

On \mathcal{I} -quotient mappings and \mathcal{I} -cs'-networks under a maximal ideal

XIANGENG ZHOU*

Department of Mathematics, Ningde Normal University, Fujian, 352100, P.R. China (56667400@qq.com)

Communicated by P. Das

Abstract

Let \mathcal{I} be an ideal on \mathbb{N} and $f: X \to Y$ be a mapping. f is said to be an \mathcal{I} -quotient mapping provided $f^{-1}(U)$ is \mathcal{I} -open in X, then U is \mathcal{I} -open in Y. \mathcal{P} is called an \mathcal{I} -cs'-network of X if whenever $\{x_n\}_{n\in\mathbb{N}}$ is a sequence \mathcal{I} -converging to a point $x\in U$ with U open in X, then there is $P\in\mathcal{P}$ and some $n_0\in\mathbb{N}$ such that $\{x,x_{n_0}\}\subseteq P\subseteq U$. In this paper, we introduce the concepts of \mathcal{I} -quotient mappings and \mathcal{I} -cs'-networks, and study some characterizations of \mathcal{I} -quotient mappings and \mathcal{I} -cs'-networks, especially \mathcal{I} -quotient mappings and \mathcal{I} -cs'-networks under a maximal ideal \mathcal{I} of \mathbb{N} . With those concepts, we obtain that if X is an \mathcal{I} -FU space with a point-countable \mathcal{I} -cs'-network, then X is a meta-Lindelöf space.

2010 MSC: 54A20; 54B15; 54C08; 54D55; 40A05; 26A03.

KEYWORDS: ideal convergence; maximal ideal; \mathcal{I} -sequential neighborhood; \mathcal{I} -quotient mappings; \mathcal{I} -cs'-networks; \mathcal{I} -FU spaces.

1. Introduction

Statistical convergence was introduced by H. Fast [9] and H. Steinhaus [16], which is a generalization of the usual notion of convergence. It is doubtless that the study of statistical convergence and its various generalizations has become an active research area [2, 3, 7, 17, 18]. In particular, P. Kostyrko, T. Šalát

^{*}This research is supported by NSFC (No. 11801254) and Ningde Normal University (No. 2017T01; 2018ZDK11; 2019ZDK11).

and W. Wilczynski [11] introduced two interesting generalizations of statistical convergence by using the notion of ideals of subsets of positive integers, which were named as \mathcal{I} and \mathcal{I}^* -convergence, and studied some properties of \mathcal{I} and \mathcal{I}^* -convergence in metric spaces. Later, B.K. Lahiri and P. Das [12] discussed \mathcal{I} and \mathcal{I}^* -convergence in topological spaces. Some further results connected with \mathcal{I} and \mathcal{I}^* -convergence can be found in [4, 5, 6].

As we know, mappings and networks are important tools of investigating topological spaces. Continuous mappings, quotient mappings, pseudo-open mappings, cs-networks, sn-networks, k-networks and so on are the most important tools for studying convergence, sequential spaces, Fréchet-Urysohn spaces [14] and generalized metric spaces. For this reason, this paper draws into \mathcal{I} quotient mappings and \mathcal{I} -cs'-networks for an ideal \mathcal{I} on \mathbb{N} and discusses some basic properties of them.

Recently, the researches on \mathcal{I} -convergence are mainly focused on aspects of \mathcal{I}^* -convergence [12], \mathcal{I} -limit points [11], \mathcal{I} -Cauchy sequence [5], ideal-convergence classes [4], selection principles [6], ideal sequence covering mappings [15, 19] and so on. It is expected that \mathcal{I} -quotient mappings and \mathcal{I} -cs'-networks will also play active roles in the topological spaces.

In this paper, the letter X always denote a topological space. The cardinality of a set B is denoted by |B|. The set of all positive integers, the first infinite ordinal, and the first uncountable ordinal are denoted by \mathbb{N} , ω and ω_1 , respectively. The reader may refer to [8, 14] for notation and terminology not explicitly given here.

2. Preliminaries

Recall the notion of statistical convergence in topological spaces. For each subset A of N the asymptotic density of A, denoted $\delta(A)$, is given by

$$\delta(A) = \lim_{n \to \infty} \frac{1}{n} |\{k \in A : k \le n\}|,$$

if this limit exists. Let X be a topological space. A sequence $\{x_n\}_{n\in\mathbb{N}}$ in X is said to converge statistically to a point $x \in X$ [7], if

$$\delta(\{n \in \mathbb{N} : x_n \notin U\}) = 0$$
, i.e., $\delta(\{n \in \mathbb{N} : x_n \in U\}) = 1$

for each neighborhood U of x in X, which is denoted by s- $\lim_{n\to\infty} x_n = x$ or $x_n \xrightarrow{s} x$.

The concept of \mathcal{I} -convergence of sequences in a topological space is a generalization of statistical convergence which is based on the ideal of subsets of the set N of all positive integers. Let $\mathcal{A}=2^{\mathbb{N}}$ be the family of all subsets of \mathbb{N} . An ideal $\mathcal{I} \subseteq \mathcal{A}$ is a hereditary family of subsets of \mathbb{N} which is stable under finite unions [11], i.e., the following are satisfied: if $B \subseteq A \in \mathcal{I}$, then $B \in \mathcal{I}$; if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$. An ideal \mathcal{I} is said to be non-trivial, if $\mathcal{I} \neq \emptyset$ and $\mathbb{N} \notin \mathcal{I}$. A non-trivial ideal $\mathcal{I} \subseteq \mathcal{A}$ is called *admissible* if $\mathcal{I} \supseteq \{\{n\} : n \in \mathbb{N}\}$. Clearly, every non-trivial ideal \mathcal{I} defines a dual filter $\mathcal{F}_{\mathcal{I}} = \{A \subseteq \mathbb{N} : \mathbb{N} \setminus A \in \mathcal{I}\}$ on \mathbb{N} .

Let \mathcal{I}_f be the family of all finite subsets of \mathbb{N} . Then \mathcal{I}_f is an admissible ideal. Let \mathcal{I}_{δ} [11] be the family of subsets $A \subseteq \mathbb{N}$ with $\delta(A) = 0$. Then \mathcal{I}_{δ} is an admissible ideal, and the dual filter $\mathcal{F}_{\mathcal{I}_{\delta}} = \{A \subseteq \mathbb{N} : \delta(A) = 1\}.$

Definition 2.1 ([11]). A sequence $\{x_n\}_{n\in\mathbb{N}}$ in a topological space X is said to be \mathcal{I} -convergent to a point $x \in X$ provided for any neighborhood U of x, we have $\{n \in \mathbb{N} : x_n \notin U\} \in \mathcal{I}$, which is denoted by \mathcal{I} - $\lim_{n \to \infty} x_n = x$ or $x_n \xrightarrow{\mathcal{I}} x$, and the point x is called the \mathcal{I} -limit of the sequence $\{x_n\}_{n\in\mathbb{N}}$.

Definition 2.2 ([20]). Let \mathcal{I} be an ideal on \mathbb{N} and X be a topological space.

- (1) A subset $F \subseteq X$ is said to be \mathcal{I} -closed if for each sequence $\{x_n\}_{n \in \mathbb{N}} \subseteq F$ with $x_n \xrightarrow{\mathcal{I}} x \in X$, we have $x \in F$.
- (2) A subset $U \subseteq X$ is said to be \mathcal{I} -open if $X \setminus U$ is \mathcal{I} -closed.
- (3) X is called an \mathcal{I} -sequential space if each \mathcal{I} -closed subset of X is closed.

Obviously, each sequential space is an \mathcal{I} -sequential space [20].

Definition 2.3 ([20]). Let \mathcal{I} be an ideal on \mathbb{N} , X, Y be topological spaces and $f: X \to Y$ be a mapping.

- (1) f is called preserving \mathcal{I} -convergence provided for each sequence $\{x_n\}_{n\in\mathbb{N}}$ in X with $x_n \xrightarrow{\mathcal{I}} x$, the sequence $\{f(x_n)\}_{n \in \mathbb{N}}$ \mathcal{I} -converges to f(x) [12].
- (2) f is called *I-continuous* provided U is *I-open* in Y, then $f^{-1}(U)$ is \mathcal{I} -open in X.

It is easy to verify that a mapping $f: X \to Y$ is \mathcal{I} -continuous if and only if, whenever F is \mathcal{I} -closed in Y, then $f^{-1}(F)$ is \mathcal{I} -closed in X.

Lemma 2.4 ([20]). Let \mathcal{I} be an ideal on \mathbb{N} and X be a topological space. If a sequence $\{x_n\}_{n\in\mathbb{N}}$ \mathcal{I} -converges to a point $x\in X$, and $\{y_n\}_{n\in\mathbb{N}}$ is a sequence in X with $\{n \in \mathbb{N} : x_n \neq y_n\} \in \mathcal{I}$, then the sequence $\{y_n\}_{n \in \mathbb{N}}$ I-converges to $x \in X$.

Lemma 2.5 ([20]). Let \mathcal{I} be an ideal on \mathbb{N} . The following are equivalent for a topological space X and a subset $A \subseteq X$.

- (1) A is \mathcal{I} -open.
- (2) $\{n \in \mathbb{N} : x_n \in A\} \notin \mathcal{I} \text{ for each sequence } \{x_n\}_{n \in \mathbb{N}} \text{ in } X \text{ with } x_n \xrightarrow{\mathcal{I}} x \in \mathbb{N} \}$
- (3) $|\{n \in \mathbb{N} : x_n \in A\}| = \omega$ for each sequence $\{x_n\}_{n \in \mathbb{N}}$ in X with $x_n \xrightarrow{\mathcal{I}}$

Lemma 2.6 ([20]). Let X, Y be topological spaces and $f: X \to Y$ be a mapping.

- (1) If f is continuous, then f preserves \mathcal{I} -convergence [12].
- (2) If f preserves \mathcal{I} -convergence, then f is \mathcal{I} -continuous.

Definition 2.7 ([20]). Let $A \subseteq X$ and $\{x_n\}_{n \in \mathbb{N}}$ be a sequence in X. If \mathcal{I} is an ideal on \mathbb{N} , then $\{x_n\}_{n\in\mathbb{N}}$ is \mathcal{I} -eventually in A if there is $E\in\mathcal{I}$ such that for all $n \in \mathbb{N} \setminus E, x_n \in A$.

If A is a subset of X with the property that every sequence \mathcal{I} -converging to a point in A is \mathcal{I} -eventually in A, then A is \mathcal{I} -open. When we assume \mathcal{J} to be a maximal ideal, the following proposition shows that such sets must coincide with \mathcal{J} -open sets.

Proposition 2.8 ([20]). If \mathcal{J} is a maximal ideal of \mathbb{N} , then $A \subseteq X$ is \mathcal{J} -open if and only if for each \mathcal{J} -converging sequence $\{x_n\}_{n\in\mathbb{N}}$ with $x_n\stackrel{\mathcal{J}}{\longrightarrow}x\in A$, then $\{x_n\}_{n\in\mathbb{N}}$ is \mathcal{J} -eventually in A.

By Definition 2.2, the union of a family of \mathcal{I} -open sets in a topological space is \mathcal{I} -open. Whenever \mathcal{J} is a maximal ideal, the intersection of two \mathcal{J} -open sets is an \mathcal{J} -open set.

Proposition 2.9 ([20]). If \mathcal{J} is a maximal ideal of \mathbb{N} and U, V are two \mathcal{J} -open subsets of X, then $U \cap V$ is \mathcal{J} -open in X.

It is well known that the sequential coreflection sX of a space X is the set X endowed with the topology consisting of sequentially open subsets of X. Let \mathcal{J} be a maximal ideal of N and X be a topological space. By Definition 2.2 and Proposition 2.9, the family of all \mathcal{J} -open subsets of X forms a topology of the set X. The \mathcal{J} -sequential coreflection of a space X is the set X endowed with the topology consisting of \mathcal{J} -open subsets of X, which is denoted by \mathcal{J} sX. The spaces X and \mathcal{J} -sX have the same \mathcal{J} -convergent sequences; \mathcal{J} -sXis an \mathcal{J} -sequential space; a space X is an \mathcal{J} -sequential space if and only if \mathcal{J} -sX = X [20].

If no otherwise specified, we consider ideal \mathcal{I} is always an admissible ideal on N, all mappings are continuous and surjection, all spaces are Hausdorff.

3. \mathcal{I} -QUOTIENT MAPPINGS

In this section, we introduce the concept of \mathcal{I} -quotient mappings, and obtain some characterizations of \mathcal{I} -quotient mappings, especially \mathcal{J} -quotient mappings under a maximal ideal of \mathbb{N} . Let X,Y be arbitrary topological spaces, and $f: X \to Y$ be a mapping. f is said to be quotient provided $f^{-1}(U)$ is open in X, then U is open in Y; f is said to be sequentially quotient provided $f^{-1}(U)$ is sequentially open in X, then U is sequentially open in Y [1].

Definition 3.1. Let \mathcal{I} be an ideal on \mathbb{N} and $f: X \to Y$ be a mapping.

- (1) f is said to be an \mathcal{I} -quotient mapping (or shortly, \mathcal{I} -quotient) provided $f^{-1}(U)$ is \mathcal{I} -open in X, then U is \mathcal{I} -open in Y.
- (2) f is said to be an \mathcal{I} -covering mapping (or shortly, \mathcal{I} -covering) if, whenever $\{y_n\}_{n\in\mathbb{N}}$ is a sequence in Y \mathcal{I} -converging to y in Y, there exist a sequence $\{x_n\}_{n\in\mathbb{N}}$ of points $x_n\in f^{-1}(y_n)$ for all $n\in\mathbb{N}$ and $x\in f^{-1}(y)$ such that $x_n \xrightarrow{\mathcal{I}} x$.

In [20], it was showed that each \mathcal{I} -covering mapping is \mathcal{I} -quotient.

Definition 3.2. Let \mathcal{I} be an ideal on \mathbb{N} , X be a topological space and $P \subset X$. P is called an \mathcal{I} -sequential neighborhood of x, if each sequence $\{x_n\}_{n\in\mathbb{N}}\mathcal{I}$ converges to a point $x \in P$, then $\{x_n\}_{n \in \mathbb{N}}$ is \mathcal{I} -eventually in P, i.e., there is $I \in \mathcal{I}$ such that $\{n \in \mathbb{N} : x_n \notin P\} = I$.

Remark 3.3. Let \mathcal{J} be a maximal ideal of \mathbb{N} and $A \subseteq X$. By Proposition 2.8, A is \mathcal{J} -open in X if and only if A is an \mathcal{J} -sequential neighborhood of x for each $x \in A$.

Proposition 3.4. Let \mathcal{J} be a maximal ideal of \mathbb{N} and $A \subseteq X$. If A is not an \mathcal{J} -sequential neighborhood of x, then there is a sequence $\{x_n\}_{n\in\mathbb{N}}$ in $X\setminus A$ such that $x_n \xrightarrow{\mathcal{I}} x$.

Proof. If A is not an \mathcal{J} -sequential neighborhood of x, then there is a sequence $\{y_n\}_{n\in\mathbb{N}}$ in X such that $y_n \xrightarrow{\mathcal{I}} x$, but $\{n \in \mathbb{N} : y_n \notin A\} \notin \mathcal{I}$. Since \mathcal{I} is a maximal ideal of \mathbb{N} , this means that $\{n \in \mathbb{N} : y_n \in A\} \in \mathcal{J}$. Let $\{n \in \mathbb{N} : y_n \in A\}$ $A = J \in \mathcal{J}$. And since \mathcal{J} is a non-trivial ideal, it follows that $A \neq X$. Take a point $a \in X \setminus A$. Define a sequence $\{x_n\}_{n \in \mathbb{N}}$ by $x_n = a$ if $n \in J$; $x_n = y_n$ if $n \in \mathbb{N} \setminus J$. Then the sequence $\{x_n\}_{n \in \mathbb{N}}$ in $X \setminus A$ and $x_n \xrightarrow{\mathcal{I}} x$ from Lemma 2.5.

Theorem 3.5. Let \mathcal{I} be an ideal on \mathbb{N} . If $f: X \to Y$ is an \mathcal{I} -quotient mapping, then for each \mathcal{I} -convergent sequence $\{y_n\}_{n\in\mathbb{N}}$ in Y with $y_n \xrightarrow{\mathcal{I}} y$, there is a sequence $\{x_i\}_{i\in\mathbb{N}}$ in X such that $\{x_i:i\in\mathbb{N}\}\subseteq f^{-1}(\{y_n:n\in\mathbb{N}\})$ and $x_i \xrightarrow{\mathcal{I}} x \notin f^{-1}(\{y_n : n \in \mathbb{N}\}).$

Proof. Suppose that $f: X \to Y$ is an \mathcal{I} -quotient mapping and $\{y_n\}_{n\in\mathbb{N}}$ is a sequence in Y with $y_n \xrightarrow{\mathcal{I}} y$. Without loss of generality, we can assume that $y_n \neq y$ for each $n \in \mathbb{N}$. Let $U = Y \setminus \{y_n : n \in \mathbb{N}\}$. Then U is not \mathcal{I} -open in Y. Since f is an \mathcal{I} -quotient mapping, $f^{-1}(U) = f^{-1}(Y \setminus \{y_n : n \in \mathbb{N}\}) = \mathcal{I}$ $X \setminus f^{-1}(\{y_n : n \in \mathbb{N}\})$ is not \mathcal{I} -open in X. Thus there is a sequence $\{x_i\}_{i \in \mathbb{N}}$ in $X \setminus f^{-1}(U) = f^{-1}(\{y_n : n \in \mathbb{N}\})$ such that $x_i \xrightarrow{\mathcal{I}} x \notin f^{-1}(\{y_n : n \in \mathbb{N}\}).$

In [20], it was discussed that quotient mappings, sequentially quotient mappings and \mathcal{I} -quotient mappings are mutually independent; and the following two theorems are useful and can be seen in it.

Theorem 3.6. Let $f: X \to Y$ be a mapping.

- (1) If X is an \mathcal{I} -sequential space and f is quotient, then Y is an \mathcal{I} sequential space and f is \mathcal{I} -quotient.
- (2) If Y is an \mathcal{I} -sequential space and f is \mathcal{I} -quotient, then f is quotient.
- (3) X is an I-sequential space if and only if for an arbitrary topological space Y, if f is quotient, then f is \mathcal{I} -quotient.

Theorem 3.7. Let \mathcal{J} be a maximal ideal of \mathbb{N} and X be a topological space. Then X is an \mathcal{J} -sequential space if and only if each \mathcal{J} -quotient mapping onto X is quotient.

Let \mathcal{J} be a maximal ideal of \mathbb{N} and $A \subseteq X$. Denote

 $[A]_{\mathcal{J}^{-s}} = \{x \in X : \text{ there is a sequence } \{x_n\}_{n \in \mathbb{N}} \text{ in } A \text{ such that } x_n \xrightarrow{\mathcal{J}} x\};$ $(A)_{\mathcal{J}-s} = \{x \in X : A \text{ is an } \mathcal{J} \text{ -sequential neighborhood of } x\}.$

A subset $U \subseteq X$ is said to be an \mathcal{J} -sequential neighborhood of A if $A \subseteq$ $(U)_{\mathcal{J}^{-s}}.$

Proposition 3.8. Let \mathcal{J} be a maximal ideal of \mathbb{N} and $A \subseteq X$. Then $[A]_{\mathcal{J}\text{-}s} =$ $X \setminus (X \setminus A)_{\mathcal{J}-s}$.

Proof. Suppose that $x \in [A]_{\mathcal{J}^{-s}}$, then there is a sequence $\{x_n\}_{n \in \mathbb{N}}$ in A such that $x_n \xrightarrow{\mathcal{I}} x$. Thus $X \setminus A$ is not an \mathcal{J} -sequential neighborhood of x in X. In fact, if $X \setminus A$ is an \mathcal{J} -sequential neighborhood of x in X, then $\{x_n\}_{n\in\mathbb{N}}$ is \mathcal{J} eventually in $X \setminus A$, i.e., there is $E \in \mathcal{J}$ such that for all $n \in \mathbb{N} \setminus E$, $x_n \in X \setminus A$. Since \mathcal{J} is an admissible ideal, this contradicts to $\{x_n\}_{n\in\mathbb{N}}$ in A. Therefore $x \notin (X \setminus A)_{\mathcal{J}-s}$, and further $x \in X \setminus (X \setminus A)_{\mathcal{J}-s}$.

On the other hand, assume that $x \in X \setminus (X \setminus A)_{\mathcal{J}-s}$, then $x \notin (X \setminus A)_{\mathcal{J}-s}$, and hence $X \setminus A$ is not an \mathcal{J} -sequential neighborhood of x in X. By Proposition 3.4, there is a sequence $\{x_n\}_{n\in\mathbb{N}}$ in A such that $x_n \xrightarrow{\mathcal{I}} x$. Thus $x \in [A]_{\mathcal{I}^{-s}}$. \square

By Definition 2.2 and Proposition 3.8, the following proposition is correct.

Proposition 3.9. Let \mathcal{J} be a maximal ideal of \mathbb{N} and $A, B \subseteq X$. Then

- $(1) \ [\varnothing]_{\mathcal{J}^{-s}} = \varnothing, \ A^{\circ} \subseteq (A)_{\mathcal{J}^{-s}} \subseteq A \subseteq [A]_{\mathcal{J}^{-s}} \subseteq \overline{A}.$
- (2) A is \mathcal{J} -open in X if and only if $A = (A)_{\mathcal{J}-s}$.
- (3) A is \mathcal{J} -closed in X if and only if $A = [A]_{\mathcal{J}-s}$.
- (4) If $B \subseteq A$, then $(B)_{\mathcal{J}-s} \subseteq (A)_{\mathcal{J}-s}$ and $[B]_{\mathcal{J}-s} \subseteq [A]_{\mathcal{J}-s}$.
- (5) $(A \cap B)_{\mathcal{J}-s} = (A)_{\mathcal{J}-s} \cap (B)_{\mathcal{J}-s} \text{ and } [A \cup B]_{\mathcal{J}-s} = [A]_{\mathcal{J}-s} \cup [B]_{\mathcal{J}-s}.$

Proof. We only prove that (5) is true. Since $A \cap B \subseteq A$, $A \cap B \subseteq B$, it follows that $(A \cap B)_{\mathcal{J}-s} \subseteq (A)_{\mathcal{J}-s}$, $(A \cap B)_{\mathcal{J}-s} \subseteq (B)_{\mathcal{J}-s}$. Hence $(A \cap B)_{\mathcal{J}-s} \subseteq (A \cap B)_{\mathcal{J}-s} \subseteq (A \cap B)_{\mathcal{J}-s}$ $(A)_{\mathcal{J}^{-s}} \cap (B)_{\mathcal{J}^{-s}}$. On the other hand, assume that $x \in (A)_{\mathcal{J}^{-s}} \cap (B)_{\mathcal{J}^{-s}}$. Then for each sequence $\{x_n\}_{n\in\mathbb{N}}$ in X with $x_n \xrightarrow{\mathcal{I}} x$, there is $E, F \in \mathcal{I}$, such that for each $n \in \mathbb{N} \setminus E$, $x_n \in A$ and for each $n \in \mathbb{N} \setminus F$, $x_n \in B$. Since $E \cup F \in \mathcal{J}$ and for each $n \in \mathbb{N} \setminus (E \cup F)$, $x_n \in A \cap B$. This means that $A \cap B$ is an \mathcal{J} -sequential neighborhood of x in X. Thus $x \in (A \cap B)_{\mathcal{J}-s}$.

Now replace $X \setminus A$ with A and $X \setminus B$ with B, it follows that $((X \setminus A) \cap (X \setminus B))$ $(A \cup B)_{\mathcal{J}-s} = (X \setminus A)_{\mathcal{J}-s} \cap (X \setminus B)_{\mathcal{J}-s}$. Hence $(A \cup B)_{\mathcal{J}-s} = X \setminus (X \setminus (A \cup B))_{\mathcal{J}-s} = X$ $X \setminus ((X \setminus A) \cap (X \setminus B))_{\mathcal{J}-s} = X \setminus ((X \setminus A))_{\mathcal{J}-s} \cap (X \setminus B))_{\mathcal{J}-s}) = (X \setminus (X \setminus A))_{\mathcal{J}-s}$ $A)_{\mathcal{J}-s}) \cup (X \setminus (X \setminus B)_{\mathcal{J}-s}) = [A]_{\mathcal{J}-s} \cup [B]_{\mathcal{J}-s}.$

Theorem 3.10. Let \mathcal{J} be a maximal ideal of \mathbb{N} and $f: X \to Y$ be a mapping. Then the following conditions are equivalent.

- (1) For each \mathcal{J} -convergent sequence $\{y_n\}_{n\in\mathbb{N}}$ in Y with $y_n \xrightarrow{\mathcal{J}} y$, there is a sequence $\{x_i\}_{i\in\mathbb{N}}$ in X with $x_i \xrightarrow{\mathcal{I}} x \in f^{-1}(y)$ and $\{x_i : i \in \mathbb{N}\} \subseteq$ $f^{-1}(\{y_n:n\in\mathbb{N}\}).$
- $(2) \ \textit{For each } A \subseteq Y, \ \textit{it has} \ f([f^{-1}(A)]_{\mathcal{J}\text{-}s}) = [A]_{\mathcal{J}\text{-}s}.$

- (3) If $y \in [A]_{\mathcal{J}-s} \subseteq Y$, then $f^{-1}(y) \cap [f^{-1}(A)]_{\mathcal{J}-s} \neq \emptyset$.
- (4) If $y \in [A]_{\mathcal{J}-s} \subseteq Y$, then there is a point $x \in f^{-1}(y)$ such that whenever V is an \mathcal{J} -sequential neighborhood of $x, y \in [f(V) \cap A]_{\mathcal{J}-s}$.
- (5) If $y \in [A]_{\mathcal{J}-s} \subseteq Y$, then there is a point $x \in f^{-1}(y)$ such that whenever V is an \mathcal{J} -sequential neighborhood of x, $f(V) \cap A \neq \emptyset$.
- (6) For each $y \in Y$, if U is an \mathcal{J} -sequential neighborhood of $f^{-1}(y)$, then f(U) is an \mathcal{J} -sequential neighborhood of y.

Proof. (1) \Rightarrow (2) Suppose that $x \in [f^{-1}(A)]_{\mathcal{J}-s}$. Then there is a sequence $\{x_n\}_{n\in\mathbb{N}}$ in $f^{-1}(A)$ such that $x_n\xrightarrow{\mathcal{I}}x$. Hence $\{f(x_n):n\in\mathbb{N}\}\subseteq A$ and $f(x_n) \xrightarrow{\mathcal{I}} f(x)$. This means that $f(x) \in [A]_{\mathcal{I}^{-s}}$. Hence $f([f^{-1}(A)]_{\mathcal{I}^{-s}}) \subseteq$ $[A]_{\mathcal{J}-s}$.

On the other hand, assume that $y \in [A]_{\mathcal{J}-s}$. Then there is a sequence $\{y_n\}_{n\in\mathbb{N}}$ in A such that $y_n \xrightarrow{\mathcal{I}} y$. By the condition (1), there is a sequence $\{x_i\}_{i\in\mathbb{N}}$ in X with $\{x_i: i\in\mathbb{N}\}\subseteq f^{-1}(\{y_n: n\in\mathbb{N}\})\subseteq f^{-1}(A)$ and $x_i\xrightarrow{\mathcal{J}}x\in f^{-1}(y)$. Thus $x\in [f^{-1}(A)]_{\mathcal{J}^{-s}}$, hence $y=f(x)\in f([f^{-1}(A)]_{\mathcal{J}^{-s}})$, and further $[A]_{\mathcal{J}^{-s}} \subseteq f([f^{-1}(A)]_{\mathcal{J}^{-s}}).$

- $(2) \Rightarrow (3)$ Let $y \in [A]_{\mathcal{J}-s}$ for each $A \subseteq Y$. By the condition (2), it follows that $y \in f([f^{-1}(A)]_{\mathcal{J}^{-s}})$. Thus $f^{-1}(y) \cap [f^{-1}(A)]_{\mathcal{J}^{-s}} \neq \emptyset$.
- $(3) \Rightarrow (4)$ Let $y \in [A]_{\mathcal{J}-s} \subseteq Y$. By the condition (3), assume that $x \in$ $f^{-1}(y) \cap [f^{-1}(A)]_{\mathcal{J}^{-s}}$. Then there is a sequence $\{x_n\}_{n\in\mathbb{N}}$ in $f^{-1}(A)$ such that $x_n \xrightarrow{\mathcal{I}} x$. If V is an \mathcal{I} -sequential neighborhood of x, then there is $E \in \mathcal{I}$ such that $x_n \in V$ for all $n \in \mathbb{N} \setminus E$. Hence $f(x_n) \in f(V) \cap A$ for all $n \in \mathbb{N} \setminus E$ and $f(x_n) \xrightarrow{\mathcal{I}} f(x)$. Take a point $a \in f(V) \cap A$. Define a sequence $\{y_n\}_{n \in \mathbb{N}}$ by $y_n = f(x_n)$ if $n \in \mathbb{N} \setminus E$; $y_n = a$ if $n \in E$. Then $\{y_n : n \in \mathbb{N}\} \subseteq f(V) \cap A$ and $y_n \xrightarrow{\mathcal{I}} f(x) = y$ from Lemma 2.4. Thus $y \in [f(V) \cap A]_{\mathcal{I}-s}$.
 - $(4) \Rightarrow (5)$ It is clear.
- (5) \Rightarrow (6) Let $y \in Y$ and U be an \mathcal{J} -sequential neighborhood of $f^{-1}(y)$. If f(U) is not an \mathcal{J} -sequential neighborhood of y, then $y \in Y \setminus (f(U))_{\mathcal{J}$ -s} = $[Y \setminus f(U)]_{\mathcal{J}-s}$. By the condition (5), it follows that $f(U) \cap (Y \setminus f(U)) = \emptyset$, a contradiction.
- (6) \Rightarrow (3) Let $y \in [A]_{\mathcal{J}-s} \subseteq Y$. Suppose that $f^{-1}(y) \cap [f^{-1}(A)]_{\mathcal{J}-s} =$ \varnothing . Then $f^{-1}(y) \subseteq X \setminus [f^{-1}(A)]_{\mathcal{J}^{-s}} = (X \setminus f^{-1}(A))_{\mathcal{J}^{-s}}$. This means that $X \setminus f^{-1}(A)$ is an \mathcal{J} -sequential neighborhood of $f^{-1}(y)$. By the condition (6), $y \in (f(X \setminus f^{-1}(A)))_{\mathcal{J}-s} = (Y \setminus A)_{\mathcal{J}-s} = Y \setminus [A]_{\mathcal{J}-s}$, a contradiction.
- $(3) \Rightarrow (1)$ Let $\{y_n\}_{n \in \mathbb{N}}$ be an \mathcal{J} -convergent sequence in Y with $y_n \xrightarrow{\mathcal{J}} y$. Put $A = \{y_n : n \in \mathbb{N}\}$, then $y \in [A]_{\mathcal{J}-s}$. By the condition (3), there is $x \in f^{-1}(y) \cap [f^{-1}(A)]_{\mathcal{J}^{-s}}$. Hence there is a sequence $\{x_i\}_{i \in \mathbb{N}}$ in X with $\{x_i : x_i \in \mathbb{N}\}$ $i \in \mathbb{N} \subseteq f^{-1}(A) \subseteq f^{-1}(\{y_n : n \in \mathbb{N}\}) \text{ and } x_i \xrightarrow{\mathcal{I}} x \in f^{-1}(y).$

Remark~3.11.

(1) Theorem 3.5 is different from Lemma 3.10 (1). In Lemma 3.10 (1), $x_i \xrightarrow{\mathcal{I}} x \in f^{-1}(y)$. But we don't know whether the \mathcal{I} -limit point x in $f^{-1}(y)$ or not in Theorem 3.5.

- (2) One of the above six conditions can deduce that f is an \mathcal{J} -quotient mapping.
 - In fact, let U be non- \mathcal{I} -closed in Y. Then there is a sequence $\{y_n\}_{n\in\mathbb{N}}$ in U \mathcal{J} -converging to $y \in Y \setminus U$. Thus $y \neq y_n$ for each $n \in \mathbb{N}$. By the assumption of the condition (1), there is a sequence $\{x_i\}_{i\in\mathbb{N}}$ in X such that $\{x_i: i \in \mathbb{N}\} \subseteq f^{-1}(\{y_n: n \in \mathbb{N}\}) \subseteq f^{-1}(U)$ and $x_i \xrightarrow{\mathcal{I}} x \in \mathbb{N}$ $f^{-1}(y) \notin f^{-1}(U)$. This implies that $f^{-1}(U)$ is non- \mathcal{J} -closed in X. Hence, f is an \mathcal{J} -quotient mapping.
- (3) If the maximal ideal \mathcal{J} is replaced by \mathcal{I}_f in Theorem3.10, then (1) \Leftrightarrow $(2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6) \Leftrightarrow f \text{ is an } \mathcal{I}_f\text{-quotient mapping.}$ But the following example shows that there exist a T_1 space X, an ideal \mathcal{I} of \mathbb{N} and an \mathcal{I} -quotient mapping f such that f does not satisfy the condition (6) of Theorem 3.10.

Example 3.12. There exist a T_1 space X, an ideal \mathcal{I} of \mathbb{N} and an \mathcal{I} -quotient mapping f, but f does not satisfy the condition (6) of Theorem 3.10.

Proof. Let $\mathcal{I} = \{A \subseteq \mathbb{N} : A \text{ contains at most only finite odd positive integers}\}.$ Then \mathcal{I} is an admissible ideal of \mathbb{N} . Let Y be the set ω which is endowed with the finite complement topology. Then Y is a first-countable T_1 -space. Put $X_0 = Y \setminus \{0\}$ and $X_1 = \{2k : k \in \omega\}$ as the subspaces of the space Y, and $X = X_0 \bigoplus X_1$. A mapping $f: X \to Y$ is defined by the natural mapping. It is easy to see that the mapping f is a continuous quotient mapping. Since X_0 and X_1 are first-countable space, X is a first-countable space. Thus, X is an \mathcal{I} -sequential space. By Theorem 3.6, it follows that f is an \mathcal{I} -quotient mapping.

Note that the set X_1 is open in X and $f^{-1}(0) \subseteq X_1$, and hence X_1 is an \mathcal{I} -sequential neighborhood of $f^{-1}(0)$. For each open neighborhood U of 0 in $Y, \{n \in \mathbb{N} : n \notin U\}$ is a finite subset, hence $\{n \in \mathbb{N} : n \notin U\} \in \mathcal{I}$. This means that the sequence $\{n\}_{n\in\mathbb{N}}$ in Y satisfies $n\stackrel{\mathcal{I}}{\to} 0$. But $\{n\in\mathbb{N}:n\notin f(X_1)\}=1$ $\{2k+1, k \in \omega\} \notin \mathcal{I}$. Thus $f(X_1)$ is not an \mathcal{I} -sequential neighborhood of 0 in Y.

Problem 3.13. For some maximal ideal \mathcal{J} of \mathbb{N} and an \mathcal{J} -quotient mapping f, does it satisfy the condition (6) of Theorem 3.10?

4. On Spaces with \mathcal{I} -cs'-Networks

In this section, we introduce the concepts of \mathcal{I} -cs-networks, \mathcal{I} -cs'-networks and $\mathcal{I}\text{-}wcs'$ -networks for a space X; and obtain that if X is an $\mathcal{J}\text{-FU}$ space with a point-countable \mathcal{J} -cs'-network, then X is a meta-Lindelöf space, for a maximal ideal \mathcal{J} of \mathbb{N} .

Definition 4.1 ([13]). Let \mathcal{I} be an ideal on \mathbb{N} , X be a topological space and \mathcal{P} be a cover of X.

(1) \mathcal{P} is a network of X if whenever $x \in U$ with U open in X, then $x \in P \subseteq U$ for some $P \in \mathcal{P}$.

- (2) \mathcal{P} is called an \mathcal{I} -cs-network of X if whenever $\{x_n\}_{n\in\mathbb{N}}$ is a sequence in X I-converging to a point $x \in U$ with U open in X, then $\{x_n\}_{n \in \mathbb{N}}$ is \mathcal{I} -eventually in P and $x \in P \subseteq U$ for some $P \in \mathcal{P}$.
- (3) \mathcal{P} is called an \mathcal{I} -cs'-network of X if whenever $\{x_n\}_{n\in\mathbb{N}}$ is a sequence in X \mathcal{I} -converging to a point $x \in U$ with U open in X, then there is $P \in \mathcal{P}$ and some $n_0 \in \mathbb{N}$ such that $\{x, x_{n_0}\} \subseteq P \subseteq U$.
- (4) \mathcal{P} is called an \mathcal{I} -wcs'-network of X if whenever $\{x_n\}_{n\in\mathbb{N}}$ is a sequence in X I-converging to a point $x \in U$ with U open in X, then there is $P \in \mathcal{P}$ and some $n_0 \in \mathbb{N}$ such that $\{x_{n_0}\} \subseteq P \subseteq U$.

Obviously, \mathcal{I} -cs-networks $\Rightarrow \mathcal{I}$ -cs'-networks $\Rightarrow \mathcal{I}$ -wcs'-networks \Rightarrow networks.

Definition 4.2. Let \mathcal{J} be a maximal ideal of \mathbb{N} and X be a topological space. \mathcal{U} is said to be \mathcal{J} -sn-cover of X, if $\{(U)_{\mathcal{J}$ -s}: $U \in \mathcal{U}\}$ is a cover of X.

Theorem 4.3. Each \mathcal{I} -cs-network is preserved by an \mathcal{I} -covering mapping.

Proof. Let $f: X \to Y$ be an \mathcal{I} -covering mapping and \mathcal{P} be an \mathcal{I} -cs-network of X. Suppose that $\{y_n\}_{n\in\mathbb{N}}$ is a sequence \mathcal{I} -converging to a point $y\in U$ with Uopen in Y. Since f is an \mathcal{I} -covering mapping, there exist a sequence $\{x_n\}_{n\in\mathbb{N}}$ of points $x_n \in f^{-1}(y_n)$ for all $n \in \mathbb{N}$ and $x \in f^{-1}(y)$ such that $x_n \xrightarrow{\mathcal{I}} x$. Since \mathcal{P} is an \mathcal{I} -cs-network of X, there is some $P \in \mathcal{P}$ such that $\{x_n\}_{n \in \mathbb{N}}$ is \mathcal{I} -eventually in P and $x \in P \subseteq f^{-1}(U)$. Thus there is $E \in \mathcal{I}$ such that $\{n \in \mathbb{N} : x_n \notin P\} \subseteq E$. Note that $\{n \in \mathbb{N} : y_n \notin f(P)\} \subseteq \{n \in \mathbb{N} : x_n \notin P\} \subseteq E$, hence $y_n \in f(P)$ for all $n \in \mathbb{N} \setminus E$, i.e. $\{y_n\}_{n \in \mathbb{N}}$ is \mathcal{I} -eventually in f(P) and $y \in f(P) \subseteq U$. This means that $f(\mathcal{P}) = \{f(P) : P \in \mathcal{P}\}\$ is an \mathcal{I} -cs-network of Y.

Corollary 4.4. Each \mathcal{I} -cs'-network is preserved by an \mathcal{I} -covering mapping.

Theorem 4.5. Each \mathcal{I} -wcs'-network is preserved by an \mathcal{I} -quotient mapping.

Proof. Let $f: X \to Y$ be an \mathcal{I} -quotient mapping and \mathcal{P} be an \mathcal{I} -wcs'-network of X. Suppose that $\{y_n\}_{n\in\mathbb{N}}$ is a sequence \mathcal{I} -converging to a point $y\in U$ with U open in Y. Since f is an \mathcal{I} -quotient mapping, there is a sequence $\{x_i\}_{i\in\mathbb{N}}$ in X such that $\{x_i : i \in \mathbb{N}\}\subseteq f^{-1}(\{y_n : n \in \mathbb{N}\})$ and $x_i \xrightarrow{\mathcal{I}} x \notin f^{-1}(\{y_n : n \in \mathbb{N}\})$. And because \mathcal{P} is an \mathcal{I} -wcs'-network of X, there is some $P_0 \in \mathcal{P}$ and $i_0 \in \mathbb{N}$ such that $\{x_{i_0}\}\subseteq P_0\subseteq f^{-1}(U)$. And hence $\{f(x_{i_0})\}=\{y_{n_0}\}\subseteq f(P_0)\subseteq U$ for some $n_0 \in \mathbb{N}$. This implies that $f(\mathcal{P}) = \{f(P) : P \in \mathcal{P}\}$ is an \mathcal{I} -wcs'-network of Y.

Lemma 4.6. Let \mathcal{J} be a maximal ideal of \mathbb{N} and \mathcal{P} be a family of subsets of X. Then \mathcal{P} is an \mathcal{J} -cs'-network of X if and only if, whenever U is an open neighborhood of x, $\bigcup \{P \in \mathcal{P} : x \in P \subseteq U\}$ is an \mathcal{J} -sequential neighborhood of

Proof. Necessity: Let U be an open neighborhood of x. If $\bigcup \{P \in \mathcal{P} : x \in \mathcal{P} \}$ $P \subseteq U$ is not an \mathcal{J} -sequential neighborhood of x, then there is a sequence $\{x_n\}_{n\in\mathbb{N}}$ such that $x_n \xrightarrow{\mathcal{I}} x$ and $x_n \notin \bigcup \{P \in \mathcal{P} : x \in P \subseteq U\}$ for each $n \in \mathbb{N}$. Since \mathcal{P} is an \mathcal{J} -cs'-network of X, there is $P_0 \in \mathcal{P}$ and $n_0 \in \mathbb{N}$ such that $\{x, x_{n_0}\} \subseteq P_0 \subseteq U$, a contradiction.

Sufficiency: Suppose that $x_n \xrightarrow{\mathcal{I}} x \in U \in \tau_X$ and $\bigcup \{P \in \mathcal{P} : x \in P \subseteq U\}$ is an \mathcal{J} -sequential neighborhood of x. Then $\{x_n\}_{n\in\mathbb{N}}$ is \mathcal{J} -eventually in $\bigcup \{P\in$ $\mathcal{P}: x \in P \subseteq U$. Hence there exists $n_0 \in \mathbb{N}$ such that $x_{n_0} \in \bigcup \{P \in \mathcal{P}: x \in \mathcal{P} : x$ $P \subseteq U$. And hence there is $P_0 \in \mathcal{P}$ such that $x_{n_0} \in P_0$ and $x \in P_0 \subseteq U$. Thus $\{x, x_{n_0}\}\subseteq P_0\subseteq U$. This means that \mathcal{P} is an \mathcal{J} -cs'-network of X.

Theorem 4.7. Let \mathcal{J} be a maximal ideal of \mathbb{N} and a space X be of a pointcountable \mathcal{J} -cs'-network. Then each open cover of X has a point-countable \mathcal{J} -sn refinement.

Proof. Suppose that \mathcal{P} is a point-countable \mathcal{J} -cs'-network for a space X. Let $\mathcal{U} = \{U_{\alpha}\}_{{\alpha}<\gamma}$ be an open cover of X, where γ is an ordinal. For each $\alpha < \gamma$, put

$$V_{\alpha} = \bigcup \{ P \in \mathcal{P} : P \subseteq U_{\alpha}, P \not\subseteq U_{\beta} \text{ if } \beta < \alpha \}.$$

Clearly, $V_{\alpha} \subseteq U_{\alpha}$. Next we shall show that the family $\mathcal{V} = \{V_{\alpha}\}_{{\alpha}<\gamma}$ is a pointcountable \mathcal{J} -sn-cover of X. For each $x \in X$, let $\alpha(x) = \min\{\alpha < \gamma : x \in U_{\alpha}\}$. Then $x \in U_{\alpha(x)}$ and

$$\bigcup \{P \in \mathcal{P} : x \in P \subseteq U_{\alpha(x)}\} \subseteq \bigcup \{P \in \mathcal{P} : P \subseteq U_{\alpha(x)}, P \not\subseteq U_{\beta} \text{ if } \beta < \alpha(x)\}.$$

Since \mathcal{P} is an \mathcal{J} -cs'-network for a space X, it follows from Lemma 4.6 that

$$x \in (\bigcup \{P \in \mathcal{P} : x \in P \subseteq U_{\alpha(x)}\})_{\mathcal{J}^{-s}}$$

$$\subseteq (\bigcup \{P \in \mathcal{P} : P \subseteq U_{\alpha(x)}, P \not\subseteq U_{\beta} \text{ if } \beta < \alpha(x)\})_{\mathcal{J}^{-s}}$$

$$= (V_{\alpha(x)})_{\mathcal{J}^{-s}}.$$

This means that $\mathcal{V} = \{V_{\alpha}\}_{{\alpha}<\gamma}$ is an \mathcal{J} -sn-cover of X.

We claim that \mathcal{V} is point-countable. Suppose, to the contrary, that there exist a point $x \in X$ and an uncountable subset Γ of γ such that $x \in V_{\alpha}$ for each $\alpha \in \Gamma$. Hence there is $P_{\alpha} \in \mathcal{P}$ such that $x \in P_{\alpha} \subseteq U_{\alpha}$ and $P_{\alpha} \not\subseteq U_{\beta}$ for $\beta < \alpha$. Since \mathcal{P} is a point-countable family and Γ is an uncountable set, there are $\alpha, \beta \in \Gamma, \alpha \neq \beta$ such that $P_{\alpha} = P_{\beta}$. Assume that $\beta < \alpha$, then $U_{\beta} \supseteq P_{\beta} = P_{\alpha} \not\subseteq U_{\beta}$, a contradiction.

Definition 4.8.

- (1) A space X is called \mathcal{I} -Fréchet-Urysohn (or shortly, \mathcal{I} -FU) space, if for each $A \subset X$ and each $x \in \overline{A}$, there exists a sequence in $A \mathcal{I}$ -converging to the point x in X [20].
- (2) A space X is called a meta-Lindelöf space if each open cover of X has a point-countable open refinement [13].

Corollary 4.9. Let \mathcal{J} be a maximal ideal of \mathbb{N} . If X is an \mathcal{J} -FU space with a point-countable \mathcal{J} -cs'-network, then X is a meta-Lindelöf space.

Proof. X is an \mathcal{J} -FU space $\Leftrightarrow \overline{A} = [A]_{\mathcal{J}$ -s for each $A \subseteq X \Leftrightarrow \operatorname{int} A = (A)_{\mathcal{J}$ -s for each $A \subseteq X$.

Theorem 4.10. Let \mathcal{J} be a maximal ideal of \mathbb{N} . The following are equivalent for a space X.

- (1) \mathcal{J} -sX is an \mathcal{J} -Fréchet-Urysohn space.
- (2) $\operatorname{cl}_{\mathcal{J}\text{-}sX}(A) = [A]_{\mathcal{J}\text{-}s}$, for each $A \subseteq X$.
- (3) $[A]_{\mathcal{J}-s}$ is \mathcal{J} -closed in X, for each $A \subseteq X$.
- (4) $(A)_{\mathcal{J}\text{-}s}$ is $\mathcal{J}\text{-}open$ in X, for each $A\subseteq X$.

Proof. Since the spaces X and \mathcal{J} -sX have the same \mathcal{J} -convergent sequences, by the Definition 4.8 and Proposition 3.8, it follows that $(1) \Leftrightarrow (2)$ and $(3) \Leftrightarrow (4)$. Hence, it suffices to show that $(2) \Leftrightarrow (3)$. If $\operatorname{cl}_{\mathcal{J}-sX}(A) = [A]_{\mathcal{J}-s}$, then $[A]_{\mathcal{J}-s}$ is closed in \mathcal{J} -sX, and hence $[A]_{\mathcal{J}$ - $s}$ is \mathcal{J} -closed in X, for each $A\subseteq X$. On the other hand, if $[A]_{\mathcal{J}-s}$ is \mathcal{J} -closed in X, then $[A]_{\mathcal{J}-s}$ is closed in $\mathcal{J}-sX$, and further $\operatorname{cl}_{\mathcal{J}-sX}(A) = [A]_{\mathcal{J}-s}$, for each $A \subseteq X$.

ACKNOWLEDGEMENTS. My gratitude goes to Professor Shou Lin, for his friendly encouragement and inspiring suggestions.

References

- [1] J. R. Boone and F. Siwiec, Sequentially quotient mappings, Czech. Math. J. 26 (1976),
- [2] L. X. Cheng, G. C. Lin, Y. Y. Lan and H. Liu, Measure theory of statistical convergence, Sci. China Ser. A 51 (2008), 2285–2303.
- [3] L. X. Cheng, G. C. Lin and H. H. Shi, On real-valued measures of statistical type and their applications to statistical convergence, Math. Comput. Modelling 50 (2009), 116-122.
- [4] P. Das, Some further results on ideal convergence in topological spaces, Topol. Appl. 159 (2012), 2621-2626.
- [5] P. Das and S. Ghosal, When \mathcal{I} -Cauchy nets in complete uniform spaces are \mathcal{I} -convergent, Topol. Appl. 158 (2011), 1529-1533.
- [6] P. Das, Lj.D.R. Kočinac and D. Chandra, Some remarks on open covers and selection principles using ideals, Topol. Appl. 202 (2016), 183–193.
- [7] G. Di Maio and Lj. D. R. Kočinac, Statistical convergence in topology, Topol. Appl. 156 (2008), 28-45.
- [8] R. Engelking, General Topology (revised and completed edition), Heldermann Verlag, Berlin, 1989.
- [9] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
- [10] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton,
- [11] P. Kostyrko, T. Šalát and W. Wilczynski, *I*-convergence, Real Anal. Exch. 26 (2000/2001), 669-686.
- [12] B. K. Lahiri and P. Das, \mathcal{I} and \mathcal{I}^* -convergence in topological spaces, Math. Bohemica 130, no. 2 (2005), 153-160.
- [13] S. Lin, Point-countable covers and sequence-covering mappings, Science Press, Beijing, 2015 (in Chinese).
- [14] S. Lin and Z.Q. Yun, Generalized metric spaces and mapping, Atlantis Studies in Mathematics 6, Atlantis Press, Paris, 2016.

X. Zhou

- [15] S. K. Pal, N. Adhikary and U. Samanta, On ideal sequence covering maps, Appl. Gen. Topol. 20, no. 2 (2019), 363-377.
- [16] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74.
- [17] Z. Tang and F. Lin, Statistical versions of sequential and Fréchet-Urysohn spaces, Adv. Math. (China) 44 (2015), 945-954.
- [18] X. G. Zhou and M. Zhang, More about the kernel convergence and the ideal convergence, Acta Math. Sinica, English Series 29 (2013), 2367-2372.
- [19] X. G. Zhou and L. liu, On \mathcal{I} -covering mappings and 1- \mathcal{I} -covering mappings, J. Math. Res. Appl. (China) 40, no. 1 (2020) 47-56.
- [20] X. G. Zhou, L. Liu and S. Lin, On topological spaces defined by \mathcal{I} -convergence, Bull. Iran. Math. Soc. 46 (2020), 675–692.