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Metric topology on the moduli space

Jialong Deng

Mathematisches Institut, Georg-August-Universität, Göttingen, Germany

(jialong.deng@mathematik.uni-goettingen.de)

Communicated by S. Romaguera

Abstract

We define the smooth Lipschitz topology on the moduli space and show

that each conformal class is dense in the moduli space endowed with

Gromov-Hausdorff topology, which offers an answer to Tuschmann’s

question.
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1. Introduction

Any smooth closed manifold M can be given a smooth Riemannian metric,
and then one can ask: How many Riemannian metrics are there, and how many
different geometries of this kind does the manifold actually allow? That means
one wants to understand the space of Riemannian metrics on M , which is
denoted by R(M), and the moduli space which is denoted by M(M). Here the
moduli space is the quotient space of R(M) by the action of diffeomorphism
group of M . Those two questions originated from Riemann when he set up
Riemannian geometry in the nineteenth century ([1]). Especially, the moduli
space M(M) is the superspace in physics (see [10], [4], [3]).

The Cn,α-compact-open topology (n ∈ N
+ and α ∈ R

+) is the most com-
mon consideration [9]. Tuschmann asked the following question in [8, Sec-
tion 3, (8)]: What can one say about the topology of moduli spaces under the

Gromov-Hausdorff metric? What if one uses the Lipschitz topology?
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2. Metric topology

Inspired by Tuschmann’s questions, we will introduce four kinds of metric
topology on the moduli space, and then discuss the relationship among them.

Let X and Y be metric spaces of finite diameter, then the Gromov-Hausdorff
distance is defined as ρGH(X,Y ) := inf

Z
{dZH(f(X), g(Y ))}, where dH is Haus-

dorff metric and Z takes all metric spaces such that f (resp. g) are isomet-
ric embeddings X (resp. Y ) into Z (see [5]). The Gromov-Hausdorff dis-
tance ρGH is a pseudo-metric in the collection of all compact metric spaces.
Furthermore, ρGH(X,Y ) = 0 if and only if X is isometric to Y . For g1
and g2 in R(M), the Gromov-Hausdorff distance can be defined on it by
ρGH(g1, g2) = ρGH((M,d1), (M,d2)), where d1 and d2 are induced metrics
on M by g1 and g2. Since M is closed, the Gromov-Hausdorff distance is
well-defined on R(M). Moreover, ρGH(f∗

1 g1, f
∗
2 g2) = ρGH(g1, g2), where f1

and f2 are diffeomorphism of M and f∗
1 g1, f

∗
2 g2 are push-back metrics on M .

Then one can define ρGH on M(M) as above and then ρGH is a metric on
M(M). Therefore, M(M) can be endowed with the metric topology called
GH-topology by the Gromov-Hausdorff metric ρGH .

Definition 2.1 (Edwards [3]). A map f : X → Y is called an ε-isometry
between compact metric spaces X and Y , if |dX(a, b)− dY (f(a), f(b))| ≤ ε for
all a, b ∈ X .

Definition 2.2 (ε-distance). Assume g1 and g2 are in R(M), then we define
the ε-distance by

ρε(g1, g2) := ρε(d1, d2) = inf {ε | Iε(d1, d2) 6= φ 6= Iε(d2, d1)} ,

where Iε(d1, d2) are the set of ε-isometries from (M,d1) to (M,d2).

Remark 2.3. Note that

|Diam(d1)−Diam(d2)| ≤ ρε(d1, d2) ≤ max{Diam(d1),Diam(d2)},

where Diam(di) is the diameter of (M, gi), i = 1, 2. Thus, ρε is well-defined on
R(M). Moreover, ρε is the pseudo-metric and ρε(g1, g2) = 0 if and only if g1
is isometric to g2 on R(M).

Then ε-metric, which is also denoted by ρε, can be defined on M(M) as
ρGH . Thus, it induces a metric topology on M(M) called ε-topology. The
conformal class dense theorem of the ε-topology on M(M) was proved by Liu
in [7, Corollary 2.2].

Theorem 2.4 (Liu [7]). Each conformal class is dense in M(M) that is en-

dowed with ε-topology.

Lemma 2.5. If ρGH(X,Y ) ≤ ε, then there is a 2ε-isometric map f : X → Y .

If there is an ε-isometric map f : X → Y , then ρGH(X,Y ) ≤ 3
2
ε.

Remark 2.6. The lemma can be proved by using another definition of Gromov-
Hausdorff metric, i.e. ρGH(X,Y ) = 1

2
inf
R

{dis (R)}, where the infimum is taken
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over all correspondences R ⊆ X × Y . A correspondence between two metric
spaces X and Y is a subset R of X×Y such that the projections πX : X×Y →
X and πY : X × Y → Y remain surjective when they are restricted to R.

Corollary 2.7. ε-topology is equivalent to GH-topology on M(M).

Thus, the conformal class dense theorem is also true on GH-topology. That
means the GH-topology is coarse and a finer topology is needed to define on
M(M).

Let X and Y be two compact metric spaces, the dilation of a Lipschitz map
f : X → Y is defined by

Dil(f) := sup
a,b∈X,a 6=b

dY (f(a), f(b))

dX(a, b)
.

If f−1 is also a Lipschitz map then it is called the bi-Lipschitz homeomor-
phism. The Lipschitz-distance ρL between X and Y is defined by

ρL(X,Y ) := inf
f :X→Y

log{max{Dil(f),Dil(f−1)}},

where the infinum is taken over all bi-Lipschitz homeomorphisms between X

and Y . Then the Lipschitz-distance ρL can be defined on R(M) as the defini-
tion of Gromov-Hausdorff distance on R(M).

Moreover, ρL is pseudo-metric onR(M) and ρL(g1, g2) = 0 if and only if g1 is
isometric to g2 (see [2, Theorem 7.2.4]). Thus, it can induce a Lipschitz-metric
ρL on M(M), and then ρL induces the Lipschitz-topology on M(M) called L-
topology. Furthermore, Lipschitz convergence implies Gromov-Hausdorff Con-
vergence, where the convergence means Cauchy sequence convergence related
to their metrics (see [6, Proposition 3.6]).

Proposition 2.8. L-topology is finer than GH-topology on M(M).

The GH-topology and L-topology on M(M) only catch the metric informa-
tion of the basic manifold and lose much essential information of the smooth
structure. So it may be useful to modify the definition of L-topology on M(M)
to a finer topology on M(M).

For any homorphism of metric space f : (X, dX) → (Y, dY ), the Lipschitz
constant of f is defined by

L(f) := inf{k ≥ 1 |
dX(x, y)

k
≤ dY (f(x), f(y)) ≤ kdX(x, y), x, y ∈ X}.

If the set is empty, then let L(f) be infinity.

Lemma 2.9. Suppose that M and N are smooth closed Riemannian manifolds,

then any diffeomorphism of M and N has bounded Lipschitz constant.

Remark 2.10. The normal of tangent maps of diffeomorphism on the unit tan-
gent bundle over closed manifold are uniform bounded, since the tangent maps
are continuous and the total spaces of unit tangent bundle over compact man-
ifold are compact.
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For the composition of diffeomorphism f ◦ g : M → N → W , we have
L(f ◦ g) ≤ L(f) · L(g) by direct computation.

Definition 2.11. Assume g1 and g2 are in R(M), we define

ρSL(g1, g2) = ρSL((M,d1), (M,d2)) := inf{logL(f) | f ∈ Diff},

where Diff is the diffeomorphism group of M .

Lemma 2.12. ρSL is a pseudo-metric on R(M) and ρSL(g1, g2) = 0 if and

only if g1 is isometric to g2 on M .

Remark 2.13. If ρSL(d1, d2) = 0, then the isometry map between (M,d1) and
(M,d2) can be constructed by using the closeness of M and the Arzela-Ascoli
theorem.

Continuing the game, one can define the metric topology on M(M) called
SL-topology by the metric ρSL.

Theorem 2.14. SL-topology � L-topology � GH-topology ∼= ε-topology.

Usually those four metrics are not complete metrics on M(M), so M(M)
is local compact topology spaces endowed with their induced metric topology
in general. But if we restrict it to the subset of M(M), it may have some
precompact propositions. For example, Gromov precompactness theorem and
other convergence theorems on the moduli space [6, Chapter 5].

For the non-compact case, one can ask what is the right topology on R≥0(V )
and M≥0(V ), where V is a non-compact manifold, R≥0(V ) is the Riemannian
metric with non-negative sectional curvature, and M≥0(V ) is the moduli space
of V with non-negative sectional curvature?
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