

A new topology over the primary-like spectrum of a module

FATEMEH RASHEDI

Department of Mathematics, Velayat University, Iranshahr, Iran (f.rashedi@velayat.ac.ir)

Communicated by J. Galindo

Abstract

Let R be a commutative ring with identity and M a unitary R-module. The primary-like spectrum $Spec_L(M)$ is the collection of all primary-like submodules Q of M, the recent generalization of primary ideals, such that M/Q is a primeful R-module. In this article, we topologies $Spec_L(M)$ with the patch-like topology, and show that when, $Spec_L(M)$ with the patch-like topology is a quasi-compact, Hausdorff, totally disconnected space.

2010 MSC: 13C13; 13C99.

Keywords: primary-like submodule; Zariski topology; patch-like topology.

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. For a submodule N of M, we let (N:M) denote the ideal $\{r \in R \mid rM \subseteq N\}$ and annihilator of M, denoted by Ann(M), is the ideal (0:M). By a prime submodule (or a p-prime submodule) of M, we mean a proper submodule P with P = (P:M) such that $rm \in P$ for $P \in R$ and $P \in M$ implies that either $P \in P$ or $P \in P$. The prime spectrum (or simply, the spectrum) of $P \in M$, denoted by $P \in M$, is the set of all prime submodules of $P \in M$ intersection of all prime submodules of $P \in M$. If there is no prime submodule containing $P \in M$, then we define $P \in M$. As a new generalization of a primary ideal on the one hand and a generalization of a prime submodule on the other

hand, a proper submodule Q of M is said to be primary-like if $rm \in Q$ implies $r \in (Q:M)$ or $m \in radQ$ ([6]). We say that a submodule N of an R-module M satisfies the primeful property if for each prime ideal p of R with $(N:M) \subseteq p$, there exists a prime submodule P containing N such that (P:M)=p. If the zero submodule of M satisfies the primeful property, then M is called primeful. For instance finitely generated modules, projective modules over domains and (finite and infinite dimensional) vector spaces are primeful (see [9]). It is easy to see that, if Q is a primary-like submodule satisfying the primeful property, then $p = \sqrt{(Q:M)}$ is a prime ideal of R and so in this case, Q is called a pprimary-like submodule. The primary-like spectrum $Spec_L(M)$ is defined to be the set of all primary-like submodules of M satisfying the primeful property. If $Q \in Spec_L(M)$, since Q satisfies the primeful property, there exists a maximal ideal m of R and a prime submodule P containing Q such that (P:M)=mand so $radQ \neq M$.

For any submodule N of M, let

$$\nu(N) = \{ Q \in Spec_L(M) | \sqrt{(Q:M)} \supseteq \sqrt{(N:M)} \}.$$

Then we have the following lemma.

Lemma 1.1. Let M be an R-module. Let N, N' and $\{N_i|i\in I\}$ be submodules of M. Then the following hold.

- (1) $\nu(M) = \varnothing$.
- (2) $\nu(0) = Spec_L(M)$.
- (3) If $N \subseteq N'$, then $\nu(N') \subseteq \nu(N)$.
- (4) $\bigcap_{i \in I} \stackrel{-}{\nu(N_i)} = \nu(\sum_{i \in I} \stackrel{-}{(N_i : M)} M).$ (5) $\nu(N) \cup \nu(N') = \nu(N \cap N').$
- (6) $\nu(radN) \subseteq \nu(N)$.
- (7) If $\sqrt{(N:M)} = \sqrt{(N':M)}$, then $\nu(N) = \nu(N')$. The converse is also true if both N and N' are primary-like.
- (8) $\nu(N) = \nu(\sqrt{(N:M)}M)$.

Also, for each submodule N of M we denote the complement of $\nu(N)$ in $Spec_L(M)$ by $\mathcal{U}(N)$. From (1), (2), (4) and (5) above, the family $\eta(M) =$ $\{\mathcal{U}(N)|N\leq M\}$ is closed under finite intersections and arbitrary unions. Moreover, we have $\mathcal{U}(M) = Spec_L(M)$ and $\mathcal{U}(0) = \varnothing$. Therefore, $\eta(M)$, as the family of all open sets, satisfy the axioms of a topology \mathcal{T} on $Spec_L(M)$, called the Zariski topology on M.

In Section 2, we topologies $Spec_L(M)$ with a patch-like topology, and show that, if M is a Noetherian multiplication R-module and (N:M) is a radical ideal for every submodule N of M, then $Spec_L(M)$ with the patch-like topology is a quasi-compact, Hausdorff, totally disconnected space (Corollary 2.16).

2. Main Results

We need to recall the patch topology (see [7, 8], for definition and more details). Let X be topological space. By the patch topology on X, we mean the topology which has as a sub-basis for its closed sets the closed sets and

compact open sets of the original space. By a patch we mean a set closed in the patch topology. The patch topology associated to a spectral space is compact and Hausdorff (see [8]). Also, the patch topology associated to the Zariski topology of a ring R (not necessarily commutative) with ACC on ideals is compact and Hausdorff (see [7, Proposition 16.1]).

Definition 2.1. Let M be an R-module, and let $\omega(M)$ be the family of all subsets of $Spec_L(M)$ of the form $\nu(N) \cup \mathcal{U}(K)$ where $\nu(N)$ is any Zariski-closed subset of $Spec_L(M)$ and $\mathcal{U}(K)$ is a Zariski-quasi-compact subset of $Spec_L(M)$. Clearly $\omega(M)$ is closed under finite unions and contains $Spec_L(M)$ and the empty set, since $Spec_L(M)$ equals $\nu(0) \cup \mathcal{U}(0)$ and the empty set equals $\nu(M) \cup$ $\mathcal{U}(0)$. Therefore $\omega(M)$ is basis for the family of closed sets of a topology on $Spec_L(M)$, and call it patch-like topology of M. Thus

 $\omega(M) = \{ \nu(N) \cup \mathcal{U}(K) | N, K \leq M, \mathcal{U}(K) \text{ is Zariski-quasi-compact} \},$ and hence we obtain the family

 $\Omega(M) = \{ \nu(N) \cap \mathcal{U}(K) | N, K \leq M, \mathcal{U}(K) \text{ is Zariski-quasi-compact} \},$ which is a basis for the open sets of the patch-like topology, i.e., the patchlike-open subsets of $Spec_L(M)$ are precisely the unions of sets from $\Omega(M)$. We denote the patch-like topology of $Spec_L(M)$ by $\mathcal{T}_p(M)$.

Definition 2.2. Let M be an R-module, and let $\tilde{\Omega}(M)$ be the family of all subsets of $Spec_L(M)$ of the form $\nu(N) \cap \mathcal{U}(K)$ where $N, K \leq M$. Clearly $\tilde{\Omega}(M)$ contains $Spec_L(M)$ and the empty set, since $Spec_L(M)$ equals $\nu(0) \cap \mathcal{U}(M)$ and the empty set equals $\nu(M) \cap \mathcal{U}(0)$. Let $\tilde{\mathcal{T}}_p(M)$ to be the collection \tilde{U} of all unions of elements of $\tilde{\Omega}(M)$. Then $\tilde{\mathcal{T}}_p(M)$ is a topology on $Spec_L(M)$ and it is called the finer patch-like topology (in fact, $\tilde{\Omega}(M)$ is a basis for the finer patch-like topology of M).

We will use \mathcal{X} to represent $Spec_L(M)$.

Lemma 2.3. Let M be an R-module and $Q \in \mathcal{X}$. Then for each finer patch-like-neighborhood W of Q, there exists a submodule L of M such that $\sqrt{(Q:M)} \subseteq \sqrt{(L:M)}$ and $Q \in \nu(Q) \cap \mathcal{U}(L) \subseteq \mathcal{W}$.

Proof. Since $Q \in \mathcal{W}$, there exists a neighborhood of the form $\nu(K) \cap \mathcal{U}(N) \subseteq \mathcal{W}$ such that $Q \in \nu(K) \cap \mathcal{U}(N)$ where $\sqrt{(Q:M)} \supseteq \sqrt{(K:M)}$ and $\sqrt{(Q:M)} \not\supseteq$ $\sqrt{(N:M)}$. Since $Q \in \nu(Q)$ and $\nu(Q) \subseteq \nu(K)$, we may replace $\nu(K)$ by $\nu(Q)$. Now we claim that $\nu(Q) \cap \mathcal{U}(N) = \nu(Q) \cap \mathcal{U}((I+p)M)$, where $p = \sqrt{(Q:M)}$ and $I = \sqrt{(N:M)}$. Since $\mathcal{U}(IM) \subseteq \mathcal{U}((I+p)M)$,

$$\nu(Q) \cap \mathcal{U}(N) = \nu(Q) \cap \mathcal{U}(IM) \subseteq \nu(Q) \cap \mathcal{U}((I+p)M).$$

Suppose that $Q' \in \nu(Q) \cap \mathcal{U}((I+p)M)$, then $Q' \notin \mathcal{U}(Q)$. On the other hand $Q' \in \mathcal{U}((I+p)M) = \mathcal{U}(N) \cup \mathcal{U}(Q)$. This follows that $Q' \in \mathcal{U}(N)$. Thus $\nu(Q) \cap \mathcal{U}(N) = \nu(Q) \cap \mathcal{U}((I+p)M)$. Now let L = (I+p)M. Then $p \subseteq I + p \subseteq \sqrt{(L:M)}$ and $Q \in \nu(Q) \cap \mathcal{U}(L) \subseteq \mathcal{W}$.

Let \mathcal{Y} be a subset of \mathcal{Y} for a module M. We will denote the closure of \mathcal{Y} in \mathcal{X} with finer patch-like topology by $\overline{\mathcal{Y}}$.

Proposition 2.4. Let M be an R-module and $\mathcal{Y} \subseteq \mathcal{X}$ be a finite set. If $Q \in \mathcal{Y}$ with finer patch-like topology, then there exists $\mathcal{A} \subseteq \mathcal{Y}$ such that $\nu(Q) = \mathcal{Y}$ $\nu(\bigcap_{Q'\in\mathcal{A}}Q').$

Proof. Suppose $Q \in \overline{\mathcal{Y}}$. If $Q \in \mathcal{Y}$, then we are thorough. Thus we can assume that $Q \notin \mathcal{Y}$. Let $\mathcal{A} = \{Q' \in \mathcal{Y} | \sqrt{(Q:M)} \subset \sqrt{(Q':M)} \}$. Since $Q \in \mathcal{Y}$ $\mathcal{U}(M) \cap \nu(Q)$, there exists $Q'' \in \mathcal{Y}$ such that $Q'' \in \mathcal{U}(M) \cap \nu(Q)$. Since $Q \notin \mathcal{Y}$, $\sqrt{(Q:M)} \subset \sqrt{(Q'':M)}$ and hence $A \neq \emptyset$. Since $\sqrt{(Q:M)} \subset \sqrt{(Q':M)}$ for each $Q' \in \mathcal{A}$,

$$\sqrt{(Q:M)} \subset \cap_{Q' \in \mathcal{A}} \sqrt{(Q':M)} = \sqrt{(\cap_{Q' \in \mathcal{A}} Q':M)}.$$

If $\cap_{Q' \in \mathcal{A}} \sqrt{(Q':M)} \nsubseteq \sqrt{(Q:M)}$, then $Q \in \mathcal{U}(\cap_{Q' \in \mathcal{A}} Q') \cap \nu(Q)$. Since $Q \in \overline{\mathcal{Y}}$, there exists $Q'' \in \mathcal{Y}$ such that $Q'' \in \mathcal{U}(\cap_{Q' \in \mathcal{A}} Q') \cap \nu(Q)$. Therefore $Q'' \in \nu(Q)$ and hence $Q'' \in \mathcal{A}$. But $\bigcap_{Q' \in \mathcal{A}} \sqrt{(Q':M)} = \sqrt{(\bigcap_{Q' \in \mathcal{A}} Q':M)} \subseteq \sqrt{(Q':M)}$. Thus $Q'' \notin \mathcal{U}(\bigcap_{Q' \in \mathcal{A}} Q')$, a contradiction. Thus $\bigcap_{Q' \in \mathcal{A}} \sqrt{(Q':M)} \subseteq \sqrt{(Q:M)}$, and hence and hence

$$\nu(Q) = \nu(\bigcap_{Q' \in \mathcal{A}} Q').$$

A module M over a commutative ring R is called a multiplication module if each submodule of M has the form IM for some ideal I of R [4]. In this case we can take I = (N : M).

Proposition 2.5. Let M be a multiplication R-module such that (Q:M) is a radical ideal for every $Q \in \mathcal{X}$. Then \mathcal{X} with the finer patch-like topology is Hausdorff. Moreover, \mathcal{X} with this topology is totally disconnected.

Proof. Assume $Q, Q' \in \mathcal{X}$ are distinct points. Since $Q \neq Q'$, $(Q:M) \neq (Q':M)$ M). Thus either $(Q:M) \nsubseteq (Q':M)$ or $(Q':M) \nsubseteq (Q:M)$. Suppose that $(Q:M) \nsubseteq (Q':M)$. By Definition 2.2, $\mathcal{U}_1 := \mathcal{U}(M) \cap \nu(Q)$ is a finer patchlike-neighborhood of Q and since $(Q:M) \nsubseteq (Q':M), \mathcal{U}_2 := \mathcal{U}(Q) \cap \nu(Q')$ is a finer patch-like-neighborhood of Q'. Clearly $\mathcal{U}(Q) \cap \nu(Q) = \emptyset$ and hence $\mathcal{U}_1 \cap \mathcal{U}_2 = \varnothing$. Thus \mathcal{X} is a Hausdorff space. On the other hand for every submodule N of M, observer that the sets $\mathcal{U}(N)$ and $\nu(N)$ are open in finer patch-like topology, since $\nu(N) = \mathcal{U}(M) \cap \nu(N)$ and $\mathcal{U}(N) = \mathcal{U}(N) \cap \nu(0)$. Since $\mathcal{U}(N)$ and $\nu(N)$ are complement of each other, they are both finer both-closed as well. Therefore the finer patch-like topology on \mathcal{X} has a basis of open sets which are also closed, and hence \mathcal{X} is totally disconnected in this topology. \square

The following example shows that the condition multiplication in Proposition 2.5 is necessary.

Example 2.6. Let V be a vector space over a field F with $\dim_F V > 1$. It is evident that \mathcal{X} and Spec(V) are the set of all proper vector subspaces of V. Now, $\sqrt{(Q:M)} = \sqrt{(Q':M)}$ for all distinct subspaces $Q, Q' \in \mathcal{X}$. If (Q:M)is a radical ideal for every $Q \in \mathcal{X}$, then \mathcal{X} with the finer patch-like topology is not Hausdorff.

Definition 2.7. An R-module M is called p-module if for each prime ideal p of R such that (pM:M)=p, there exists $Q\in\mathcal{X}$ such that $\sqrt{(Q:M)}=p$.

For example every finitely generated faithful module is a p-module. Now we show that every Noetherian R-module M is also a p-module.

Let p be a prime ideal of a ring R, M an R-module, and $N \leq M$. By the saturation of N with respect to p, we mean the contraction of N_p in M and designate it by $S_p(N)$. It is also known that $S_p(N) = \{m \in M | rm \in N \text{ for } m \in M | rm \in N \text{ for } m \in M \}$ some $r \in R \setminus p$. Saturations of submodules were investigated in detail in [10].

Lemma 2.8. Let M be a Notherian R-module. Then M is a p-module.

Proof. Assume M is a Notherian R-module. Hence M is finitely generated. By [11, Proposition 1.8], for each prime ideal p of R, $S_p(pM)$ is a prime submodule of M such that (pM:M)=p. Thus $S_p(pM)\in\mathcal{X}$.

Theorem 2.9. Let R be a ring and M be a p-module such that R/Ann(M)has ACC on ideals. If (N:M) is a radical ideal for every submodule N of M, then \mathcal{X} with the finer patch-like topology is a quasi-compact space.

Proof. Suppose M is a p-module and R/Ann(M) has ACC on ideals. Assume \mathcal{A} is a family of finer patch-like-open sets covering \mathcal{X} and suppose that no finite subfamily of \mathcal{A} covers \mathcal{X} . Suppose

 $\mathcal{S} = \{I | I \text{ is an ideal of } R \text{ such that } Ann(M) \subseteq I \text{ and no finite subfamily of } \mathcal{A} \}$ covers $\nu(IM)$.

Since $\nu(Ann(M)M) = \nu(0) = \mathcal{X}, \mathcal{S} \neq \emptyset$. We may use the ACC on ideals of R/Ann(M) to choose an ideal m of R maximal with respect to the property that no finite subfamily of A covers $\nu(mM)$ (i.e., m is a maximal element of S). It is clear that $mM \neq M$. We claim that m is a prime ideal of R, for if not, suppose that I and J are two ideals of R properly containing m and $IJ \subseteq m$. Then $\nu(IM)$ and $\nu(JM)$ covered by finite subfamily of \mathcal{A} . Suppose $Q \in \nu(IJM)$, then $IJ \subseteq p := \sqrt{(Q:M)}$. Since p is prime, either $I \subseteq p$ or $J\subseteq p$, and hence either $Q\in \nu(IM)$ or $Q\in \nu(JM)$. Thus $\nu(IJM)$ covered by a finite subfamily of A. Since $IJ \subseteq m$, then $\nu(mM) \subseteq \nu(IJM)$. Thus $\nu(mM)$ covered by finite subfamily of A, a contradiction. Thus m is a prime ideal of R. We claim that (mM:M)=m, for if not, then there exists an ideal m_1 of R such that $m_1 = (mM : M)$ and $m \subset m_1$. This follows that $mM = m_1M$ and so no finite subfamily of A covers $\nu(m_1M)$, contrary to maximality of m. Therefore (mM:M)=m and since M is p-module, there exists $Q'\in\mathcal{X}$ such that $\sqrt{(Q':M)} = m$. Let $U \in \mathcal{A}$ such that $Q' \in U$. By Lemma 2.3, there exists a submodule K of M such that $m = \sqrt{(Q':M)} \subseteq \sqrt{(K:M)}$ and

 $Q' \in \mathcal{U}(K) \cap \nu(Q') \subseteq U$. Suppose (K:M) = I. By Lemma 1.1, we know that $\mathcal{U}(K) = \mathcal{U}(IM)$ and $\nu(Q') = \nu(mM)$, and so $Q' \in \mathcal{U}(IM) \cap \nu(mM) \subseteq U$. Since $m \subseteq I$, then $\nu(IM)$ can be covered by some finite subfamily \mathcal{A}' of \mathcal{A} . But $\nu(mM)\setminus\nu(IM)=\nu(mM)\setminus[\mathcal{U}(IM)]^c=\nu(mM)\cap\mathcal{U}(IM)\subseteq U$ and so $\nu(mM)$ can be covered by $\mathcal{A}' \cup \{U\}$, contrary to our choice of Q'. Thus there must exist a finite subfamily of \mathcal{A} which covers \mathcal{X} . Therefore \mathcal{X} is quasi-compact in the finer patch-like topology of M.

It is well-known that if M is a Noetherian module over a ring R, then R/Ann(M) is a Noetherian ring. Hence we have the following result.

Corollary 2.10. Let M be a Noetherian R-module. If (N:M) is a radical ideal for every submodule N of M, then \mathcal{X} with the finer patch-like topology is a quasi-compact space.

Proof. Using Lemma 2.8 and Theorem 2.9.

We need the following evident lemma.

Lemma 2.11. Let $\mathcal{T}, \mathcal{T}^*$ be two topology on \mathcal{X} such that $\mathcal{T} \subseteq \mathcal{T}^*$. If \mathcal{X} is quasi-compact in \mathcal{T}^* , then \mathcal{X} is also quasi-compact in \mathcal{T} .

Theorem 2.12. Let M be an R-module. If \mathcal{X} is quasi-compact with the finer patch-like topology, then for each submodule N of M, $\mathcal{U}(N)$ is a quasi-compact subset of X with the Zariski topology. Consequently, X with the Zariski topology is quasi-compact.

Proof. By Definition 2.2, for each submodule N of M, $\nu(N) = \nu(N) \cap \mathcal{U}(M)$ is an open subset of \mathcal{X} with finer patch-like topology, and hence, for each submodule N of $M, \mathcal{U}(N)$ is a closed subset in \mathcal{X} with finer patch-like topology. Since every closed subset of a quasi-compact space is quasi-compact, $\mathcal{U}(N)$ is quasi-compact in \mathcal{X} with finer patch-like topology and so by Lemma 2.11, it is quasi-compact in \mathcal{X} with the Zariski topology. Now, since $\mathcal{X} = \mathcal{U}(M)$, \mathcal{X} is quasi-compact with the Zariski topology.

Corollary 2.13. Let M be an R-module. If \mathcal{X} is quasi-compact with finer patch-like topology, then the finer patch-like topology and the patch-like topology of M coincide.

Proof. By Theorem 2.12, for each submodule K of $M, \mathcal{U}(K)$ is quasi-compact. Therefore for each $N, K \leq M, \nu(N) \cap \mathcal{U}(K)$ is an element of the basis $\Omega(M)$ of the patch-like topology on \mathcal{X} .

Corollary 2.14. Let M be an R-module such that (N:M) is a radical ideal for every submodule N of M. If M is Noetherian or M is a p-module such that R/Ann(M) has ACC on ideals, then the finer patch-like topology and the patch-like topology of M coincide.

Proof. By Theorem 2.9 and Corollaries 2.10 and 2.13.

We conclude this section with the following results.

Corollary 2.15. Let M be a multiplication p-module such that (N:M) is a radical ideal for every submodule N of M and R/Ann(M) has ACC on ideals. Then X with the Zariski topology is a Hausdorf, quasi-compact, totally disconnected space.

<i>Proof.</i> By Proposition 2.5, Theorem 2.9 and Core	follary 2.13 .
--	------------------

Corollary 2.16. Let M be a multiplication Noetherian R-module such that (N:M) is a radical ideal for every submodule N of M. Then \mathcal{X} with the Zariski topology is a Hausdorf, quasi-compact, totally disconnected space.

Proof. By Lemma 2.8, Proposition 2.5, Theorem 2.9 and Corollary 2.13.

References

- [1] M. Alkan and Y. Tiraş, Projective modules and prime submodules, Czechoslovak Math. J. 56 (2006), 601-611.
- [2] H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh, On the prime spectrum of a module and Zariski topologies, Comm. Algebra 38 (2010), 4461–4475.
- [3] A. Azizi, Prime submodules and flat modules, Acta Math. Sin. (Eng. Ser.) 23 (2007), 47 - 152
- [4] A. Barnard, Multiplication modules, J. Algebra 71 (1981), 174–178.
- [5] J. Dauns, Prime modules, J. Reine Angew Math. 298 (1978), 156-181.
- [6] H. Fazaeli Moghimi and F. Rashedi, Zariski-like spaces of certain modules, Journal of Algebraic systems 1 (2013), 101-115.
- [7] K. R. Goodearl and R. B. Warfield, An Introduction to Non-commutative Noetherian Rings (Second Edition), London Math. Soc. Student Texts 16, 2004.
- [8] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 137 (1969), 43-60.
- [9] C. P. Lu, A module whose prime spectrum has the surjective natural map, Houston J. Math. 33 (2007), 125-143.
- [10] C. P. Lu, Saturations of submodules, Comm. Algebra 31 (2003), 2655–2673.
- [11] R. L. McCasland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain. J. Math. 23 (1993), 1041–1062.