

A note on rank 2 diagonals

Angelo Bella and Santi Spadaro

Dipartimento di Matematica e Informatica, University of Catania, Città Universitaria, Viale A. Doria 6, 95125 Catania, Italy (bella@dmi.unict.it, santidspadaro@gmail.com)

Communicated by S. García-Ferreira

Abstract

We solve two questions regarding spaces with a (G_{δ}) -diagonal of rank 2. One is a question of Basile, Bella and Ridderbos about weakly Lindelöf spaces with a G_{δ} -diagonal of rank 2 and the other is a question of Arhangel'skii and Bella asking whether every space with a diagonal of rank 2 and cellularity continuum has cardinality at most continuum.

2010 MSC: 54D10; 54A25.

Keywords: cardinality bounds; weakly Lindelöf; G_{δ} -diagonal; neighbourhood assignment; dual properties.

1. Introduction

A space is said to have a G_{δ} -diagonal if its diagonal can be written as the intersection of a countable family of open subsets in the square. This notion is of central importance in metrization theory, ever since Sneider's 1945 theorem [14] stating that every compact Hausdorff space with a G_{δ} -diagonal is metrizable. Sneider's result was later improved by Chaber [8] who proved that every countably compact space with a G_{δ} -diagonal is compact and hence metrizable.

Around the same time, Ginsburg and Woods [10] showed the influence of G_{δ} -diagonals in the theory of cardinal invariants for topological spaces by proving that every space with a G_{δ} -diagonal without uncountable closed discrete sets has cardinality at most continuum. Their result led them to conjecture that every ccc space with a G_{δ} -diagonal must have cardinality at most continuum.

Shakhmatov [13] and Uspenskii [15] gave a pretty strong disproof to this conjecture by constructing Tychonoff ccc spaces with a G_{δ} -diagonal of arbitrarily large cardinality. However, in the meanwhile, several strengthenings of the notion of a G_{δ} -diagonal had been introduced, leading several researchers to test Ginsburg and Woods's conjecture against these stronger diagonal properties. That culminated in Buzyakova's surprising result [7] that a ccc space with a regular G_{δ} -diagonal has cardinality at most continuum. A space has a regular G_{δ} -diagonal if there is a countable family of neighbourhoods of the diagonal in the square such that the diagonal is the intersection of their closures.

Another way of strengthening the property of having a G_{δ} -diagonal is by considering the notion of rank. Recall that given a family \mathcal{U} of subsets of a topological space and a point $x \in X$, $St(x,\mathcal{U}) := \{ \{ \{ U \in \mathcal{U} : x \in U \} \}$. The set $St^n(x,\mathcal{U})$ is defined by induction as follows: $St^1(x,\mathcal{U}) = St(x,\mathcal{U})$ and $St^n(x,\mathcal{U}) = \bigcup \{U \in \mathcal{U} : U \cap St^{n-1}(x,\mathcal{U}) \neq \varnothing \}$ for every n > 1. A space is said to have a diagonal of rank n if there is a sequence $\{\mathcal{U}_k : k < \omega\}$ of open covers of X such that $\bigcap \{St^n(x,\mathcal{U}_k): k < \omega\} = \{x\}$, for every $x \in X$. By a wellknown characterization, having a diagonal of rank 1 is equivalent to having a G_{δ} -diagonal. Note also that a space with a G_{δ} -diagonal of rank 2 is necessarily T_2 .

Zenor [17] observed that every space with a diagonal of rank 3 also has a regular G_{δ} -diagonal so by Buzyakova's result, every ccc space with a diagonal of rank 3 has cardinality at most continuum. In [3], the first author proved the stronger result that every ccc space with a G_{δ} -diagonal of rank 2 has cardinality at most 2^{ω} . The following question is still open though:

Question 1.1 (Arhangel'skii and Bella [1]). Is every regular G_{δ} -diagonal always of rank 2?

A positive answer would lead to a far-reaching generalization of Buzyakova's cardinal bound.

Arhangel'skii and the first-named author proved in [1] that every space with a diagonal of rank 4 and cellularity $< \mathfrak{c}$ has cardinality at most continuum, and leave open whether this is also true for spaces with a diagonal of rank 2 or 3.

Question 1.2. Let X be a space with a diagonal of rank 2 or 3 and cellularity at most \mathfrak{c} . Is it true that $|X| \leq \mathfrak{c}$.

From Proposition 4.7 of [4] it follows that $|X| \leq c(X)^{\omega}$ for every space X with a diagonal of rank 3, which in turn that the answer to Arhangel'skii and Bella's question is yes for spaces with a diagonal of rank 3. We show that the answer to their question is no for spaces with a diagonal of rank 2, by constructing a space with a diagonal of rank 2, cellularity $< \mathfrak{c}$ and cardinality larger than the continuum. That leads to a complete solution to Arhangel'skii and Bella's question.

Recall that space X is weakly Lindelöf provided that every open cover has a countable subfamily whose union is dense in X. This notion is a common generalisation of the Lindelöf property and the countable chain condition (ccc).

In view of the results by Ginsburg-Woods and Bella mentioned above it is natural to consider the following question:

Question 1.3 ([4]). Let X be a weakly Lindelöf space with a G_{δ} -diagonal of rank 2. Is it true that $|X| \leq 2^{\omega}$?

The above question was explicitly formulated in [4] and two partial positive answers were obtained there under the assumptions that the space is either Baire or has a rank 3 diagonal. Here we will prove that Question 1.3 has a positive answer assuming that the space is normal.

All undefined notions can be found in [12].

2. Spaces with a diagonal of rank 2

Recall that a neighbourhood assignment for a space X is a function ϕ from X to its topology such that $x \in \phi(x)$ for every $x \in X$. A set $Y \subseteq X$ is a kernel for ϕ if $X = \bigcup \{\phi(y) : y \in Y\}$. Following [11], we say that a space X is dually \mathcal{P} if every neighbourhood assignment in X has a kernel Y satisfying the property \mathcal{P} . Of course, \mathcal{P} implies dually \mathcal{P} . A dually ccc space may fail to be even weakly Lindelöf.

Here we need the countable version of a well-known result of Erdös and Rado:

Lemma 2.1. Let X be a set with $|X| > 2^{\omega}$. If $[X]^2 = \bigcup \{P_n : n < \omega\}$, then there exist an uncountable set $S \subseteq X$ and an integer $n_0 \in \omega$ such that $|S|^2 \subseteq P_{n_0}$.

Theorem 2.2. If X is a dually weakly Lindelöf normal space with a G_{δ} -diagonal of rank 2, then $|X| \leq 2^{\omega}$.

Proof. Let $\{\mathcal{U}_n : n < \omega\}$ be a sequence of open covers of X such that $\{x\} = \bigcap \{St^2(x,\mathcal{U}_n) : n < \omega\}$ for each $x \in X$. Assume by contradiction that $|X| > 2^\omega$ and for any $n < \omega$ put $P_n = \{\{x,y\} \in [X]^2 : St(x,\mathcal{U}_n) \cap St(y,\mathcal{U}_n) = \varnothing\}$. The assumption that the sequence $\{\mathcal{U}_n : n < \omega\}$ has rank 2 implies that $[X]^2 = \bigcup \{P_n : n < \omega\}$. By Lemma 2.1 there exists an uncountable set $S \subseteq X$ and an integer n_0 such that $[S]^2 \subseteq P_{n_0}$. The collection $\{St(x,\mathcal{U}_{n_0}) : x \in S\}$ consists of pairwise disjoint open sets. From that it follows that, for any $z \in X$, the set $St(z,\mathcal{U}_{n_0})$ cannot meet S in two distinct points, which implies that the set S is closed and discrete.

We define a neighbourhood assignment ϕ for X as follows: if $x \in S$ let $\phi(x) = St(x, \mathcal{U}_{n_0})$ and if $x \in X \setminus S$ let $\phi(x) = X \setminus S$. Since X is dually weakly Lindelöf, there exists a weakly Lindelöf subspace Y such that $X = \bigcup \{\phi(y) : y \in Y\}$. By the way ϕ is defined, it follows that $S \subseteq \bigcup \{\phi(y) : y \in Y \cap S\}$ and hence $S \subseteq Y$. As X is normal, we may pick an open set Y such that $S \subseteq Y$ and $\overline{Y} \subseteq \bigcup \{St(x, \mathcal{U}_{n_0}) : x \in S\}$. The trace on Y of the open cover $\{St(x, \mathcal{U}_{n_0}) : x \in X\} \cup \{X \setminus \overline{Y}\}$ witnesses the failure of the weak Lindelöf property on Y. This is a contradiction and we are done.

Related results for the classes of dually ccc spaces and for that of cellular-Lindelöf spaces were proved in [16] and [6].

Finally we will construct a space with a diagonal of rank 2, cellularity at most continuum and cardinality larger than the continuum, thus solving Problem 2 from [1]. Recall that a κ -Suslin Line L is a continuous linear order (endowed with the order topology) such that $c(L) \leq \kappa < d(L)$. The existence of a κ -Suslin Line for every $\kappa \geq \omega$ is consistent with ZFC (Jensen proved that it follows from V = L).

Theorem 2.3. (V = L) There is a space X with a diagonal of rank 2 such that $c(X) \leq \mathfrak{c}$ and $|X| \geq \mathfrak{c}^+$.

Proof. Let T be an ω_1 -Suslin Line. Let S be the set of all points of L which have countable cofinality. Since T is a continuous linear order the set S is dense in T and hence $d(S) > \aleph_1$. In particular, $|S| > \aleph_1$. Let τ be the topology on S generated by intervals of the form (x,y], where $x < y \in S$. Note that $c((S,\tau)) = \aleph_1$ and that the space (S,τ) is first-countable and regular. So applying Mike Reed's Moore Machine (see, for example [9]) to (S,τ) we obtain a Moore space $\mathcal{M}(S)$ such that $|\mathcal{M}(S)| = |S| > \aleph_1$ and $c(\mathcal{M}(S)) \leq \aleph_1$. Recalling that Moore spaces have a diagonal of rank 2 (see Proposition 1.1 of [2]) and that $\mathfrak{c} = \aleph_1$ under V = L, we see that $X = \mathcal{M}(S)$ satisfies the statement of the theorem.

The above theorem also shows that the assumption that the space is Baire is essential in Proposition 4.5 from [4], thus solving a question asked by the authors of [4] (see the paragraph after the proof of Lemma 4.6).

3. Acknowledgements

The authors acknowledge support from INdAM-GNSAGA.

References

- [1] A. V. Arhangel'skii and A. Bella, The diagonal of a first-countable paratopological groups, submetrizability and related results, Appl. Gen. Topol. 8 (2007), 207-212.
- [2] A. V. Arhangel'skii and R. Z. Buzyakova, The rank of the diagonal and submetrizability, Comment. Math. Univ. Carolinae 47 (2006), 585-597.
- [3] A. Bella, Remarks on the metrizability degree, Boll. Union. Mat. Ital. 1-3 (1987), 391–396.
- [4] D. Basile, A. Bella and G. J. Ridderbos, Weak extent, submetrizability and diagonal degrees, Houston J. Math. 40 (2014), 255-266.
- [5] M. Bell, J. Ginsburg and G. Woods, Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. 79 (1978), no. 1, 37-45.
- [6] A. Bella and S. Spadaro, Cardinal invariants of cellular Lindelöf spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), 2805-2811.
- R. Buzyakova, Cardinalities of ccc spaces with regular G_{δ} -diagonals, Topology Appl. 153 (2006), 1696-1698.
- J. Chaber, Conditions which imply compactness in countably compact spaces, Bull. Acad. Pol. Sci. Ser. Math. 24 (1976), 993–998.
- [9] E. K. van Douwen and M. Reed, On chain conditions in Moore spaces II, Topology Appl. 39 (1991), 65–69.

- [10] J. Ginsburg and R. G. Woods, A cardinal inequality for topological spaces involving closed discrete sets, Proc. Amer. Math. Soc. 64 (1977), 357–360.
- [11] J. van Mill, V. V. Tkachuk and R. G. Wilson, Classes defined by stars and neighbourhood assignments, Topology Appl. 154, no. 10 (2007), 2127-2134.
- [12] R. Engelking, General Topology, Heldermann Verlag, Berlin, second ed., 1989.
- [13] D. Shakhmatov, No upper bound for cardinalities of Tychonoff C.C.C. spaces with a G_{δ} diagonal exist (an answer to J. Ginsburg and R.G. Woods' question), Comment. Math. Univ. Carolinae 25 (1984), 731-746.
- [14] V. Sneider, Continuous images of Souslin and Borel sets: metrization theorems, Dokl. Acad. Nauk USSR, 50 (1945), 77-79.
- [15] V. Uspenskij, A large F_{σ} -discrete Fréchet space having the Souslin property, Comment. Math. Univ. Carolinae 25 (1984), 257-260.
- [16] W.-F. Xuan and Y.-K. Song, Dually properties and cardinal inequalities, Topology Appl. 234 (2018), 1-6.
- [17] P. Zenor, On spaces with regular G_{δ} -diagonals, Pacific J. Math. 40 (1972), 959–963.