see, this class is closed under nearly all the do-
main constructions mentioned earlier. Moreover, we show that the category of
strongly regular Scott domains and embedding/projections is closed under the
construction of dependent products. It follows that the category of strongly
regular Scott domains with continuous maps as morphisms is Cartesian closed.
Thus, strongly regular Scott domains too are well suited for defining the se-
mantics of programming languages. Again, recursive domain equations have a
solution and strongly regular models for typed and untyped lambda calculi can
be constructed.

The paper is organized as follows. In Section 2 regular domains are intro-
duced. An example is given showing that the category of regular Scott domains
with continuous maps is not Cartesian closed. In the next two sections, two
Cartesian closed subcategories are exhibited.

First, in Section 3, regular dI-domains are considered and then, in Section 4,
strongly regular Scott domains. In both cases it is proved that the categories of
these domains with embedding/projections as morphisms are closed under the
construction of dependent products. Further closure properties of the regular
and the strongly regular domains are studied in Section 5. Some final remarks
appear in Section 6.
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2. REGULAR DOMAINS

Let (D,C) be a partial order with smallest element L. We write z C y, if
z Cyand x #y. For asubset Sof D, |[S={zeD|(JyeS)zrCy} and
tS ={xz € D | (Jy € S)y C x}, respectively, are the lower and the upper set
generated by S. The subset S is called consistent if it has an upper bound. S is
directed, if it is nonempty and every pair of elements in S has an upper bound
in S. D is a directed-complete partial order (cpo) if every directed subset S
of D has a least upper bound | |S in D, and D is bounded-complete if every
consistent subset has a least upper bound in D. In particular, if a pair {z,y} is
consistent this is denoted by x 1 y. In a bounded-complete cpo any consistent
pair {z,y} has a least upper bound which is written as z U y.

An element z of a cpo D is compact if for any directed subset S of D the
relation z C | | S always implies the existence of an element v € S with z C w.
We write (D) for the set of compact elements of D. If for every y € D the
set J{y} N K(D) is directed and y = |_J}{y} N K(D), the cpo D is said to be
algebraic and w-algebraic, if, in addition, (D) is countable. Note that instead
of algebraic cpo we also say domain. Standard references for domain theory
and its applications are [8, 7, 1, 14, 2].

Let us first consider some examples. For a set A such that L ¢ A set
A; = AU {L} and order it by the flat ordering z C y if z = L or z = y.
Obviously, all elements of A are compact. Thus, A, is a domain.

A further example of a domain is the set P(w) of sets of natural numbers,
ordered by set inclusion. Here, the finite sets are exactly the compact elements.

The cpo of lazy natural numbers is the set

wrp ={s"(L) | new}u{s"(0) |new}uU{s’(L)}
with s’(L) = L and s°(0) = 0, ordered by
rCyor=1lVez=yVir=s"(L)A 32y =s"(2)]

Note that the last case includes y = s (L), setting s“(L) = s"(s¥(L)). In this
case all elements except (L) are compact and s (L) is the least upper bound
of all s"™(L) with m € w.

Other examples are the Cantor domain, that is the set of all finite and
infinite sequences of 0’s and 1’s, ordered by the prefix ordering, and the Baire
domain, that is the set of all finite and infinite sequences of natural numbers,
also ordered by the prefix ordering. In both cases the finite sequences are the
compact elements.

The product D x E of two cpo’s D and E is the Cartesian product of the
underlying sets ordered coordinatewise. Obviously, (D x E) = (D) x K(E).

As is well known, on each cpo there is a canonical topology: the Scott topol-
ogy. A subset X is open, if it is upwards closed with respect to C and intersects
each directed subset of D of which it contains the least upper bound. In case
that D is algebraic, this topology is generated by the sets 1{z} with z € K(D).

Let us now introduce the class of domains we want to study in this paper.
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Definition 2.1. A domain D is regular if for all u,v € (D)
uZv=(Fze KD))vCzAu?t z.

Note that all domains mentioned in the examples above are regular, except
in the case of domains A where A is a singleton. Moreover, the product of
two regular domains is regular again. If D is bounded-complete, the above
condition can be simplified.

Lemma 2.2. Let D be a bounded-complete domain. Then D is reqular if and
only if for all u,v € K(D)

vCu=(Fze LD))vCzAu?t 2.

Proof. The “only if” part is obvious. For the “if” part only the case that v and
v are not comparable with respect to the partial order has to be considered.
If w4 v take z = v. In the opposite case the least upper bound z of v and v
exists, which is compact as well. Thus, there is some z € K(D) such that v C z
and x  z. It follows that also u 4 z. O

This shows for two elements u and v of a regular bounded-complete domain
containing finite information that if u contains more information than v, then
there is a witness for this, that is, an element containing at least as much
information as v, but the information contained in which is inconsistent with
the information contained in w.

As we shall show next, the regularity of a domain, which was defined via
the partial order, can also be expressed in topological terms. For a subset X
of D let int(X), cl(X) and ext(X), respectively, be the interior, the closure
and the exterior of X with respect to the Scott topology. Then X is regular
open if X = int(cl(X)). Moreover, D is semi-reqular if all basic open sets
Mz} with z € (D) are regular open. Note that for z € (D), ext(1{z}) =

U{t{z'} | e K(D) A 2% 2}

Lemma 2.3. Let D be a domain with compact element w. Then the following
two statements are equivalent:

(1) VWweKD)|uLv=(3zeK(D))vCzAu? z].

(2) The set t{u} is regular open.

Proof. In order to see that (1) implies (2), assume that there is some v €
int(cl(t{u}))\T{u}. Then u £ v. Because of (1) there exists some z € K(D)
with v C z such that {u, z} is not consistent. It follows that z € int(cl(t{u})).
Hence z € cl(f{u}), which implies that 1{z} intersects t{u}. Thus, v and z
have a common upper bound, contradicting what has been said about u and z
before.

For the proof that (1) is a consequence of (2) let v € (D) such that u IZ v.
Since t{u} is regular open, it follows that v € ext(1{u}), which means that
{u,v} cannot be consistent. O

Corollary 2.4. A domain is regular if and only if its Scott topology is semi-
reqular.
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Maps between cpo’s are not only required to preserve information but also
computations: the value under a map of the result of a computation should
not contain more information than what is obtained from the approximating
objects.

Definition 2.5. Let D and E be cpo’s. A map f: D — E is said to be Scott
continuous if it is monotone and for any directed subset S of D,

fLs =L]re.

It is well known that Scott continuity coincides with topological continuity.
Therefore, in what follows we use the shorter term continuous instead of Scott
continuous.

Denote the collection of all continuous maps from D to E by [D — E].
Endowed with the pointwise order, that is, f C, g if f(z) C g(z) for all z € D,
it is a cpo again. Since [D — E] need not be algebraic, even if D and E are, one
considers subclasses of domains which have this property, when using domains
in programming language semantics, e.g. Scott domains.

Definition 2.6. A Scott domain is a bounded-complete w-algebraic cpo.

As is widely known, the category SD of Scott domains and continuous maps is
Cartesian closed: the one-point domain {L} is the terminal object, the domain
product is the categorical product and the space of continuous maps between
two Scott domains is the categorical exponent.

For two Scott domains D and F and elements d € K(D) and e € K(F) define
the step function (d \,e): D — E by

e ifdCux,
1 otherwise.

(d\e)(x) = {

Then the compact elements of [D — E] are exactly the maps of the form
LJ{(di &) ]|i<n}, where dy,...,d, € K(D) and eg,...,e, € K(E) so
that whenever I C {0,...,n} is such that {d; | ¢ € I} is consistent, then so
is{e |iel}.

The next example shows that in general the function space [D — E] of two
regular Scott domains D and E need not be regular again.

Example 2.7. Consider the Scott domains D and E defined by the following
diagrams:
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and define f1, fg € [D — E] by f1 == (d2 \‘ 61) and fg = (d1 \, 61) L (d5 \,
e1). Then both maps are compact. Obviously, f1 and f, are not comparable
with respect to the pointwise order, but have a common upper bound, that
is, fo € cl(t{f1}). We want to show now that T{f2} is included in cl(t{f1}),
which implies that {f1} is not regular open. Assume to this end that there
is some f € [D — E] with fo T, f and fi + f. Thene; C f(y), if di C y
or y = ds. Moreover, there is some z € D such that fi(z) and f(z) have no
common upper bound. Then ds C z, since for z € D with do [Z z we have that
fi(z) = ey C f(z). Moreover z & {d4,ds}. Thus z = dg, which implies that
{z,d1} and hence also {f(z), f(d1)} are consistent. It follows that f(z) # eq,
from which we obtain that fi(z) and f(z) have a common upper bound, in
contradiction to our assumption. Hence 1{f2} is a subset of cl(1{f1}).

In the following sections we introduce two subclasses of the regular Scott
domains which are closed under the construction of function spaces. As we
shall see moreover, they are also closed under several other constructions used
in denotational semantics. To this end we need the following definitions.

Definition 2.8. An embedding/projection (f,g) from a cpo D to a cpo E is
a pair of continuous maps f: D — E and g: E — D such that go f = idp, the
identity map on D, and fog &, idg. The map f is called embedding and g
projection.

Normally, we write an embedding/projection as (f¥, f#). Note that the map
[ is uniquely determined by f%, and vice versa [13]. Embeddings are one-to-
one and preserve compactness as well as least upper bounds of finite consistent
sets of domain elements [11]. Moreover, both the embedding and the projection
are strict, that is, they map least elements onto least elements.

Suppose (¥, f®) is an embedding/projection from C to D and (g%, g") is
an embedding/projection from D to E. Then the composition of (f¥, ff) and
(g%, g"®) is defined by

(g",9™) o (S5, 17) = (9" o f5, [T o g™).
Let SD®P denote the category of Scott domains and embedding/projections.

Any partially ordered set may be viewed as a category. For a cpo D, this
is done by letting the objects of the category be the elements of D and letting
the morphism set between objects 2 and y be the one-point set {¢; 4} precisely
when z C y and the empty set otherwise.

Let F: D — SD®P be a functor. Recall that this means that F(z) is a
domain for each z € D, and if « T y then F(.,,) is an embedding/projection
from F(z) to F(y) such that F(ize) = idp(,), and if # £ y and y T z then
F(tz,z) = F(ty.) o F(tey). When 2 C y we shall use the notation F, , for
F(izy).

Definition 2.9. Let D be a cpo. A functor F: D — SD*®P js continuous if for
any directed subset S of D, F(|]S) is a colimit of the diagram

{F(z) |ze St {Foyl|z,ye SAzCy}).
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A section of Fisamap f: D — |J{ F(z) | x € D} with f(z) € F(x), for all
z€D.

Definition 2.10. Let D be cpo and F: D — SD®P be a continuous functor.
An section [ of F' is said to be

(1) monotone if FxLy(f(:r)) C f(y), for all z,y € D with x C y.
(2) continuous if f is monotone and for every directed subset S of D,

F(S) =L {FE s(f@) [z €S}
3. REGULAR DI-DOMAINS

In this section we restrict our attention to the subclass of regular dI-domains.

Definition 3.1. A Scott domain D is a dl-domain if it satisfies the two ax-
toms d and I:

e Aziom d: For all x,y,z € D, if y 1 z then
zM(yUz)=(xMNy)U(xNz).
e Aziom I: For all u € K(D), [{u} is finite.

Note that in a bounded-complete domain any two elements x and y have a
greatest lower bound z My. Moreover, observe that by Axiom I all elements of
a dI-domain below a compact element are also compact.

The elements of a dI-domain can be generated by a special kind of compact
elements.

Definition 3.2. Let D be a bounded-complete domain. An element u € D is a
complete prime if for any consistent subset S of D the relation u C | | S always
implies the existence of an element x € S with u C x.

The complete primes in a dI-domain D turn out to be those compact elements
that have a unique element below them in the domain order [15]. As follows
from a result of Winskel, every element in D is the least upper bound of all
complete primes below it.

In the context of dI-domains it is usual to work with embedding/projections
that satisfy an additional requirement.

Definition 3.3. An embedding/projection (f,g) from a dI-domain D to a dI-
domain E is rigid if for all x € D and y € E with y C f(z), fog(y) =y. The
map [ is called rigid embedding and ¢ rigid projection.

Note that rigid embeddings preserve greatest lower bounds of finite sets of
domain elements. Moreover, they map complete primes onto complete primes.
As a consequence of this, rigid projections preserve the least upper bounds of
finite consistent sets of domain elements. We denote the category of dI-domains
and rigid embedding/projections by DI™P.

For the following definition observe that for any bounded-complete domain
D and elements z,y, z € D such that 2,y C z, (MY, tery,a, Lery,y) 1s a pullback
of (tg,2,ty,2) in D viewed as a category.
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Definition 3.4. Let D be a bounded-complete domain, F: D — DI™P q func-
tor and f a section of F.

(1) The functor F is stable if it is continuous and for all x,y,z € D with
z,y Tz, (F(xNy), Funge, Faryy) 5 o pullback of (Fy ., Fy.).

(2) Let F be stable. The section f of F' is stable if it is continuous and for
all x,y € D with Ty,

f(.T M y) = Faﬁﬂy,x(f(x)) r Faﬁﬂy,y(f(y))

For the remainder of this section we assume that D is a dI-domain and
F: D — DI*®P 3 stable functor.

Proposition 3.5. Let f be a stable section of F. Then for any x € D and
v € K(F(x)) such that v C f(x), there are u € K(D) and v € K(F(u)) with the
following properties:

(1) o Cx.
(2) v=FL,(0).
(3) v C f(a).
(4) (Vy,z € D)[a,y C 2 A Ff.(5) C F.(f(y)

)
Proof. Let z € D and v € K(F(z)) with v C f(z). Since
f@) = {EL(f(w) lue K(D) AuL ),
there is some @ € K(D) with v C Fix(f(ﬁ)) Because {4} is finite, there is
a minimal such 4, say w. Thus v C FﬁL,x(f(ﬂ)) Observe that Fy, is rigid.
Therefore v = FaL,x o Fffx(v). Set v = szw(v). Then v € F(u) and v C f(u).
Moreover, v is compact.

Now, let y,z € D such that @,y C z and FaL,Z(T)) C Fy]jz(f(y)) Set v, =
F;?z o FQLJ(T)) Then v, € F(y). Moreover, it follows as above that FuL,z(@) =
FyL,z(vy). Since F is stable, we have that (F'(aMy), Fany,a, Fany,y) is a pullback
of (Fa, Fy.). Therefore, there is some o € F'(u My) with FaLmy@(f)) = v and
quﬂy,y(@) = vy. It follows that ¢ T Fq%y,ﬂ(f(ﬂ)) M Fl%y’y(f(y)). Because f is
stable as well, we obtain that 0 C f(uMy) and hence that v C Fffﬂy,x(f(ﬂ My)).
Then @ = u My, by the minimality of @, which implies that u C y. g

This result justifies the following definition.

Definition 3.6. Let f be a stable section of F'. The set
Tr(f) ={ (u,v) | u € K(D) Av e K(F(u)) Av E f(u)
A(Vy,z € D)u,y CzAFy (v) CFy (f(y) = uly]}
1s called trace of f.

Lemma 3.7. Let f be a stable section of F. Then the trace of f has the
following properties:
(1) If (uo,v0),--., (un,vn) € Tr(f) such that {uo,...,un} has least upper
bound @, then {quma(vo), . ,Flfmﬁ(vn)} has a least upper bound, say v,
and (a,v) € Tr(f).
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(2) If (u,v) € Tx(f), z,2 € D and v' € F(z) such that u,z T z and
v' C© FfoFL (v), then there exists u' T u so that FE,(v') € FuL,J(F(u’))
and (u’,FﬁZ o FxL,z(v')) € Tr(f).

(3) If (u,v), (v',v") € Te(f) and for some z € D with u,u’ € z, Ff,(v) =
Fjﬂz(”’% then v = v’ and hence v ='.

Proof. (1) If {ug,...,u,} has least upper bound @, then we have for i <n that
Fqﬁ,a(vi) C f(u). Hence, {Fzﬁ),g(vo), e aFuLn,a(”n)} has a least upper bound v.
Both, u and v are compact. It remains to show that (u,v) € Tr(f).

We have already observed that v C f(u). Now, let y,z € D with u,y C z
and Ff (v) C FyLz(f(y)) Then we have for i < n that u; T z and F _(v;) C
Fl.(f(y)). Since (u;,v;) € Tr(f) it follows that u; E y, for i < n, which implies
that u C y.

(2) Let (u,v) € Tr(f) and z,z € D with u,z C z. Moreover, let v' € F(x)
such that o' C Ff, o FL (v). Then Ff, (v') € FE,(v). Since v is compact, we
have that also F-,(v) is compact. Hence, Ff, (v') is compact as well. Note
that

Fy. (') E Fy,(v) C Fp(f(u) E f(2).

Therefore, by Proposition 3.5, there is some (u',7) € Tr(f) such that v’ C 2
and ' (v) = Fj,z(z’;). Because u,u' C z and Fqﬁ,z(fj) = F}, () T FL,(f(u)),
it follows that ' C w.

(3) If (u,v), (v',v") € Tr(f) and for some z € D with u,u' T z, F,(v) =
Fj,,z(v’), then o' C f(v) and thus Ff, (v) = Fj)z(v’) C sz(f(u’)) Since
(u,v) € Tr(f), it follows that u C u'. In the same way we obtain that u' C u.
Therefore u = v’ and hence F\ (v) = FL (v'), which implies that v = ¢/, as

FL . is one-to-one. g
?

The next lemma shows how a stable section can be recovered from its trace.

Lemma 3.8. (1) A stable section f of F' can be computed from its trace in
the following way:

(@)= | [{FL @) |uCan (u0) € T(f) ).

(2) Every set of pairs (u,v) with u € K(D) and v € K(F(u)) satisfying
Properties (1)-(3) of Lemma 3.7 is a trace of the stable section of F
defined by the formula above.

Proof. (1) Because of Property (1) of Lemma 3.7 the set of all FuLJ(v) with
(u,v) € Tr(f) and u C z is directed and thus has a least upper bound. Obvi-
ously, the right-hand side of the formula is less than or equal to the left-hand
side. If v € K(F(z)) with v C f(x), then, by Proposition 3.5, there is some
(u',v") € Tr(f) with o' € 2 and v = Fjw(v) It follows that v is less than or
equal to the right-hand side of the formula. Since f(z) is the least upper bound
of all such v, the same is true for f(z).
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(2) We have to show that if X satisfies Properties (1)-(3) of Lemma 3.7, then
the map f defined by

fl@)=| {FE(w) [uCTzA(u,0) € X}

is a stable section of F' with Tr(f) = X.

The map f is well defined, since the set { FZ, (v) |u Tz A (u,v) € X } is
directed by Property 3.7(1) and therefore has a least upper bound.

Obviously, f is monotone. To see that it is continuous, let S be a directed
subset of D and let v € K(F(|]S)) with v T f(||S). It follows that there is
some (@,7) € X so that o C | |S and v C FaL7|_|S(77)' Since 4 is compact as

well, there is some x € S with @ C z. Thus FaLl,(’l_J) C f(z), which implies that

v F;US(f(x)). Since f(||S) is the least upper bound of all such v, we have

that f(|S) C U{FJJLUS(f(x)) | z € S}. The converse inequality is obvious,
by monotonicity.

For the verification of stability it suffices to show for z,y,z € D with z,y C 2
that Ffﬁyw(f(l‘)) M Ffmy?y(f(y)) C f(x My). Let to this end (u,v), (u',v) € X
with 4 C 2 and «' C y. Since the binary operator MM is continuous [7], we only
have to verify that

FR

xly,r

) Fqix(v) nEek

zlly,y © F?ﬁ,y(vl) E f(x r y)

L R
AN xMy,y z iy, © Fu,x (’U), Fmﬂy,y °

Fj,,y(v’). Hence, by Property 3.7(2), there is some u C u such that

Set v = KL, ,oFy (v)NEL, joF) (v'). Theno C Ff

(3.1) Fiy (0) € Fyo(F(a))
and (u, Ff, o F}

w1y, () € X. Moreover, there is some 4’ C u' such that

(3.2) FL

wﬂy,y(ﬁ) € Féj,y(F(al))

and (@', Fg,yoFL (7)) € X. Note that 2 C 2 C z and @ C y C 2. In addition

xMy,y

L R L =\ _ 1L L R L =
Fa,zoFﬂ,moF (U) _Fx,zoFa,onﬂ,moFxﬂy,x(v)

xMy,x
= Fy. 0 Fyy o (0) (by (3.1))
= FxLTIy,z('E)
= Fy.oFi, o Fy, ,(0) (by (32))

By Property 3.7(3) we therefore have that @ = @'. Thus @ C z My. It follows
that

R L = R R L = R _
Fﬂ,a: ° Fxﬂyvx (U) = Fﬂ,a:ﬂy ° Fxﬂyvx ° Fxﬂyvx (U) = Fﬂ,azﬂy(v)'

Since (u, Fit,,(0)) € X and v € Ff -, (F(u)), by (3.1), we obtain that v =
Fff:a:ﬂy ° Fz'fxﬂy(@) E f(x M y)

Next, we show that Tr(f) contains X. If (u,v) € X then v C f(u). Let
y,z € D such that u,y C z and FuLZ(v) C FyLZ(f(y)) Since FuLZ(v) is compact,

if follows from the definition of f that there is some (4, 0) € X with 4 C y and
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FuLz(v) C FyLz o FﬁL’y(ﬁ). By Property 3.7(2) we now obtain that there exists a
u' C 4 so that

(3.3) Fl,(v) € Fh (F(u'))

and (u’, FﬁZ o F,(v)) € X. Thus, we have that (u,v), (u’,Fﬁ)z oFl.(v)) € X,
u,u’ C z and, because of (3.3), Fj)zoFﬁ,zoFlﬁz(v) = FL,(v). Therefore u = u/,
by Property 3.7(3). Since v’ C 4 C y it follows that (u,v) € Tr(f).

Finally, we have to verify that also X contains Tr(f). Let (u,v) € Tr(f).
Then v C f(u). As above it follows that there is some v’ T wu so that
(u’,Fﬁvu(v)) € X and v € Fju(F(u’)) Then v C Fju(f(u’)) As a con-
sequence of the minimality condition in the definition of a trace we obtain that
u C v'. Thus u = «', which means that (u,v) € X. O

Define IIp F' to be the set of all stable sections of F' and order it by the stable
ordering, that is

fEsg e Tr(f) € Tr(g).

Then IIp F with the stable ordering is the dependent product of F over D.
Our next goal is to show that I[Ip F' is a dI-domain. To this end we need the
following lemma.

Lemma 3.9. Let f be a stable section of F' and I C Tr(f). Moreover, let
I'={(z,y) € Te(f) | B(u,v) € Nz Cun Fy(y) Ev}

and

X ={(z,y) € Tx(f) |
(E(UO,U()), R (umvn) € I,)‘T = |_|i§n ui Ny = Llign F?f;,x(vi) }

Then the following three statements hold:

(1) The set X has Properties (1)-(3) of Lemma 3.7.

(2) The stable section g defined by X according to Lemma 3.8(2) is the
smallest stable section h of F' with h Ty f and I C Tr(h).

(3) If the set I is finite, so is X.

Proof. (1) Property 3.7(1) holds by construction and 3.7(3) is inherited from
Tr(f). It remains to show that also 3.7(2) holds. Let (u,v) € X and for
2,z € D with u,z T z let o' € F(x) such that o' T FF o FL (v). Since X
is contained in Tr(f) there is some u' C u so that Ff, (v') € FﬁZ(F(u’)) and
(u’,FﬁZ o FE,(v')) € Tr(f). We show that (u’,FuRi,z o FE,(v')) € X.

Because (u,v) € X, there are (ug,vp), ..., (un,vs) € I' so that u = | |, ui
and v = | |, F& ,(v;). Define uj = u; M/, for i <n. Then u' = | ], uj. As

FL.(v') € FL (F(u')) there exists o € F(u) with FL,(v)) = F% (4). Then
b= Fff oF;,(v). Fori<mnset o =Fy,(v;)Fy,(0). It follows that

0; C FULIU(UZ), Fﬁu(ﬁ). Therefore FuLlu o Flfu(ﬁz) =0; = FuL,7u o Fﬁu(ﬁi). Since
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(F(uz)s Fur s Fyr ;) 1 a pullback of (Fy y, Fy, u), we obtain that there is some
v € F(u}) with FuL u,(v ) = FR .(0;) and sz;,ui (vl) = Ffu(ﬁz) Then
FLM( D =FF () CE, oFL (v;)=v.

Thus (u},v}) € I'. Moreover, F W) =FEl (0:) EFS o Fl (0) =1 and

L., Faw) =L]_ Ff.@)

i 1<n

Z7Z

—FR (o v)
=Fj, o ﬁ,u(zv)
= 9.

Here, we used that

Fjo(0) = Fyiy o Bl o Byl o Fy (v) B 0 By (v) £

u' U

It follows that (u', %) € X.

(2) Properties 3.7(1)-(3) imply for any stable section h of F' with I C Tr(h) C
Tr(f) that X C Tr(h).

(3) Since embeddings are one-to-one and Axiom I holds in D and all F(x)
with # € D, it follows that if I is finite, so is I'. Obviously || X| < 2/l
Therefore, also X is finite in this case. O

Theorem 3.10. Let D be a dI-domain and F: D — DI'®P q stable functor.
Then IIpF is a dl-domain. The compact elements in IIpF are exactly the
sections with finite trace.

Proof. As is easily seen, IIpF is a cpo. If S is a subset of IIpF with up-
per bound f, then it follows with Lemma 3.9 that the section generated by
U{Tx(h) | he S} is the least upper bound of S. Thus, IIpF is bounded-
complete. Obviously, the sections of F' with finite trace are the compact ele-
ments. Therefore, I1p F is a Scott domain and Axiom I holds. With Lemmas 3.7
and 3.8 it is readily verified for two section f and g that Tr(f) N Tr(g) is the
trace of fg. By using the two lemmas once more we then obtain that Axiom d
is satisfied as well. O

In the special case of a constant functor F, say F(z) = E for x € D, one
has the well known fact that the space [D —4 E] of stable maps from D to E
is a dI-domain again. Indeed, the category of dI-domains and stable maps is
Cartesian closed [7].
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Now, let RDI*®P be the category of regular dI-domains and rigid embed-
ding/projections. We will show that for a stable functor F': D — RDI"P the
dependent product domain IIp F' is also regular.

Theorem 3.11. Let D be a dI-domain and F: D — RDI*®P q stable functor.
Then lIpF is a regular dI-domain.

Proof. We only have to verify the condition in Lemma 2.2. Let f,g € K(IIpF).
Since Tr(f) is finite, we have that f(1{u}) is finite as well. Hence there is some
x €T{u} so that for all z € D with z C z, FxL,z(f(:r)) = f(z). Obviously, we can
assume that z is compact. By the formula in Lemma 3.8(1) we moreover obtain
that there is some (4, 0) € Tr(f) with & C z and f(x) = FuLJ(ﬁ) Because

Fio(0) E Fio(£() E f(z) = Fi,(0),

we also have that f(4) = 0. Let y = f(x).
Now, suppose that f C g. Then Tr(f) & TrL(g). Thus, there is some

(u,v) € Tr(g) \ Tr(f).
Claim 3.12. F. (v) Z y.

Proof. Assume that v C szm o FuLI(ﬁ) By Property 3.7(2) there is then some
o' E i so that Fl,(v) € Fj (F(u') and (v, F}f, o Fy,(v)) € Te(f). It

follows that (u/, fo o Fl.(v)) € Tr(g). Since (u,v) € Tr(g) as well and
Fﬁw oFﬁJ oFQﬁx( ) = FJ’,I(’U), we obtain with Property 3.7(3) that v = v’ and
Fﬁ,x o FuL,J(v) = v. Hence (u,v) € Tr(f), a contradiction.

This shows that v Z Ff, o FuLJ(f)), which implies that F-,(v) Z F, ( )
Y.

Claim 3.13. (v/,v") e Te(f)Au' Ttz =u Cux /\Fi;,a;(vl) Cy.

]

Proof. With v’ 1 z we also have that u' 1 4. Then (u' U 4, F% wua(V) U

Fqﬁu'Uu(ﬁ)) € Tr(f), by 3.7(1). Hence
Fif e (9) C FL,UM,M(FUL,,U,UH( ) U FE ()
CFEL u U
Cf I_I:r)

= FﬁLu’Ux (ﬁ)
which implies that FL , . (v') U FuLu’\_Iu(A) = FﬁL’u,uﬁ(ﬁ). With 3.7(3) we thus
have that 4 = v’ U 4, that is, u' C 4 C z. Therefore, we obtain from (3.4) that
FL () C FL(5) = y. 0

Since F(z) is regular and FuLl,(v) [Z y there is some 0 € K(F(z)) so that
y C 0 and FuLl,(v) 4+ 0. Define

X = () {(z, ﬁ)(ﬁe K(F(z)) A% C 5
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If we have checked that X has Properties 3.7(1)-(3), we know that X is the
trace of a section f € K(IIpF) with f T, f. Suppose that g, f T, h, for
some h € IIpF. Then FuL,x(v) C g(x) C h(z) and v = f(x) C h(z), which is
impossible as FuL,x(v) 4+ 3. Thus g ¢ f.

It remains to check that X has the properties of Lemma 3.7.

(1) Obviously, it is sufficient to consider the case that n = 1. Let (ug,vo),
(ur,v1) € X so that {ug,u1} is consistent. If (ug,vp), (u1,v1) € Tr(f) we are
done. So, without restriction, let us assume that (ug,vo) ¢ Tr(f). Then uy ==
and vp C 0. If (uy,v1) ¢ Tr(f) too, then u; = x and v; C v. In the opposite
case we obtain with Claim 3.13 that u; C z and FJLQ:(UI) C ©v. Therefore, in
both cases vg U FL _(v1) exists below v.

u1,T
In order to see that (z,vo U Fy, ,(v1)) € X \ Tr(f) assume that there is
some (i,7) € Tr(f) such that @ C z and FJ,(6) = vo U F}; ,(v1). Then

vg C FuLl,(TJ) With Property 3.7(2) it follows that there is some u' C @ so that
vy € FIf,x(F(u’)) and (u’,Fﬁ,I(vo)) € Tr(f). Hence, we have that «' C 2 and
FL o F&L (v) = vy, contradicting the fact that (ug,v) € X \ Tr(f).

(,2) We 7only have to consider the case that (z,0) € X \ Tr(f), 2,2’ € D and
v' € F(z) such that 2,z C 2’ and v' C FZ}?Z, o Fl (v). Then Fafz, o le:z’ (V') C
v C o.

If there is some (@,) € Tr(f) with @ C « and Fj,(0) = Fafz, o FZL7Z, (v'), it
follows that @,z C z'. Moreover FzL,z, (W) C Fa’iz, (9). Since the embeddings are
rigid, we therefore obtain that

Fy(6) = Fl 0 Fy(0)=F} 0Fy, oF}

i @,z © 2,2 (UI) = FzL,z’ (UI)'
Hence FzL,z, (V') € FuLz,(F(ﬂ)) As o = quz, o FZL7Z, (v"), we have that (ﬂ,quz, o
FE(v') € Tx(f). But Tr(f) is contained in X.

In the opposite case we obtain that (x,Fafz, o Fiz, (v")) € X \ Tr(f). Note
here that we have already seen that FZL7Z, (v') C FL ,(¥), which implies that

FL, (') € FL,(F(x)). o

2,2

(3) Let (ug,v0), (u1,v1) € X such that ug,u; C z and Fqﬁ’Z(vo) = FuLl,z(vl),
for some z € D. The case that both pairs are contained in Tr(f) is obvious.
Without restriction let (ug,vp) € X \ Tr(f). Then up = z. If (uy,v1) € Tr(f)
we obtain with Claim 3.13 that u; C z, contradicting the fact that (ug,vp) €

X\ Tr(f). Hence (uy,v1) € X \ Tr(f), which means that also u; = x. O

As a special case we obtain that the dl-domain of stable maps from a dI-
domain to a regular dI-domain is regular again [9].

Theorem 3.14. The category of regular dI-domains and stable maps is Carte-
sian closed.

4. STRONGLY REGULAR SCOTT DOMAINS

In this section we consider Scott domains which satisfy a strengthened reg-
ularity condition.
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Definition 4.1. A domain D is strongly regular, if every finite union of basic
open sets T{z} with z € KK(D) is regular open.

Note that in the Scott topology the finite unions of basic opens are just the
compact open subsets of the domain. By Lemma 2.3 every strongly regular
domain is regular. Among the examples given in Section 2 only the domains
A, generated by finite nonempty sets A are not strongly regular.

The following characterization will turn out to be useful in the remainder of
this section. We call a subset S of K(D) subbasis, if every compact element of
D is the least upper bound of a finite subset of S.

Lemma 4.2. Let S be a subbasis of a domain D. Then the following three
statements are equivalent:

(1) D is strongly regular.
(2) For any subset X of S and all v € IC(D) the next condition holds:

VueX)ulLv= (Fz€ K(D))v EzA (Vu e X)u?t z].
(3) For any finite subset X of S, | J{T{z} |z € X } is regular open.

Proof. In order to see that (1) implies (2), let X be a finite subset of S and
v € K(D) such that for all u € X, u Z v. Since |J{1{u} | v € X } is regular
open, it follows that T{v} intersects ext(|J{t{u} |u € X }). Hence, there is
some z € (D) such that v C z and for all u € X, u + z.

For the proof that (3) follows from (2), let X be a finite subset of S and set
U=U{t{u} | u e X }. Moreover, assume that there is some v € int(cl(U))\U.
Then we have for all u € X that v £ v. Because of (2) there exists some z €
K(D) such that v C z and for all u € X, z#4 wu. It follows that z € int(cl(U)).
Hence z € cl(U), which implies that 1{z} intersects U. Thus, for some u € X,
u and z have a common upper bound. This contradicts what has been said
about z before.

It remains to show that (1) is a consequence of (3). Let Y be finite subset
of (D). Then for any y € Y there is some finite subset X, of S such y is the
least upper bound of X,. Thus

Uity lyevi=UJ{N{Mu} lueX,}|yeV}

By distributivity it follows that (J{1{y} |y € Y } is a finite intersection over
finite unions of basic open sets 1{z} with z € S. Since every such finite union
is regular open by (3), and the class of regular open sets is closed under finite
intersections, we obtain that |J{1{y} | vy € Y } is regular open. O

It follows that a domain is strongly regular, exactly if every compact element
that does not extend finitely many given compact elements u; can be extended
to a compact element which contains additional information, contradictory to
the information coded into the wu;.

We will now consider the dependent product of a continuous family of Scott
domains. Let to this end D be Scott domain and F': D — SD®P a continuous
functor.



On domains witnessing increase in information 145

Define IIpF to be the set of all continuous sections of F', and order [IpF
pointwise, that is, let

fEpg e (Vz€D)f(z) Epw) 9(z).

Then IIpF with the pointwise order is the dependent product of F over D.
As will follow from the next theorem the sections (u N\, v) with u € K(D)
and v € K(F(u)) form a subbasis of IIp#. Here (u \, v) is defined by

Fl.(v) ifuCu,
Lp@)  otherwise.

(u ™\ v)(z) = {

The following result has been established in [5, 10].

Theorem 4.3. Let D be a Scott domain and F: D — SD®P q continuous func-
tor. Then lpF is a Scott domain. The compact elements are evactly the least
upper bounds of finite consistent sets of sections of the form (u \, v).

Let SRSD*®P be the category of strongly regular Scott domains and embed-
ding/projections, let D be strongly regular and F': D — SRSD®P. We shall
show next that IIpF is also strongly regular. We do this by using an idea of
U. Berger, to which the next lemma is due as well.

Lemma 4.4. Let D be strongly reqular and ug, ..., Up—1,00,---,Um—1 € K(D).
Moreover, let all v; be pairwise distinct. Then there exist zg, ..., Zm—1 € K(D)
with the following properties:

(1) (Vf <m)v; C 2.

(2) (V5 <m)(Vi <n)lu; L vj = u; + 2.

(3) (Vj1,J2 <m)[j1 # j2 = 2z, + 2]

Proof. The lemma will be proved by induction on m. The case m = 0 is trivial.
Therefore, let m > 0. Moreover, without restriction, let v, 1 be minimal
among vy, ..., Um_1. et

X ={ye€{uo,...,un-1,00,.-,Vm—2} |y £ vm—1}.

Since D is strongly regular, there is some z,,_1 € K(D) such that v, C 2,1
and y 4 2,1, for all y € X. Thus Properties (1) and (2) hold for j = m — 1.
Because vy, 1 is minimal and the v; are pairwise distinct, we moreover have
that v; & zp—1, for y <m — 1.

Now, by applying the induction hypothesis to ug, ..., u,—1 and vy, ..., Vm_2
we obtain that there are 2, ..., zm—2 € K(D) such that Properties (1)-(3) hold.
Because of our choice of z;,_1 (1) and (2) then also hold for z, ..., zn—1. For
Property (3) we only have to show that for all j <m —1, z; % z,_1. Assume
that z; T zpm—1, for some 5 < m—1. Since v; C z;, it then follows that v; T 2,1
as well, which is impossible by our choice of z,,_1. [l

Theorem 4.5. Let D be a strongly reqular Scott domain and F : D — SRSD*®P
a continuous functor. Then IIpF is strongly regular.
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Proof. We verify Condition (2) in Lemma 4.2 for the subbasis
S={(u\y)luecK(D)NyecK(F(u))}

Let to this end ¢ = (u; \, y%) € S (i < n, a < b;) such that ug,...,u,—1 are
pairwise distinct, let f = | |{(v; \v %) | j € J} € KIIpF), and assume that
gt iZ, f, for i <n and a < b;. We have to construct a section h € K(IIpF)
with f &, h and h 4 gh?, for i < n and a < b;.

Obviously, ¢v* Z, f if and only if y¢ Z f(u;). Since every domain F(u;)
is strongly regular, there is some §; € K(F(u;)), for each i < n, such that
f(u;) C g; and y¢ + @, for all a < b;. Because D is strongly regular too, it
follows with the preceding lemma that there are 4y, ..., 4, 1 € K(D) such that
the following properties hold:

(2) (¥ < n)(Vj € Doy L wi = v, % .

(3) (Vir, 12 <n)lix #ip = Uiy T Uiy
For i < nlet §; = Fqﬁ,ui (9;). We shall show now that the set { (a; \, %) | i <
n}U{(v; \(7j)|Jj € J}, which we denote by Y, is bounded in IIp F.

Let hereto w € D and assume first that for all i < n, @; £ w. Then f(w)
is an upper bound of all (v \, y)(w) with (v \,y) € Y and u C w. Now, let
i < n such that @; C w. We want to show that in this case Fi: ,(;) is an upper
bound of all (u N\, y)(w) with (v \,y) € Y and u C w.

Since #; T w, we have that u; C w and for all i/ < n with i # ¢ that
uy £ w, by Property (3). Moreover, we obtain with Property (2) that for
j € J,v; C wexactly if v; C u;. Thus, it follows for (u \, y) € Y with
u C w that either u = 4; or u = v;, for some j € J with v; C ;. In the first
case, we obviously have that (u N\, y)(w) C FﬂLi,w(gji). Let us therefore consider
the second case. Since FuLi;, is continuous, we obtain with Property (2) that

Us

Fqﬁ,m(f(ul)) = f(a;). Hence f(u;) T g;. It follows for j € J with v; T u; that
(0 N\ 2j)(w) = Fy? (7))

= Fi w o Fu a0 Fy (%))

C FaLi,w ° Fzﬁ,ﬂl(f(uz))

= Fl ,(f (1))

C Fi,w(gi)-
Set h = | ]Y. Then f C, h. Moreover h 4 g%, for i < n and a < b;, since
h(t;) = 9 = F&,ﬂi(gi)v gi’a(ai) = F’zﬁ',ﬂi (yza) and y; + yi'. 0

As a special case we obtain that the Scott domain of continuous maps between
two strongly regular Scott domains is also strongly regular.

Theorem 4.6. The category of strongly reqular Scott domains and continuous
maps is Cartesian closed.
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5. FURTHER CLOSURE PROPERTIES

In this section we study further closure properties of the class of regular
and/or strongly regular domains. We start by considering different kinds of
sums.

Let I be an index set with at least two members and (DZ)’L o bea family of
domains. Set

., 0 =Utti < Dilie oy
and order |#;; D; by
rCysz=1V(Fel)|r=_>,2") Ny=(1y)ANz Cp, ¥]
Then |#;c; D; is the separated sum of the family (DZ)Z eI of domains. Obviously,
it is a domain again with

K(Di),e) = (i} x K(Di) i € TYU{L}.

Theorem 5.1. Let I be an index set with at least two members and (Di)z’el be
a family of domains. Then the following two statements hold:
(1) If D; is regular, for all i € I, then \);c; D; is regular.
(2) If I is at least infinite and for all i € I, D; is strongly regular, then
Wicr Di is strongly regular.

In order to see that the separated sum of a finite family of strongly regular
domains need not be strongly regular again, consider the separated sum of two
one-point domains.

Next, define

D, 0=l x D\ (LD lieT}u{L}

and order ;.; D; as in the case of the separated sum. Then P
coalesced sum of the family (Dl)z ;- 1t is also a domain with

KXGD%[D0==LJ{ﬁ}XKXDi\LHzHIiGI}U{l}

As is well known, the coalesced sum is the categorical coproduct in the category
of domains with strict continuous maps [13].

ser Di is the

Theorem 5.2. Let I be an index set with at least two members and (Di)iel be
a family of domains. Then the following two statements hold:

(1) If D; is regular, for all i € I, then @, ; D; is regular.
(2) If D; is strongly regular, for all i € I, then @,y D; is strongly regular.

Let DOM®P be the category of domains and embedding/projections. For a
domain D and a continuous functor F': D — DOM®P set

SpF={(y,2)|lyeDAzeF(y)}
and order X pF by
(u,0) C (y,2) © u Ep y A Fyry(v) Epgy) 2
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Then XpF is the dependent sum of F' over D. As follows from [5, 10], ¥pF is
a domain again with

KEpF) ={(u,v) |ue K(D)AveK(F(u)) }.

Theorem 5.3. Let D be domain and F: D — DOMP®P a continuous functor.
Then the following two statements hold:

(1) If D and, for every x € D, F(x) are reqular, then L pF is reqular.
(2) If D and, for every x € D, F(x) are strongly regular, then XpF is
strongly regular.

Proof. We only show Statement (2). Let to this end X be a finite subset of
K(XpF) and v € K(XpF) such that u [Z v, for all w € X. Then it follows for
u = (u1,u2) and v = (v1, v9) that either uy IZ vy, or u; C vy and FULM,1 (ug) Z vg.
Set X1 = {ue€ X |u Zv} and Xo = X \ X;. Since D is strongly regular,
there is some 4 € IC(D) such that v1 C 4, but uy 3 4, for all u € X;. Let
0= Fleu(UZ) Then (4,0) € K(XpF). Moreover, we have for v € Xy that
u; C 4 and FuLl,ﬁ(uz) Z .

By the strong regularity of F'(4) there is now some v € IC(F(4)) such that
0 C 0 and FuLlu(U?) 4+ o, for all w € X3. Then (4,0) € K(XpF). Moreover
v C (4, 9), since v1 C @ and Fzﬁ,ﬁ(vg) = ¢ C 9. Finally, we have that (4,7) 3 u,
for all w € X.

In order to see this, assume that for some v € X there is some z € XpF
with w C x and (4,0) C z. So uy,4 C 21 and Fqﬁ’Il(UQ),Fﬁl:xl(’l_J) C zo. By
our choice of @ it follows that uq; € Xo, that is uy C @. Hence, we have that

F,Ifh,&(UQ), v C szxl({L‘Q). This contradicts our choice of v. O

As is well known, in the case of a constant functor, say F(z) = E, the depen-
dent sum of F' over D is the product of the domains D and E. Thus, it follows
that the product of two regular domains is regular and that of two strongly
regular domains is strongly regular. This can easily be generalized to products
of arbitrary families of domains. Note that in this case the compact elements
are those maps from the index set into the respective domains which almost
always have the least element of the respective domain as value. Moreover, the
result holds for the smash product of two domains.

In the remainder of this section we consider closure under the inverse limit
construction. An w-chain in DOM®P is a diagram of the form © = Dy %
D, S ... Let €mn = €p_1 0+ 0 ey, for m <n, and e, = idDm. Set

Do ={x € lljewDm | (Ym € w)zy = eﬁl(mm+1)}
and order Dg componentwise, that is
zCy< (Vm ew)em CEp,, Ym-

Then Dg is the inverse limit of the w-cochain ©F = (Dm, eﬁl
known, Dg is a domain with

K(Dg) = {u € Do | (3m € w)uy € K(Dp) A (Yn > m)uyr1 = el (uy) ).
It is a colimit of the w-chain © in DOME®P.

)m@). As is well
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Proposition 5.4. Let (Dn,en)n
lowing two statements hold:

o be an w-chain in DOMS®P. Then the fol-

(1) If D,, is regular, for all n € w, then Dg is regular.
(2) If D, is strongly regular, for all n € w, then Dg is strongly regular.

Proof. We only show Statement (2). Let to this end X be a finite subset of
K(Dg) and v € K(Dg) such that u £ v, for all u € X. For u € K(Dg) there
is some smallest m, € w such that u,, € K(Dy,,) and u = in,, (um, ), where
in,, : Dy, — De defined by

i (2) = eanun(Z) if my, <mn,
M el (z) otherwise,

is the canonical embedding of D, into Dg. Let j be the maximal such m,,, for
u € XU{v}. Moreover, let X; = pr; (X), where pr;: Do — Dj is the projection
onto the jth component. Then X is a subset of K(D;) and for all w € X; we
have that w [Z vj. Since Dj; is strongly regular, there is some z € K(Dj) such
that v; C z and w 4 #, for all w € X;. Set Z = in (). Then z € K(Dep).
Furthermore v C z. Now, assume that for some v € X, z T u. Then z; 1 u;.
But since z; = z and u; € X, this is impossible by our choice of z. O

It follows that every w-chain in the categories of regular and/or of strongly
regular domains and embedding/projections has a colimit.

Theorem 5.5. The categories of reqular domains and of strongly regular do-
mains, both with embedding/projections as morphisms, are w-cocomplete.

As is well known, both the separated and the coalesced sum of a family of
Scott domains is a Scott domain, for any Scott domain D and any continuous
functor F': D — SD®P the dependent sum of F' over D is a Scott domain, and
for any w-chain @ in SD®P, Dg is a Scott domain. Thus, we have the following
consequences.

Theorem 5.6.

(1) For every family (Di)iew of strongly reqular Scott domains the separated
sum \#;c,, Di is a strongly reqular Scott domain.

(2) For every index set I C w and every family (Di)iel of strongly regular
Scott domains the coalesced sum @;.; D; is a strongly regular Scotl
domain.

(3) For every strongly regular Scott domain D and every continuous functor
F: D — SRSD®P the dependent sum SpF of F over D is a strongly
reqular Scott domain.

(4) For every w-chain © in SRSD®P the inverse limit Do of the w-cochain
O is a strongly regular Scott domain. That is, the category SRSD®P
s w-cocomplete.

For regular dI-domains we have an analogous result.

Theorem 5.7.
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(1) For every index set I C w and every family (Di)iel of regular dI-do-
mains the separated sum \#;c; D; as well as the coalesced sum @, D;
are reqular dI-domains.

(2) For every regular dI-domain D and every stable functor F : D —
RDI*P the dependent sum SpF of F over D is a reqular dI-domain.

(3) For every w-chain © in RDI™P the inverse limit Do of the w-cochain
OFf is a reqular dI-domain. That is, the category RDI®P s w-co-
complete.

Proof. Statement (1) is obvious. For Statement (2) we only have to show that
YpF is a dl-domain. We know already that it is a Scott domain. Axiom I is
clearly satisfied.
For the verification of Axiom d let (z,u), (y,v),(z,w) € XpF such that

(y,v) T (z,w). Note that

(y7 U) U (Z7 w) = (y U Z, FyL,yLIz(v) U le,lyu,z(w))
and

(y,v) N (z,w) = (y N z,F;%z,y(v) M Fy%zz(w))
Since Axiom d holds in D we only have to show that

Ffim (@ MVE G g0 (B (0) U EL  (w)
(5.5) = Fityariyuz) (Fanye (@) N FS, , (0)U
Fi, an(yoz) (Fene o (0) 1 i, o (w)).
Denote the left-hand side of this equation by W. Then we have that
W =W N Ff g (Fyyne (v) ULy, (w))

=W N (Fj5 oFL (v)UFE

yUz),yllz y,ylz oN(yUz),ylz © Fl
(5.6) = (WnNEL

z,yLIz(w))

@)U W NER s 0 FEy o (w),

Here we used that Axiom d holds in F(zM(yUz)). Next we transform the first
operand in the last equation. It is

L
yuz) iz © Pyl

R L
wn Fxﬂ(yUz),yle © Fy,yuz (U)

L
Fyyus (v
R

Fmﬂy,y (U

R R
= Fwﬂ(yuz),x (U’) M Faﬂ(yUZ),yuz °

(5.7) = Py gz e () 1 Py aryiz) ©

(58) = FxLFIy,xFI(yLJz) © Faﬁﬂy,xﬂ(yUz) (Faﬁﬂ(yUz),m (U)

M FxLFIy,xTI(yUz) ° Fafzﬂy,y (U))

(59) = FxLﬂy,xﬂ(yUz) (Fxfl‘;y@ (u) r Faﬁ%y,y(v)%

where Equation (5.7) holds since (F(x M y), Furyy, Farg,enyuz)) 18 a pullback
of (Fyyuz, Fan(yuz)yuz)- For Equation (5.8) note that

)
)

R L R L R
Fwﬂ(yuz),x (U) r Fxﬂyvxﬂ(yuz) © Fxﬂy,y (U) L Fwﬂy,azﬂ(yuz) ° Fxﬂy,y (U)
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and the morphisms are rigid embedding/projections. By the monotonicity of
the maps the term in Equation (5.8) is less or equal to the term in Equa-
tion (5.9), which in its turn is less or equal to the term in Equation (5.7).

The term in Equation (5.9) coincides with the first operand in the right-
hand side of Equation (5.5). A similar transformation shows that the second
operand in Equation (5.6) is equal to the second operand in the right-hand side
of Equation (5.5). This proves that Axiom d holds.

In the case of Statement (3) too, it only has to be shown that Axioms d and
I hold in Dg. Axiom d is obvious as the order is defined componentwise. For
the verification of Axiom I let v € K(Dg) and u € Dg with v C v. Then there
is some m € w and some v € K(D,,) such that v = in, (v). Since (in,,, pr,,)
is a rigid embedding/projection, we obtain that there is some u € Dg with
uw =1in,_ (). It follows that 4 Cp,, 0, which shows that |{u} is finite. O

6. CONCLUSION

In this paper two subclasses of domains have been introduced and order-
theoretic as well as topological characterizations have been given. The domains
are such that if a compact element  is strictly larger than a compact element v
in the information ordering of the domain, then a witness for this can be found,
that is a compact element z which extends v and contains information that is
inconsistent with the information contained in u.

Both subclasses enjoy important closure properties. In the special cases of
regular dI-domains and strongly regular Scott domains they are such that mod-
els of the untyped lambda calculus can be constructed (cf. e.g. [3]). Moreover,
models of typed lambda calculi allowing disjoint unions, dependent products
as well as dependent sums, and recursive definitions on both the type and the
term level can be given.

Note that effective versions of the domains can be defined so that similar
closure properties hold.
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