jﬂ Appl. Gen. Topol. 22, no. 1 (2021), 31-46
‘H: doi:10.4995/agt.2021.13148

© AGT, UPV, 2021
APPLIED GENERAL TOPOLOGY

Further remarks on group-2-groupoids

SEDAT TEMEL

Department of Mathematics, Recep Tayyip Erdogan University, Turkey (sedat.temel@erdogan.edu.tr)

Communicated by E. Minguzzi

ABSTRACT

The aim of this paper is to obtain a group-2-groupoid as a 2-groupoid
object in the category of groups and also as a special kind of an inter-
nal category in the category of group-groupoids. Corresponding group-
2-groupoids, we obtain some categorical structures related to crossed
modules and group-groupoids and prove categorical equivalences be-
tween them. These results enable us to obtain 2-dimensional notions
of group-groupoids.
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1. INTRODUCTION

There are several 2-dimensional notions of groupoids such as double groupoids,
2-groupoids, and crossed modules over groupoids. The purpose of this pa-
per is to obtain 2-dimensional notions of group-groupoids which are internal
groupoids in the category of groups and widely used under the name of 2-
groups.

The term ” categorification”, which was first used by Louis Crane [13] in the
context of mathematical physics, is the process of replacing set-theoretic theo-
rems by category-theoretic concepts. The aim of categorification is to develop a
richer case of existing mathematics by replacing sets with categories, functions
with functors and equations between functions with natural isomorphisms be-
tween functors. In this approach, the categorified version of a group is called a
group-groupoid [2, 5]. Group-groupoids, which are also known as G-groupoids
[6] or 2-groups [4], are internal categories (hence internal groupoids) in the
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category Gp of groups [22, 23]. Equivalently, group-groupoids can be thought
as group objects in the category Cat of small categories [6, 23].

Another useful viewpoint of group-groupoids is to think them as crossed
modules over groups. Crossed modules which can be viewed as 2-dimensional
groups [7] are widely used in homotopy theory [8], homological algebra [16],
and algebraic K-theory [21]. The well-known categorical equivalence between
crossed modules and group-groupoids is proved by Brown and Spencer [6]. This
equivalence is introduced in [4] by obtaining a group-groupoid as a 2-category
with a unique object. Crossed modules, and their higher dimensional analogues,
provide algebraic models for homotopy n-types; the group-2-groupoids of this
paper in principle provide algebraic models for certain homotopy 3-types.

In the previous paper [1], the notions of a group-2-groupoid were introduced
and compared with a corresponding structure related to crossed modules over
groups. On the other hand, the main objective of this paper is to obtain
the structure of a group-2-groupoid as a 2-groupoid object in the category of
groups and also as a special kind of internal category in the category of group-
groupoids. In section 4, we present the notion of crossed modules over group-
groupoids and prove that there is a categorical equivalence between group-
2-groupoids and crossed modules over group-groupoids using the categorical
equivalence between 2-groupoids and crossed modules over groupoids given in
[17]. In section 5, we show that group-2-groupoids are categorically equivalent
to special kind of internal categories in the category of crossed modules.

2. PRELIMINARIES

Let C be a finitely complete category and Dy, Dy are objects of the ambient
category C. An internal category D = (Dy, D1, s,t,e,m) in C consists of an
object Dy in C called the object of objects and an object D; in C called the
object of arrows (i.e. morphisms), together with morphisms s,t: D1 — Dy,
€: Dy — Dj in C called the source, the target and the identity maps, respec-
tively,

—

S
Dy —=x Dy
7

such that se = te = 1p, and a morphism m: D; xp, D1 — D; of C called
the composition map (usually expressed as m(f,g) = go f) where Dy Xp, D;
is the pullback of s,t¢ such that es(f)o f = f = foes(f) [22]. An internal
groupoid in C is an internal category with a morphism n: Dy — D1, n(f) = f
in C called inverse such that fo f = Ly, f of = Lipy-

We write C(z, y) for all morphisms from z to y where z,y € Cy. If C(z,y) =
@ for all xz,y € Cy such that z # y, then C is called totally disconnected cate-

gory.

We introduce the definition of a 2-category as given in [4]. A 2-category
C = (Cy, C1,C3) consists of a set of objects Cp, a set of 1-morphisms C7, and
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a set of 2-morphisms C5 as follows:

with maps s: C1 — Cy, s(f) = x, sp: Co = Co, sp(a) = x, sy: Cy —
Cl, sv(a) = f, t: Cl — Co, t(f) =9y, th: CQ — CQ, th(Oé) =y, ly: CQ —
Cy, ty(a) = g, called the source and the target maps, respectively, the com-
position of 1-morphisms as in an ordinary category, the associative horizontal
composition of 2-morphisms op: Cy X, Co — Cy as

f f1 fiof
x e Yy (% z = x Joona 2,
~_ V" I~ V' ~__ VT~
g9 91 giog

where Cy x ¢, Co = {(«,0) € Cy x Ca|sp(d) = tn()} and the associative verti-
cal composition of 2-morphisms o, : Cs X, Cy — Cy as

f

g—> Y = x U’BOUO‘

\W —"

where Cs x¢, C2 = {(a, B) € Cy x Ca|s,(8) = t,(a)} such that satisfying the
following interchange rule:

(0 0y 6) on (Boya) = (0onB) oy (6on )

whenever one side makes sense, and the identity maps e: Cy — Cq,e(z) = 1,
en: Co = Ca, ep(x) = 11, such that o, 11, =a =11, oy and &,,: C1 = Co,
ev(f) = 1y such that a0, 1y = @ = 1, 0, @. Therefore, the construction of
a 2-category C = (Cp,C1,Cs) contains compatible category structures C; =
(Co, C1, 8,t,e,0), Co = (Co,Ca, 8, th,en,0p), and C3 = (C1, Ca, Sy, ty, 4,y 0y)
such that the following diagram commutes.

Ev
//\

CQ %Cl

\V4

Let C and C’ be 2-categories. A 2-functor is a map F: C — C’ sending each
object of C to an object of C’, each 1-morphism of C to 1-morphism of C’ and
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2-morphism of C to 2-morphism of C’ as follows:

f F(f)
TN —T T T
2V Zy = Flo) %F(y)
g g

such that F(f1 0 f) = F(f1) o F(f), F(dopa)=F(0)op F(a), F(Bo,a)=
F(B) oy F(a), F(11,) = 1pa,) = lipw), F(1y) = 1p(y). Hence 2-categories
form a category which is denoted by 2Cat [24].

A strict 2-groupoid is a 2-category all of whose 1-morphisms are invertible
and in which all 2-morphisms are invertible horizontally and vertically.

x Jo "y Jar "z = =z L, ~xz,T g——>y = x Jir Zy
N~ 7 \T/f S~ 7 \U/@U SN~ 7
g g 1s \/ Vi

f

Let G, G’ be 2-groupoids. A morphism of 2-groupoids is a 2-functor F': G —
G’ which preserves the 2-groupoid structures. Thus, 2-groupoids and their mor-
phisms form a category which is denoted by 2Gpd [24].

A group-groupoid is an internal category in Gp [22]. Also, a group-groupoid
can be obtained as a group object in the category Cat of small categories (or in
Gpd). A morphism of group-groupoids is a morphism of groupoids which pre-
serves group structures. Hence we can define the category of group-groupoids,
which is denoted by 2Gp or GpGd. For further details about group-groupoids,
see [24, 6, 4].

By a crossed module as defined by Whitehead, it is meant a pair M, N
of groups together with an action e: N x M — M of groups and a morphism
d: M — N of groups such that d(nem) = nd(m)n~! and d(m)em’ = mm'm=1!
[28, 29].

Let K = (M,N,0,e), K' = (M',N',0',#’) be crossed modules and A;: N —
N’, XAo: M — M’ be morphisms of groups. If A1, Ay satisfies the conditions
A10 = O'Ag and Aa2(nem) = Aj(n) o Aa(m), then (A2, A\1): K — K’ is called
morphism of crossed modules [6]. Hence crossed modules and their morphisms
form a category which we denote by Cm.

The following theorem was proved by Brown and Spencer in [6]:

Theorem 2.1. The category of group-groupoids and the category of crossed
modules are equivalent.

Let G = (X,G) and H = (X, H) be groupoids over the same object set X
such that # is totally disconnected. We recall from [8, 17, 11] that an action
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of G on H is a partially defined map
o:GxH—H, (g,h)—~geh
such that the following conditions satisfies

[AG 1] gehis defined if f t(h) = s(g), and t(g e h) = t(g),

[AG 2] (g2091)®h=gze(g1eh),
[AG 3] ge(hgohy) = (gehz2)o(gehq), for hy,hy € H(z,x) and g € G(z, y),
[AG 4] 1, eh =h, for h € H(z,z).

From this conditions, it can be easily obtain that ge1l, = 1,, for g € G(z,y).

Using this action of G on H, we can obtain a groupoid which is called semi-

direct product of G and H denoted by G x H. Let « AN Y L Yy are
morphisms of G and H, respectively, then (g, k) is a morphism as follows
(g;h)
T —>y
where the structure maps are defined by s(g,h) = s(g), t(g,h) = t(g), e(z) =
(1, 1,). If

g h g1 h1
T Yy Yy z z

then the composition of morphisms is defined by

(91,h1) 0 (g9,h) = (9109, h1 0 (g1 ®h)).

The notion of crossed modules over groupoids is introduced by Brown-
Higgins [9, 10] and Brown-Icen [11]. Let ¢ = (X,G) and H = (X, H) be
groupoids over the same object set X such that H is totally disconnected.
A crossed module X = (H,G,0,e) over groupoids consists of a morphism
0 = (1,0): H — G of groupoids which is identity on objects together with
an action e: G x H — H of groupoids which satisfies (ge h) = god(h) oG
and 9(h) e hy = hohyoh, for h,h; € H(z,z) and g € G(x,y).

Let K = (H,G,0,0) and K' = (H',G’,0’, @) be crossed modules over groupoids.
A morphism of crossed modules over groupoids is a mapping A = (Ag, A1, Ag): K —
K’ which satisfies \od = &’ \; and A1 (geh) = Aa(g)e’ A1 (h) where (Mo, A\1): H —
H' and (Ao, A2): G — G’ are morphisms of groupoids. Hence the category of
crossed modules over groupoids can be defined which we denoted by Cmg.

The following result was proved by Icen in [17]. Since we need some details
in section 4, we give a sketch proof in terms of our notations.

Theorem 2.2. The categories of 2-groupoids and of crossed module over groupoids
are equivalent.

Proof. For any 2-groupoid G = (G, G1,G2), we know that B = (Go,G1) is a
groupoid. Let A(z) = {a € Ga|sy(a) = e(x)}, for z € Gy and A = {A(x) }zeq,-
Then A = (Gy, A) is a totally disconnected groupoid. Now we define a functor

© AGT, UPV, 2021 Appl. Gen. Topol. 22, no. 1 |35



S. Temel

~v: 2Gpd — Cmg as an equivalence of categories such that v(G) = (A, B,0) is
a crossed module over groupoids with 9: A — B, 9(«) = ¢,(a) and an action
of groupoids such that fea =170, oy 1.

1y 7 1o f

z V Y
d(fec) f
Clearly O(f e ) = fod(a)o f an
and o, aq € A(x).

Let F' = (Fp, F1, F2) be a morphism of 2-groupoids. Then (F') = <F2‘A, R, Fy)
is a morphism of crossed modules over groupoids.

Now we define a functor #: Cmg — 2Gpd which is an equivalence of cat-
egories. Let K = (A,B,9) be a crossed module over groupoids A = (X, A)
and B = (X,B). Then 2-groupoid (K) = (X,B,B x A) is a 2-groupoid
which is constructed as in the following way. The set of 2-morphisms is the
semi-direct product B x A = {(b,a)|b € B,a € A, s(a) = t(a) = t(b)}. If

z—ts y —%=1y , then (b, a) is a 2-morphism as follows:

9(a)

o, =l

O(a)eay = aopaopal, for f € Gy(x,y)

b

T
d(a)ob

where the horizontal composition of 2-morphisms is defined by

(b1,a1) op (b,a) = (by ob,ay 0 (by ®a))

b . - . .
when y —— 2 — 5 > and the vertical composition of 2-morphisms is defined

by
(8(@) ob, ag) oy (bya) = (byaz o a)

when y ——> 1y . The source and the target maps are defined by s, (b,a) =
s(b), sy(b,a) = b,tp(b,a) = t(b),t,(b,a) = O(a) o b, respectively, the identity
maps are defined by ep(z) = (15,15),€4(b) = (b, 1), and the inversion maps

U

are defined by (b,a)" = (9(a) 0 b,a), (b,a) = (b,beq).
Let A = (A2, A1, A\g) be a morphism of crossed modules over groupoids. Then

9()\) = ()\O;A27)\2 X Al)

is a morphism of 2-groupoids.

A natural equivalence S: 0y — 12gpa is defined via the map Sg: 6v(G) — G
which is defined to be identity on objects and on 1-morphisms, on 2-morphisms
is defined by a — (f,a oy 17). Clearly Sg is an isomorphism and preserves
compositions.

Now, given a crossed module K = (A4, B,9,e) over groupoids, we define a
natural equivalence T': 1gmg — 78 by a map Tk : K — v8(K) which is defined
to be identity on objects and on B, while on A is defined by a — (s(a),a). O
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3. GROUP-2-GROUPOIDS

In [1], a group-2-groupoid is defined as a group object in 2Cat using similar
methods given in [6, 23]. In other words, a group-2-groupoid G is a small
2-groupoid equipped with the following 2-functors satisfying group axioms,
written out as commutative diagrams

(1) p: G x G — G called product,
(2) inv: G — G called inverse and
(3) id: {x} — G (where {x} is a singleton) called unit or identity.

a a’
T . .
Then, the product of a:/l_}F\y and 2’ Vo _y' is written by
~_ 7 ~_ 7
b b

a-a’ a a1
T T AL
s a7t oyt
—1

x.x’my'y/,the inverse of I/Ua\y i
Ve ~N— 7
b-b’ ’ ’

1c
where id{x} = e /EF e . The condition 1 above gives us the following
\1_//

interchange rules
(ar0a)- (d) 0a') = (a - a}) o (a-a),
(0 ona)-(6"op ) =(d-0") on (aa’),
(Bova): (B opa’)=(B-p) oy (o)

whenever compositions are defined. We can obtain from the condition 2 that
(aroa)™ =a;toa™l, bopa)™t =6 topa™l, (Bo,a)™ =5 1o,al,
1,0 = 1,1, 1;; =1, , and 1;1 = 1,-1. Moreover, the structure of a
group-2-groupoid G = (G, G1, G2) contains compatible group-groupoids G =
(GQ, Gl), G/ = (GQ, GQ) and GH = (Gl, Gg) [1]

Equivalently we shall describe a group-2-groupoid as a 2-groupoid object
in the category Gp of groups. Let Cp,C7 and Cy be objects of a finitely
complete category C. If C; = (Cy, C1, 8, t,¢,0), Ca = (Co, Ca, Sp, th, €n, 0p), and
Cs = (C4,Cq, sy, ty, €y,0,) are internal categories in C such that the following
diagram commutes whenever the usual interchange rule satisfies between oy,
and o, then (Cp,C1,Cs) is called an internal 2-category in C.

=
‘T

Sy
Cs
ty
Eh

Y/

th
Sh
C
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Proposition 3.1. A 2-category object in Gp is a group-2-groupoid.

Proof. Let G = (Go,G1,G2) is a 2-category object in Gp and ug, g1, pe be
multiplications of groups Gy, G1, G2, respectively. Then, we can define a
multiplication p: G x G — G as a 2-functor such that 4 = g on objects,
1 = pq on l-morphisms and p = uo on 2-morphisms. Similarly, we can define
2-functors id: 1 — G (where 1 is the terminal object of 2Cat, i.e. the one-
object discrete 2-category) which picks out an identity object, an identity 1-
morphism and an identity 2-morphism and inv: G — G picks out inverses for
multiplications. Since @ = 1S(a)a_11t(a) from [6] and a¥ = 1su(a)a_11tu(a),
a = 115}L(Q)a_111th(a) from [1], G is a 2-groupoid. Then, G is a group object
in 2Cat and so G is a group-2-groupoid. ([l

Example 3.2. Every group-groupoid can be thought as a group-2-groupoid in
which all 2-morphisms are identities as follows:

a-a
PTIEEN T A T
T J1a _y x V1. "y = =z-2 Jlow _y-y/
a a a-a

It is mentioned that a group-groupoid is a 2-category with a single object
[4]. Then, we shall need a different viewpoint on group-groupoids as a special
kind of group-2-groupoids:

Proposition 3.3. A group-2-groupoid with a single object is a group-groupoid
in which both groups are necessarily abelian.

Proof. In this approach, the composition of 1-morphisms and the horizontal
composition of 2-morphisms are defined by multiplications of groups as follows:

a a’ a’xa
T T TN
* | o * o * = % | a’'sa_ *
~_ V" AT~ VY ~— Ve
b b’ b’ xb

It is proved in [23] that ¢’ xa = a’ - a = a - o’. Using similar way, we get
adxa=( 1)*(lg-a)=(ax1.)  (lexa)=d -«
and
/

o a=(1.xd) (axly) = -a)*(a -1.)=a-.

O

A third way to understand group-2-groupoids is to view them as double
group-groupoids which are defined in [26] (see also [27]). Recall that a double

category is a category object internal to Cat. Hence the structure of a double
category contains four different but compatible category structures as partially
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shown in the following diagram

€
e

S
D2—>DY

b

~
€

where DI and D} are called horizontal and vertical edge categories, respec-
tively, and Dy is called the set of squares. For further details, see [12, 14, 15, 20].
The structure of a 2-category may be regarded as a double category in which
all vertical morphisms are identities (or Dy and DI have the same objects)
[12, 20]. Therefore, a group-2-groupoid is a special kind of an internal category
in the category GpGd of group-groupoids.

4. CROSSED MODULES OVER GROUP-GROUPOIDS

In this section, we work on crossed modules over groupoids by replacing
such groupoids with group-groupoids. Using the natural equivalence between
crossed modules over groupoids and 2-groupoids given in [17], we will prove
that there is a categorical equivalence between group-2-groupoids and crossed
modules over group-groupoids.

Definition 4.1. Let G = (X,G) and H = (X, H) are group-groupoids over
the same object set, H be totally disconnected and K = (H, G, d) be a crossed
module over G and ‘H such that 0 is a homomorphism of group-groupoids and
the following interchange rule holds:

(goh)- (g eh')=(g-g')e(h-h)
where g,9' € G,h,h' € H. Then K is called a crossed module over group-

groupoids.

A morphism of crossed modules over group-groupoids is a morphism of
crossed modules of groupoids which preserves group structures. Then, we can
construct the category of crossed modules over group-groupoids which we de-
note by Cmg*.

Theorem 4.2. The categories Cmg* and Gp2Gd are equivalent.

Proof. The idea of the proof is to show that the functor of 2.2 restricts to an
equivalence of categories. Let A = (X, A) and B = (X, B) are group-groupoids
and K = (A, B, 9) is a crossed module over A and B. Then §(K) = (X, B, Bx A)
is a group-2-groupoid via the process of the proof 2.2. The group multiplication
of 2-morphisms in §(K) is defined by

(bya)-(b',a')=(b-b,a-d).
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We draw such pairs as

b b b-b’
T T T — o T
T U(b,a y - ! \Uw—/ y/ — x-x U (b-b',a-a’) Y- y/
~__ V7 — v
d(a)ob 9(a’)ob’ 9(a-a’)o(b-b")

Now we will verify that compositions and the group multiplication satisfy the
interchange rule.

[(bl,al) on (b,a)} : [(b’l,a;) on (b/,a/)} (b1 ob,ar o (by e a))} : [(b; ot d) o (b, e a’))}

[

(blob blob)<a1o<b1-a)-<aao<b’1-a’>))
= ( (a1 - a}) o ((by ea) a')))

(-

[

. -2 (-4 a0
= (b bl,al al) (b-b,a-a)

biar) - (6, 0)] o [(b,0) - ()]

and

[(0(a) ob,a2) 00 (b.a)| - [(0(a') 0¥ ) 0y (W) = (baz0a)- (¥, ap0a)

b- (a2 az) (a-a'))

[a b, az.ag} oy (b-H,a-d)
(0

Yob,az) - (d(a") oV, a’g)] Oy [(bv a)- (¥, a’)}

(
(

whenever all above compositions are defined.

Now let G = (Go, G1,G2) be a group-2-groupoid. Then (G) is a crossed
module over groupoids internal to Gp. We will verify that the interchange law
holds:

(foa)-(f’oo/) = (lj'OhOLOh:l?)'(1f/OhO/Ohle,) = lf.f/oh(oro/)ohlﬁ = (f-f/).(Oé'Oé/)
Now we will show that Sg preserves the group multiplication:
Sg(a-a') = (f-fi(a-a)opl5p)
- (f ff (e d)op (15 17))
= (-1 (@ontp)- (@ onip)
= (fraonly) - (f',a op 14)
= Sg(a)-Sg(a’)

Other details are straightforward and so are omitted. (I
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5. GROUP-2-GROUPOIDS AS INTERNAL CATEGORIES IN CM

A group-2-groupoid can be also thought as a special case of an internal
category in the category Cm of crossed modules (see, e.g., [25] and [26] for
more details about internal categories in Cm). This idea comes from that
the structure of a group-2-groupoid contains three compatible group-groupoid
structures. Given a group-2-groupoid, we can extract crossed modules as fol-
lows:

€o &y
/\ h
. Gy Ker(sy) ————= Ker(s

W - A

Then, we obtain an internal groupoid in Cm

(Ker(spn),Go) i:; (Ker(s),Go)

where the structure maps are defined by s = (s,,1), t = (ty,1), € = (g,,1) as
morphisms of crossed modules. Here s, 1, € are equivariant maps, since s,(z e
a) =zesy(a), ty(zea)=rxet,(a) and e,(z o f) =z oc,(f), for all z € Gy
and o € Ker(sp). The actions of Gy on Ker(sp) and on Ker(s) are drawn in
the following diagram:

zeof 1, f ;
e |} zea zyz L= g {11, T - e e y - ! ,
T~ Y > ~_ Y 7 ~__ "V 7

xeg 1y g

We denote the category of such internal groupoids in Cm by IGCm. We
know from [25, 26] that internal categories in the category Cm of crossed mod-
ules are naturally equivalent to crossed squares which in turn should be viewed
as a ”crossed module of crossed modules”. Hence an object of the category
IGCm can be viewed as a special kind of crossed square.

Let & = (Go,G1,X,0p,01) be an object of IGCm. Then, the following

diagram is commutative.

€

< g T
s

N A

X

Gi Go
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Let & = (Go,G1,X,00,01),8" = (G, G}, X', 0),07) be objects of IGCm. If
(A1, A2) is an endomorphism of the group groupoid G = (Go, G1), and (A1, o),

(A2, Ag) are morphisms of crossed modules (G, X, dp), (G1, X, 01), respectively,
then A = (A2, A1, A\g) is called a morphism of IGCm.

Lemma 5.1. Let & = (Go, G1,X, 0o, 01) be an object of IGCm. Then
ve(Boa)=(weB)o(zea)
for x € X, o, B € G1 where s(8) = t(a).

Proof. Let a —==b L ¢ . We know from [6] that Soa = ﬁ-l;l -a. Then,
we get

ze(foa) = ze(B-1,' a)

= (zef)-(zel;') (zeq)
(op) (zoly)™" (zea)

= (a:oﬂ)-l;l.b)~(a:ooz)

= (zefolzea)

O

Example 5.2. Every crossed module K = (M, N, d) over groups is an object
of IGCm with the discrete groupoid of M where ne1,, = 1,e,, and 01 (1,,) =
a(m).

Theorem 5.3. There is an equivalence between IGCm and Gp2Gd.

Proof. A functor v: Gp2Gd — IGCm is defined in the following way. Let
‘H = (Hy, Hi1, H2) be a group-2-groupoid. Then vy(H) = (Go, G1, X, 0, 01) is
an object of IGCm where Gy = Ker(s), Gy; = Ker(sy), X = Hg, 0y =

t’Ker(s) and 9y = th‘Ker(sh,)
51} e
//\
Hy—/———=H, G ——=Go

LY EERV:

with actions ze f = 1,-f-1;! and rea = 112~o¢-1le, forx e X, f € Go,a € Gj.
Now we will verify that s’,t’,&’ are equivariant maps.

s'(zea) = s'(14, -a-lle) = sv(llx)-sv(a)-sv(lle) =1,-5.(a)- 1, = zes'(a),

Pwea) = (L, -a- 111 = t,(10,) -tu(0) -to(11)) = Lo -tu(a) - 1,1 = 2o (@)
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and

El(x.f) = El(lw'f'lm_l) = Ev(lm)'gv(f)'gv(lz_l) = 11:1: 'Ev(f)'lfml = ;[;.g'(f),
Let F = (Fy, F1, F») be a morphism of group-2-groupoids. Then (F) =
(F2lker(sn)s Filiker(s)s Fo) is a morphism of IGCm.

Next, we define a functor §: IGCm — Gp2Gd is an equivalence of cat-
egories. Given an object & = (Gp, G1, X, dp,01) of IGCm, we can obtain a
group-2-groupoid 6(®) = H = (Hy, Hy, Ha) where Hy = X, Hy = XX Gy, Hy =
X x G; as in the following way. Let a ——=b be a morphism of &. Then

pairs ) Oo(a)-x and zx N Oo(b) -z are obtained as morphisms of

the group-groupoid (Hy, H1), and a pair « ﬂ O1(a) - is obtained as a
morphism of the group-groupoid (Hy, Hs). Since
O1(a) - x=0ps(a) - x=0(a) -z, 0O1(a)- z=0t(a) x=0y(b)-x,

then (z, ) can be considered as a 2-morphism as follows:

Let a —2>b—"wc. Then, the vertical composition of (z,«) and (z,3) is
defined by

(‘Taﬁ) Oy (‘TaO‘) = (z,800)
where the source and the target maps are defined by s,(z, @) = (z, s(a)) and
ty(z, ) = (z,t(a)), respectively, and the identity map is defined by €,(z,a) =

(2,1,). Given morphisms a —2>b and a; — by , we obtain pairs (z, a),
(01(a) - 2, 1) and we define their horizontal composite by
(O1(@) - z,01) op (z,0) = (z,001 - @)

where the source and the target maps are defined by sp(x, ) = x,tp(z, ) =
O01(a) -z, respectively, and the identity map is defined by e,(z) = (z,1.).
Clearly the vertical composition and the horizontal composition satisfy the
usual interchange rule. The product of (z,«) and (2, a’) is written by

(r,0) - (0 = (2 -2 (z 0 a’)
for a —==b and a’i>b’.

If A = (A2, A1, Ag) is a morphism of &, then §(A\) = (Ao, Ao X A1, Ao X A2) is
morphism of 6(&).

A natural equivalence S: lgp2aga — 07 is defined with a map Sg: G —
04(G) which is defined such that to be the identity on objects, Sg(f) =

© AGT, UPV, 2021 Appl. Gen. Topol. 22, no. 1 |43



S. Temel

(z, f-1;1) and Sg(a) = (a:,oz-ll_zl) for f € G1,a € G2 where x = s(f) = sp(a).
Clearly Sg is an isomorphism and preserves the group operations and compo-
sitions as follows:

Sg(e) - Sg(a) = (z,a-17))- (2,0 -17))

/

where s(a) =z, s(a/) =2/,

Sg(donar) = Sg(8-17 -a) = (z,6-17 F-a-11)) = (y,6-17 o (w, a-17)) = Sg(8)onSg ()

where t(a) = s(6) = y and

So(8) o0 Sg(a) = (@.B-13))eu (x,a- 1))
= (& 100 (@ 11))
= (2.(Bov@)- (13} 0, 13)

where s,(8) = t, ().
To define a natural equivalence T: ligcm — 79, a map T is defined such
that to be identity on X, Tw(a) = (e,a) for a € Gy and T (a) = (e, ) for

a € G1. Obviously T is an isomorphism and preserves the composition and
the group multiplication as follows:

Te(Boa)=(e,foa) = (e )0 (e,a) = Te(f) o T ()

Te(a) Te(d) = (e,a) - (e,a') = (e,a-(eoa')) = (e,a ') =T (a- ).

Other details are straightforward and so are omitted. ([
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