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ABSTRACT

Let T be an ideal on N and f : X — Y be a mapping. f is said to
be an I-quotient mapping provided f~*(U) is Z-open in X, then U is
T-open inY. P is called an Z-cs'-network of X if whenever {x., }nen is
a sequence Z-converging to a point x € U with U open in X, then there
is P € P and some no € N such that {x,zn,} C P C U. In this paper,
we introduce the concepts of I-quotient mappings and Z-cs’-networks,
and study some characterizations of I-quotient mappings and Z-cs’-
networks, especially J-quotient mappings and J-cs’-networks under
a maximal ideal J of N. With those concepts, we obtain that if X
is an J-FU space with a point-countable [J-cs'-network, then X is a
meta-Lindel6f space.
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1. INTRODUCTION

Statistical convergence was introduced by H. Fast [9] and H. Steinhaus [16],
which is a generalization of the usual notion of convergence. It is doubtless that
the study of statistical convergence and its various generalizations has become
an active research area [2, 3, 7, 17, 18]. In particular, P. Kostyrko, T. Salat
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and W. Wilczynski [11] introduced two interesting generalizations of statistical
convergence by using the notion of ideals of subsets of positive integers, which
were named as Z and Z*-convergence, and studied some properties of Z and
T*-convergence in metric spaces. Later, B.K. Lahiri and P. Das [12] discussed
T and Z*-convergence in topological spaces. Some further results connected
with Z and Z*-convergence can be found in [4, 5, 6].

As we know, mappings and networks are important tools of investigating
topological spaces. Continuous mappings, quotient mappings , pseudo-open
mappings, cs-networks, sn-networks, k-networks and so on are the most impor-
tant tools for studying convergence, sequential spaces, Fréchet-Urysohn spaces
[14] and generalized metric spaces. For this reason, this paper draws into Z-
quotient mappings and Z-cs’-networks for an ideal Z on N and discusses some
basic properties of them.

Recently, the researches on Z-convergence are mainly focused on aspects of
T*-convergence [12], Z-limit points [11], Z-Cauchy sequence [5], ideal-convergence
classes [4], selection principles [6], ideal sequence covering mappings [15, 19] and
so on. It is expected that Z-quotient mappings and Z-cs’-networks will also play
active roles in the topological spaces.

In this paper, the letter X always denote a topological space. The cardi-
nality of a set B is denoted by |B|. The set of all positive integers, the first
infinite ordinal, and the first uncountable ordinal are denoted by N, w and wy,
respectively. The reader may refer to [8, 14] for notation and terminology not
explicitly given here.

2. PRELIMINARIES

Recall the notion of statistical convergence in topological spaces. For each
subset A of N the asymptotic density of A, denoted §(A), is given by

o1 .
5(A) = nhﬁngo ﬁ‘{k € A:k<n},

if this limit exists. Let X be a topological space. A sequence {z,}nen in X is
said to converge statistically to a point x € X [7], if

d{neN:z,¢U})=0, ie,é({neN:z,cU})=1
for each neighborhood U of z in X, which is denoted by s- li_>m Ty = X OF

The concept of Z-convergence of sequences in a topological space is a gen-
eralization of statistical convergence which is based on the ideal of subsets of
the set N of all positive integers. Let A = 2N be the family of all subsets of
N. An ideal T C A is a hereditary family of subsets of N which is stable under
finite unions [11], i.e., the following are satisfied: if B C A € Z, then B € T; if
A,B €7Z,then AUB € Z. An ideal 7 is said to be non-trivial, if Z # @ and
N ¢ Z. A non-trivial ideal Z C A is called admissible if Z O {{n} : n € N}.
Clearly, every non-trivial ideal Z defines a dual filter Fz = {A CN:N\ A € I}
on N.
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Let Z; be the family of all finite subsets of N. Then Z; is an admissible
ideal. Let Zs [11] be the family of subsets A C N with 6(A) = 0. Then Z; is an
admissible ideal, and the dual filter Fz, = {A C N:§(A) = 1}.

Definition 2.1 ([11]). A sequence {z,}nen in a topological space X is said to

be Z-convergent to a point x € X provided for any neighborhood U of z, we

have {n € N: z,, ¢ U} € Z, which is denoted by Z- lim z,, = x or z, = ,
n— oo

and the point z is called the Z-limit of the sequence {z, }nen.

Definition 2.2 ([20]). Let Z be an ideal on N and X be a topological space.

(1) A subset F' C X is said to be Z-closed if for each sequence {z,, }neny C F
with 2, & ¢ € X, we have 2 € F.

(2) A subset U C X is said to be Z-open if X \ U is Z-closed.

(3) X is called an Z-sequential space if each Z-closed subset of X is closed.

Obviously, each sequential space is an Z-sequential space [20].

Definition 2.3 ([20]). Let Z be an ideal on N, X, ¥ be topological spaces and
f+X — Y be a mapping.
(1) fis called preserving Z-convergence provided for each sequence {z, }nen
in X with z,, = x, the sequence {f(x,)}nen Z-converges to f(z) [12].
(2) f is called Z-continuous provided U is Z-open in Y, then f~1(U) is
Z-open in X.

It is easy to verify that a mapping f : X — Y is Z-continuous if and only if,
whenever F is Z-closed in Y, then f~1(F) is Z-closed in X.

Lemma 2.4 ([20]). Let Z be an ideal on N and X be a topological space. If
a sequence {Tp tnen I-converges to a point x € X, and {yn tnen s a sequence
in X with {n € N: xz, # yn,} € Z, then the sequence {yn}nen Z-converges to
reX.

Lemma 2.5 ([20]). Let Z be an ideal on N. The following are equivalent for a
topological space X and a subset A C X.
(1) A is T-open.
(2) {neN:z, € A} ¢ T for each sequence {zy }nen in X with x, = x €
A.
(3) {n € N: z, € A}| = w for each sequence {x,}nen in X with x, =
z e A

Lemma 2.6 ([20]). Let X, Y be topological spaces and f : X — Y be a
mapping.

(1) If f is continuous, then f preserves I-convergence [12].

(2) If f preserves T-convergence, then f is T-continuous.

Definition 2.7 ([20]). Let A C X and {x,}nen be a sequence in X. If 7 is
an ideal on N; then {z, }nen is Z-eventually in A if there is E € Z such that
foralln e N\ E,z,, € A.
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If A is a subset of X with the property that every sequence Z-converging to
a point in A is Z-eventually in A, then A is Z-open. When we assume J to be
a maximal ideal, the following proposition shows that such sets must coincide
with J-open sets.

Proposition 2.8 ([20]). If J is a mazimal ideal of N, then A C X is J-open
if and only if for each J-converging sequence {, Ynen with x, <> x € A, then
{Zn}nen is J-eventually in A.

By Definition 2.2, the union of a family of Z-open sets in a topological space
is Z-open. Whenever J is a maximal ideal, the intersection of two J-open sets
is an J-open set.

Proposition 2.9 ([20]). If J is a mazimal ideal of N and U,V are two J -open
subsets of X, then UNYV is J-open in X.

It is well known that the sequential coreflection sX of a space X is the set
X endowed with the topology consisting of sequentially open subsets of X. Let
J be a maximal ideal of N and X be a topological space. By Definition 2.2
and Proposition 2.9, the family of all [J-open subsets of X forms a topology of
the set X. The J-sequential coreflection of a space X is the set X endowed
with the topology consisting of J-open subsets of X, which is denoted by J-
sX. The spaces X and J-sX have the same [J-convergent sequences; J-sX
is an J-sequential space; a space X is an J-sequential space if and only if
J-sX = X [20].

If no otherwise specified, we consider ideal Z is always an admissible ideal
on N, all mappings are continuous and surjection, all spaces are Hausdorff.

3. Z-QUOTIENT MAPPINGS

In this section, we introduce the concept of Z-quotient mappings, and obtain
some characterizations of Z-quotient mappings, especially J-quotient mappings
under a maximal ideal of N. Let X,Y be arbitrary topological spaces, and
f: X =Y be a mapping. f is said to be quotient provided f~1(U) is open in
X, then U is open in Y; f is said to be sequentially quotient provided f~1(U)
is sequentially open in X, then U is sequentially open in Y [1].

Definition 3.1. Let Z be an ideal on N and f : X — Y be a mapping.

(1) f issaid to be an Z-quotient mapping (or shortly, Z-quotient) provided
f~Y(U) is Z-open in X, then U is Z-open in Y.

(2) f is said to be an Z-covering mapping (or shortly, Z-covering) if, when-
ever {yn tnen is a sequence in Y Z-converging to y in Y, there exist a
sequence {Z, fnen of points z,, € f~1(y,) for alln € Nand z € f~1(y)
such that z,, = x.

In [20], it was showed that each Z-covering mapping is Z-quotient.
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Definition 3.2. Let Z be an ideal on N, X be a topological space and P C X.
P is called an Z-sequential neighborhood of z, if each sequence {z,}nen Z-
converges to a point « € P, then {z,},cn is Z-eventually in P, i.e., there is
I'€Zsuchthat {neN:z, ¢ P} =1

Remark 3.3. Let J be a maximal ideal of N and A C X. By Proposition 2.8,
A is J-open in X if and only if A is an [J-sequential neighborhood of x for
each z € A.

Proposition 3.4. Let J be a maximal ideal of N and A C X. If A is not
an J-sequential neighborhood of x, then there is a sequence {x, }nen in X \ A
such that z, L z.

Proof. If A is not an [J-sequential neighborhood of x, then there is a sequence
{Yn}nen in X such that y, 2> z, but {n € N:y, ¢ A} ¢ J. Since J is a
maximal ideal of N, this means that {n e N:y, € A} € J. Let {neN:y, €
A} =J € J. And since J is a non-trivial ideal, it follows that A # X. Take
a point a € X \ A. Define a sequence {z,}nen by x,, = aif n € J; 2, = yn
if n.€ N\ J. Then the sequence {2, }nen in X \ A and z,, % 2 from Lemma
2.5. (Il

Theorem 3.5. Let T be an ideal on N. If f : X — Y is an Z-quotient
mapping, then for each I-convergent sequence {yntnen in Y with y, = v,
there is a sequence {x;}ien in X such that {z; :i € N} C f~'({y, : n € N})
and x; = x ¢ f~({yn : n € N}).

Proof. Suppose that f : X — Y is an Z-quotient mapping and {yn }nen is a
sequence in Y with y, =+ y. Without loss of generality, we can assume that
yn # y for each n € N. Let U = Y \ {y, : n € N}. Then U is not Z-open
in Y. Since f is an Z-quotient mapping, f~1(U) = f~Y(Y \ {yn : n € N}) =
X\ f7*({yn : n € N}) is not Z-open in X. Thus there is a sequence {x;};en in
X\ fYU)=f"'({yn:neN})such that z; 2 ¢ f*({y,:neN}). O

In [20], it was discussed that quotient mappings, sequentially quotient map-
pings and Z-quotient mappings are mutually independent; and the following
two theorems are useful and can be seen in it.

Theorem 3.6. Let f: X — Y be a mapping.

(1) If X is an I-sequential space and f is quotient, then Y is an Z-
sequential space and f is T-quotient.

(2) I Y is an Z-sequential space and f is T-quotient, then f is quotient.

(3) X is an I-sequential space if and only if for an arbitrary topological
space Y, if f is quotient, then f is L-quotient.

Theorem 3.7. Let J be a maximal ideal of N and X be a topological space.
Then X is an J-sequential space if and only if each [J-quotient mapping onto
X s quotient.
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Let J be a maximal ideal of N and A C X. Denote
[A]7-s = {x € X : there is a sequence {z,, }nen in A such that z,, % z};
(A)7-s = {x € X : Ais an J -sequential neighborhood of z}.

A subset U C X is said to be an [J-sequential neighborhood of A if A C
(U)J-S~

Proposition 3.8. Let J be a mazimal ideal of N and A C X. Then [A]7-s =
X\ (X\A)g-.

Proof. Suppose that z € [A] 7-5, then there is a sequence {z, }nen in A such
that ,, 2> 2. Thus X \ A is not an J-sequential neighborhood of z in X. In
fact, if X \ A4 is an J-sequential neighborhood of = in X, then {z,}nen is J-
eventually in X \ A, i.e., there is F € J such that for all n € N\ E,z,, € X\ A.
Since J is an admissible ideal, this contradicts to {x,}n,en in A. Therefore
x ¢ (X \ A)g-s, and further z € X \ (X \ 4) 7-5.

On the other hand, assume that x € X \ (X \ A) 75, then 2 ¢ (X \ A4)7-s,
and hence X \ A is not an J-sequential neighborhood of z in X. By Proposition
3.4, there is a sequence {x,, }nen in A such that z,, <> . Thus = € [4] 7-s. O

By Definition 2.2 and Proposition 3.8, the following proposition is correct.

Proposition 3.9. Let J be a maximal ideal of N and A, B C X. Then
(1) [@]g-s =2, A° C (A)g-s CAC[A]l7-s C A

2) A is J-open in X if and only if A = (A)7-s.

) A is J-closed in X if and only if A = [A]7-s.

) IfB Q A, then (B)J-s g (A>J-s and [B]j-s g [A]J-s-

) (AN B) 7oy = (A) s (1 (B) -0 and [AU Bl gy = [Al -y U [Bl7-s.

Proof. We only prove that (5) is true. Since ANB C A, ANB C B, it
follows that (AN B)7-s C (A)7-s, (AN B) -5 C (B)g-5s. Hence (AN B) -5 C
(A)7-s N (B)g-5s. On the other hand, assume that z € (A)7-5 N (B)7-s. Then
for each sequence {x, }nen in X with z,, L, x, there is E, F € J , such that for
eachn € N\ E, z,, € A and for each n € N\ F, z,, € B. Since EUF € J and
for each n € N\ (EUF), z,, € ANB. This means that AN B is an J-sequential
neighborhood of z in X. Thus = € (AN B) 7-s.

Now replace X \ A with A and X \ B with B, it follows that ((X \ A)N (X \
B)) gy = (X\ 4) -4 " (X \ B) -, Hence [AUB] 7, = X\ (X \ (AUB))-, =
XA A) N (XN B)) gy = X\ (X A)) o 0 (X \ B))gos) = (X \ (X \
A)g-s) U (XN (X \ B)g-s) = [A]g-s U [Blg-s. O

Theorem 3.10. Let J be a mazimal ideal of N and f : X — Y be a mapping.
Then the following conditions are equivalent.

(

(3
(4
(5

(1) For each J-convergent sequence {yn nen in' Y with y, <y, there is
a sequence {x;}ien in X with x; < x € f~Y(y) and {z; : i € N} C

fﬁl({yn ne N})
(2) For each ACY, it has f([f~1(A)]7-s) = [A] 7-s-
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(3) 1y € [Alg-s C Y, then /() N[~ (A)lg-s £ 2.

(4) Ify € [A]7-s C Y, then there is a point x € f~'(y) such that whenever
V' is an J-sequential neighborhood of x, y € [f( YN A 7.

(5) Ify € [A]7-s C Y, then there is a point x € f~'(y) such that whenever
V is an J-sequential neighborhood of x, f(V)N A # @.

(6) For each y € Y, if U is an J-sequential neighborhood of f=1(y), then
fU) is an J-sequential neighborhood of y.

Proof. (1) = (2) Suppose that @ € [f~1(A)]7-s. Then there is a sequence
{p}nen in f71(A) such that x, 2 2. Hence {f(x,) : n € N} C A and
f(z) L f(z). This means that f(x) € [A]s-s. Hence f([f~1(A4)]s-s) C
[A]7-s-

On the other hand, assume that y € [A]7-s. Then there is a sequence
{Yn}nen in A such that y, 2+ y. By the condition (1), there is a sequence
{l’z}zeN in X with {;Ez i €N}C f'{y,:neN}) C fY(A) and 2; L 2 €
fY(y). Thus x € [f~1(A)]-s, hence y = f(x) € f([f~'(A)]s-s), and further
A7y € £ (Ao):

(2) = (3) Let y € [A]7-s for each A CY. By the condition (2), it follows
that y € F([f~"(A)]g-s). Thus /~(y) N7~ ()]s £ 2.

(3) = (4) Let y € [A]7-s C Y. By the condition (3), assume that = €
f () N[f~1(A)]7-s. Then there is a sequence {z, }nen in f~1(A) such that
, L. If Vis an J-sequential neighborhood of x, then there is £ € J such
that x, € V for all n € N\ E. Hence f(z,) € f(V)N A for alln € N\ E and
f(z,) L f(x). Take a point a € f(V) N A. Define a sequence {y, }nen by
Yn = f(zn) if n e N\ E; y, =aif n € E. Then {y, : n € N} C f(V)N A and
Yn 2> f(z) =y from Lemma 2.4. Thus y € [f(V) N A] 7-s.

(4) = (5) It is clear.

(5) = (6) Let y € Y and U be an J-sequential neighborhood of f~!(y).
If f(U) is not an J-sequential neighborhood of y, then y € Y \ (f(U))7-s =
[Y'\ f(U)]7-s. By the condition (5), it follows that f(U)N (Y \ f(U)) = @, a
contradiction.

(6) = (3) Let y € [A]l7-s C Y. Suppose that f~'(y) N [f(A)]g-s =
@. Then f~1(y) € X\ [f"1(A)]ss = (X \ f1(A))7-s. This means that
X\ f71(A) is an J-sequential neighborhood of f~1(y). By the condition (6),

e(f(X\fHA))g-s = (Y \ A) 7-5 = Y \ [4] 7-s, a contradiction.

(3) = (1) Let {yn}tnen be an J-convergent sequence in Y with y, 5 y.
Put A = {y, : n € N}, then y € [A]s-s. By the condition (3), there is
x € f7H(y) N [f~1(A)]7-s. Hence there is a sequence {z;};en in X with {z; :
ieNYC YA C ' {yn:neN}) and 2; Tz € f1(y). O

Remark 3.11.

(1) Theorem 3.5 is different from Lemma 3.10 (1). In Lemma 3.10 (1),
z; L x € f~(y). But we don’t know whether the Z-limit point z in
f~(y) or not in Theorem 3.5.
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(2) One of the above six conditions can deduce that f is an J-quotient
mapping.

In fact, let U be non-Z-closed in Y. Then there is a sequence {y,, }nen
in U J-converging to y € Y\U. Thus y # y, for each n € N. By the
assumption of the condition (1), there is a sequence {z;};cy in X such
that {x; : i € N} C f"'({yn : » € N}) C f71(U) and v; L z €
fY(y) ¢ f~Y(U). This implies that f~1(U) is non-J-closed in X.
Hence, f is an J-quotient mapping.

(3) If the maximal ideal J is replaced by Z; in Theorem3.10, then (1) <
(2) & 3) & (4) & () & (6) & fis an Zy-quotient mapping. But
the following example shows that there exist a 77 space X, an ideal
Z of N and an Z-quotient mapping f such that f does not satisfy the
condition (6) of Theorem 3.10.

Example 3.12. There exist a T; space X, an ideal Z of N and an Z-quotient
mapping f, but f does not satisfy the condition (6) of Theorem 3.10.

Proof. LetZ = {A C N : A contains at most only finite odd positive integers}.
Then 7 is an admissible ideal of N . Let Y be the set w which is endowed with
the finite complement topology. Then Y is a first-countable Tj-space. Put
Xo =Y\ {0} and X; = {2k : k € w} as the subspaces of the space Y, and
X = XoP X;. A mapping f : X — Y is defined by the natural mapping.
It is easy to see that the mapping f is a continuous quotient mapping. Since
X and X; are first-countable space, X is a first-countable space. Thus, X
is an Z-sequential space. By Theorem 3.6, it follows that f is an Z-quotient
mapping.

Note that the set X; is open in X and f~*(0) C Xi, and hence X; is an
Z-sequential neighborhood of f~1(0). For each open neighborhood U of 0 in
Y, {n eN:n ¢ U} is a finite subset, hence {n € N:n ¢ U} € Z. This means
that the sequence {n},ecn in Y satisfies n = 0. But {n e N:n ¢ f(X1)} =
{2k + 1,k € w} ¢ Z. Thus f(X;) is not an Z-sequential neighborhood of 0 in
Y. |

Problem 3.13. For some mazximal ideal J of N and an J-quotient mapping
f, does it satisfy the condition (6) of Theorem 3.107

4. ON SPACES WITH Z-cs'-NETWORKS

In this section, we introduce the concepts of Z-cs-networks, Z-cs’-networks
and Z-wes’-networks for a space X; and obtain that if X is an J-FU space
with a point-countable J-cs’-network, then X is a meta-Lindelof space, for a
maximal ideal J of N.

Definition 4.1 ([13]). Let Z be an ideal on N, X be a topological space and
P be a cover of X.

(1) P is a network of X if whenever x € U with U open in X, then
x € P CU for some P € P.
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(2) P is called an Z-cs-network of X if whenever {x, }nen is a sequence in
X Z-converging to a point € U with U open in X, then {z, }nen is
Z-eventually in P and z € P C U for some P € P.

(3) P is called an Z-cs'-network of X if whenever {z, }nen is a sequence
in X Z-converging to a point € U with U open in X, then there is
P € P and some ng € N such that {z,z,,} C P CU.

(4) P is called an Z-wes'-network of X if whenever {z, }nen is a sequence
in X Z-converging to a point z € U with U open in X, then there is
P € P and some ng € N such that {z,,} C P CU.

Obviously, Z-cs-networks = Z-cs’-networks = Z-wes’-networks = networks.

Definition 4.2. Let J be a maximal ideal of N and X be a topological space.
U is said to be J-sn-cover of X, if {(U)s-s : U € U} is a cover of X.

Theorem 4.3. Fach Z-cs-network is preserved by an Z-covering mapping.

Proof. Let f: X — Y be an Z-covering mapping and P be an Z-cs-network of
X. Suppose that {y,}nen is a sequence Z-converging to a point y € U with U
open in Y. Since f is an Z-covering mapping, there exist a sequence {z, }necn of
points z,, € f~1(y,) for alln € Nand x € f~!(y) such that z,, = x. Since P is
an Z-cs-network of X, there is some P € P such that {x,, } nen is Z-eventually in
Pand x € PC f~Y(U). Thus there is E € Z such that {n € N: x,, ¢ P} C E.
Note that {n e N:y, ¢ f(P)} C{neN:z, ¢ P} CFE, hence y, € f(P) for
all n € N\ E, i.e. {yn}tnen is Z-eventually in f(P) and y € f(P) C U. This
means that f(P) = {f(P): P € P} is an Z-cs-network of Y. O

Corollary 4.4. Each T-cs'-network is preserved by an T-covering mapping.
Theorem 4.5. Fach ZT-wcs'-network is preserved by an I-quotient mapping.

Proof. Let f: X — Y be an Z-quotient mapping and P be an Z-wcs’-network
of X. Suppose that {y, }nen is a sequence Z-converging to a point y € U with U
open in Y. Since f is an Z-quotient mapping, there is a sequence {x; }ien in X
such that {z; :i € N} C f~*({yn:n e N}) and z; = = ¢ f~'({yn : n € N}).
And because P is an Z-wcs’-network of X, there is some Py € P and ig € N
such that {z;,} C Py C f~1(U). And hence {f(zi,)} = {yn,} C f(Po) C U for
some ng € N. This implies that f(P) = {f(P) : P € P} is an T-wes'-network
of Y. O

Lemma 4.6. Let J be a mazimal ideal of N and P be a family of subsets of
X. Then P is an J-cs'-network of X if and only if, whenever U is an open
neighborhood of x, |J{P € P:x € P C U} is an J-sequential neighborhood of
x.

Proof. Necessity: Let U be an open neighborhood of z. If |[J{P € P : x €
P C U} is not an J-sequential neighborhood of z, then there is a sequence
{Zp}nen such that z, 2 z and z, ¢ | J{P € P:x € P C U} for each n € N.
Since P is an J-cs’-network of X, there is Py € P and ny € N such that
{z,z,,} C Py CU, a contradiction.
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Sufficiency: Suppose that =, 2>z € U € 7x and | J{P €P:2 € PC U} is
an J-sequential neighborhood of z. Then {x, }nen is J-eventually in |J{P €
P :x € P CU}. Hence there exists ng € N such that x,, € J{P € P :x €
P C U}. And hence there is Py € P such that x,,, € Py and € Py C U. Thus
{z,z,,} C Py CU. This means that P is an J-cs’-network of X. O

Theorem 4.7. Let J be a mazximal ideal of N and a space X be of a point-
countable J-cs'-network. Then each open cover of X has a point-countable
J-sn refinement.

Proof. Suppose that P is a point-countable J-cs’-network for a space X. Let
U = {Uas}a<y be an open cover of X, where v is an ordinal. For each o < 7,
put

Vo= J{PeP:PCU.PZUsif B <al.
Clearly, V,, C U,. Next we shall show that the family ¥V = {V, } o<~ is a point-

countable J-sn-cover of X. For each z € X, let a(x) = min{a <y :x € Uy}.
Then z € Uy () and

UJiPeP:2ePCUyu)} S HPEP: P CUsw). P LUs if B < alz)}.
Since P is an J-cs’-network for a space X, it follows from Lemma 4.6 that
x € (U{P €P:x€PCUyun)})T-s

C(HPEP:PCUsw), P LUs if B < alw)})g-s
= (Va(ac))J-S'
This means that V = {V, }a< is an J-sn-cover of X.

We claim that V' is point-countable. Suppose, to the contrary, that there
exist a point x € X and an uncountable subset I" of « such that = € V,, for
each o € I'. Hence there is P, € P such that 2 € P, C U, and P, € Ug
for 8 < «a. Since P is a point-countable family and I" is an uncountable set,
there are o, 8 € I'ya # B such that P, = Pg. Assume that 8 < «, then
Us 2 Pg = P, € Ug, a contradiction. O

Definition 4.8.

(1) A space X is called Z-Fréchet-Urysohn (or shortly, Z-FU) space, if for
each A C X and each z € A, there exists a sequence in A Z-converging
to the point z in X [20].

(2) A space X is called a meta-Lindeldf space if each open cover of X has
a point-countable open refinement [13].

Corollary 4.9. Let J be a maximal ideal of N. If X is an J-FU space with
a point-countable J-cs'-network, then X is a meta-Lindelof space.

Proof. X is an J-FU space & A = [A] 75 for each A C X & intA = (A)7-s
for each A C X. O
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Theorem 4.10. Let J be a maximal ideal of N. The following are equivalent
for a space X.

(1) J-sX is an J-Fréchet-Urysohn space.

(2) cly-sx(A) = [A]7-s, for each A C X.

(3) [A]g-s is J-closed in X, for each A C X.

(4) (A)g-s is J-open in X, for each A C X.

Proof. Since the spaces X and J-sX have the same J-convergent sequences, by
the Definition 4.8 and Proposition 3.8, it follows that (1) < (2) and (3) < (4).
Hence, it suffices to show that (2) < (3). If cly-sx (A) = [A] 7-s, then [A] 7-s
is closed in J-sX, and hence [A]7-s is J-closed in X, for each A C X. On
the other hand, if [A] 7-5 is J-closed in X, then [A] 7- is closed in J-sX, and
further clz7-sx(A) = [A] -5, for each A C X. O

ACKNOWLEDGEMENTS. My gratitude goes to Professor Shou Lin, for his friendly
encouragement and inspiring suggestions.

REFERENCES

[1] J. R. Boone and F. Siwiec, Sequentially quotient mappings, Czech. Math. J. 26 (1976),
174-182.

[2] L. X. Cheng, G. C. Lin, Y. Y. Lan and H. Liu, Measure theory of statistical convergence,
Sci. China Ser. A 51 (2008), 2285-2303.

[3] L. X. Cheng, G. C. Lin and H. H. Shi, On real-valued measures of statistical type
and their applications to statistical convergence, Math. Comput. Modelling 50 (2009),
116-122.

[4] P. Das, Some further results on ideal convergence in topological spaces, Topol. Appl.
159 (2012), 2621-2626.

[5] P.Das and S. Ghosal, When Z-Cauchy nets in complete uniform spaces are Z-convergent,
Topol. Appl. 158 (2011), 1529-1533.

[6] P. Das, Lj.D.R. Koc¢inac and D. Chandra, Some remarks on open covers and selection
principles using ideals, Topol. Appl. 202 (2016), 183-193.

[7] G. Di Maio and Lj. D. R. Ko¢inac, Statistical convergence in topology, Topol. Appl. 156

(2008), 28-45.

R. Engelking, General Topology (revised and completed edition), Heldermann Verlag,

Berlin, 1989.

[9] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.

[10] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton,
1960.

[11] P. Kostyrko, T. Salat and W. Wilczynski, Z-convergence, Real Anal. Exch. 26
(2000,/2001), 669-686.

[12] B. K. Lahiri and P. Das, Z and Z*-convergence in topological spaces, Math. Bohemica
130, no. 2 (2005), 153-160.

[13] S. Lin, Point-countable covers and sequence-covering mappings, Science Press, Beijing,
2015 (in Chinese).

[14] S. Lin and Z.Q. Yun, Generalized metric spaces and mapping, Atlantis Studies in Math-
ematics 6, Atlantis Press, Paris, 2016.

8

@© AGT, UPV, 2020 Appl. Gen. Topol. 21, no. 2 245



X. Zhou

[15] S. K. Pal, N. Adhikary and U. Samanta, On ideal sequence covering maps, Appl. Gen.
Topol. 20, no. 2 (2019), 363-377.

[16] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Collog.
Math. 2 (1951), 73-74.

[17] Z. Tang and F. Lin, Statistical versions of sequential and Fréchet-Urysohn spaces, Adv.
Math. (China) 44 (2015), 945-954.

[18] X. G. Zhou and M. Zhang, More about the kernel convergence and the ideal convergence,
Acta Math. Sinica, English Series 29 (2013), 2367-2372.

[19] X. G. Zhou and L. liu, On Z-covering mappings and 1-Z-covering mappings, J. Math.
Res. Appl. (China) 40, no. 1 (2020) 47-56.

[20] X. G. Zhou, L. Liu and S. Lin, On topological spaces defined by Z-convergence, Bull.
Iran. Math. Soc. 46 (2020), 675-692.

@© AGT, UPV, 2020 Appl. Gen. Topol. 21, no. 2 246



