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ABSTRACT

In this paper, we propose a new iteration process which is faster than the
leading; S [J. Nonlinear Convex Anal. 8, no. 1 (2007), 61-79], Thakur
et al. [App. Math. Comp. 275 (2016), 147-155] and M [Filomat 32,
no. 1 (2018), 187-196] iterations for numerical reckoning fixed points.
Using this new iteration process, some fixed point convergence results
for generalized a-nonexpansive mappings in the setting of uniformly
convex Banach spaces are proved. At the end of paper, we offer a
numerical example to compare the rate of convergence of the proposed
iteration process with the leading iteration processes.
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1. INTRODUCTION

Throughout this paper, we will denote the set of natural numbers by N.
Let X be a Banach space and M be a nonempty subset of X. A mapping
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T : M — M is said to nonexpansive if
[Tz — Tyl| < ||z —yll, for all z,y € M.

An element p € M is said to be a fixed point of T if p = T(p). From now
on, we will denote the set of all fixed points of T by F(T). A mapping
T : M — M is said to be a quasi-nonexpansive mapping if F(T) # & and
|T(x) — T(p)|| < |z —pl|| for all z € M and p € F(T). It is well-known that
F(T) is nonempty in the case when X is uniformly convex, T' is nonexpansive
and M is closed, bounded and convex; see [6, 7, 10]. A number of generaliza-
tions of nonexpansive mappings have been considered by some researchers in
recent years. Suzuki [17] introduced a new class of mappings known as Suzuki
generalized nonexpansive mappings which is a condition on mappings called
condition (C) and obtained some convergence and existence results for such
mappings. Note that, a mapping T': M — M is said to satisfy condition (C) if

1 -
Sllz = Tz|| < [lo = yl| implies [T = Ty|| < [l —yll,

for each z,y € M.

Aoyama and Kohsaka [4] introduced the class of a-nonexpansive mappings
in the framework of Banach spaces and obtained some fixed point results for
such mappings. A mapping T : M — M is said to be a-nonexpansive if there
exists a real number « € [0, 1) such that for all z,y € M,

172 = Ty|]? < o|To — y|[* + of|e = Tyl* + (1 - 20) ||z — y||*.

Ariza-Puiz et al. [5] proved that the concept of a-nonexpansive is trivial for
a < 0. It is obvious that every nonexpansive mapping is 0O-nonexpansive and
also every a-nonexpansive mapping with F(T) # & is a quasi-nonexpansive.
Note that, in general condition (C) and a-nonexpansive mappings are not con-
tinuous (see [17] and [14] ).

Recently, Pant and Shukla [14] introduced an interesting class of generalized
nonexpansive mappings in Banach spaces known as generalized a-nonexpansive
mappings which contains the class of Suzuki generalized nonexpansive map-
pings. A mapping T : M — M is said to generalized a-nonexpansive if there
exists a real number « € [0,1) such that for each z,y € M,

1
Slle=Tzl| < lz—yll = [[Tz~Ty|| < al|Te—y|l+alTy—z||+(1-2a)[[z—yl.

Once the existence result of a fixed point for a mapping is established, an
algorithm to find the value of the fixed point is desirable. The famous Banach
contraction mapping principle uses Picard iteration z,41 = Tz, for approx-
imation of fixed point. Some other well-known iterations are the Mann [11],
Ishikawa [9], S [3], Picard-S [8], Noor [12], Abbas [1], Thakur et al. [19] and so
on. Speed of convergence plays an important role for an iteration process to be
preferred on another iteration process. Rhoades [15] mentioned that the Mann
iteration process for a decreasing function converges faster than the Ishikawa
iteration process and for an increasing function the Ishikawa iteration process
is better than the Mann iteration process.
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The well-known Mann [11] and Ishikawa [9] iteration schemes are respec-
tively defined as:

(1.1)

where o, € (0,1).

T € M,
Tn1 = (1 - an)xn + anTx’run € N7

l‘leM,

(12) Yn = (1 - ﬁn)xn + BpT'zy,
Tp4l1 = (1 - an)xn + anTyn,n €N,

where a,,, 8, € (0,1).
In 2007, Agarwal et al. [3] introduced the following iteration process known
as S iteration:

T € ]\47
(1'3) Yn = (1 - Bn)xn + BHT:CTH
Tpt1 = (1 —ap)Tx, + anTyn,n €N,

where a,, 8, € (0,1). They proved that the rate of convergence of iteration
process (1.3) is same to the Picard iteration x,+; = Tz, and faster than the
Mann [11] iteration process in the class of contraction mappings.

In 2016, Thakur et al. [19] introduced the following iteration scheme:

xr1 € ]\4'7
Yn =T ((1 — an)xn + anzn) ,
Tpy1 = TYp,n €N,

(1.4)

where a,,, 8, € (0,1). With the help of a numerical example, they proved that
(1.4) is faster than the Picard, Mann [11], Ishikawa [9], S [3], Noor [12] and
Abbas [1] iteration processes in the class of Suzuki generalized nonexpansive
mappings.

Recently in 2018, Ullah and Arshad [20] used a new iteration process known
as M iteration:

xr1 € 2\47
zn = (1 — an)xn + anTay,
(1.5) o =T,

Tpy1 = Tyn,n €N,

where «;,, € (0,1). With the help of a numerical example, they proved that
(1.5) is faster than S [3], Picard-S [8] and Thakur et al. [19] iteration processes
for Suzuki generalized nonexpansive mappings.

Problem 1.1. Is it possible to develop an iteration process whose rate of con-
vergence is even faster than the iteration process (1.5) ¢
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As an answer, we introduce the following new iteration called KF iteration
scheme:

1 €M,
1.6
(16) Yn = T'zp,

Tniy1 = T((]- - an)Txn + anTyn)an eN,

where oy, 8, € (0,1).

With the help of numerical example, we compare the rate of convergence
of iteration (1.6) with the leading S (1.3), Thakur et al. (1.4) and M (1.5)
iteration.

2. PRELIMINARIES

In this section, we give some preliminaries.
Let X be a Banach space and M be a nonempty closed convex subset of X.
Let {x,} be a bounded sequence in M. For z € X, set

r(z,{x,}) = limsup ||z — z,]||.
n—oo

The asymptotic radius of {z,} relative to M is given by
r(M,{z,}) = inf{r(z,{z,}) : x € M}.
The asymptotic center of {x,,} relative to M is the set
AM, {z,}) ={x € M : r(z,{z,}) = r(M,{z,})}.

It is well-known that in a uniformly convex Banach space setting, A(M,x,)
consists of exactly one point. Also, A(M,x,,) is nonempty and convex when M
is weakly compact and convex (see, [18] and [2]). A Banach space X is said to
uniformly convex if for all € > 0, there is a A > 0 such that, for z,y € X with
llz|]] <1, [lyl]] <1and ||z —y|| <e |lz+y]| <2(1—A) holds. Note that, a
Banach space X is said to have Opial’s property [13] if for each sequence {x,,}
in X which weakly converges to x € X and for every y € X, it follows the
following

limsup ||z, — z|| < limsup ||z, — yl|.
n— oo n—oo

Examples of Banach spaces satisfying this condition are Hilbert spaces and all
IP spaces (1 < p < 00).

We now list some basic facts about generalized a-nonexpansive mappings,
which can be found in [14].

Proposition 2.1. Let X be a Banach space, M be a nonempty subset of X
and T : M — M be a mapping.
(i) If T is a Suzuki generalized nonexpansive mapping, then T is a gener-
alized a-nonexpansive mapping.
(ii) If T is a generalized a-nonexpansive mapping and has a fixed point,
then T is a quasi-nonerpansive mapping.
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(iii) If T is a generalized c-nonexpansive mapping. Then F(T) is closed.
Moreover, if X is strictly convex and M is convex, then F(T) is also
conver.

(iv) IfT is a generalized a-nonexpansive mapping. Then for each x,y € M,

3+
o =Tl < (352 ) ke = Tall + i~ .

(v) If X has Opial property, T is generalized c-nonexpansive, {x,} con-

verges weakly to a point v and lim,, o || Tz, —2y|| =0, thenv € F(T).

—

Lemma 2.2 ([16]). Let X be a uniformly convexr Banach space and 0 < p <
an, < g <1 for everyn € N. If {z,} and {y,} are two sequences in X such
that limsup,, , o ||zn|| < ¢, imsup, o [|yn]| < ¢ and lim,_o0 ||anz, + (1 —
an)ynl| =t for some t > 0 then, lim, o || — yn|| = 0.

3. MAIN RESULTS
We open this section with the following important lemma.

Lemma 3.1. Let M be a nonempty closed convex subset of a Banach space X
and T : M — M be a generalized a-nonexpansive mapping with F(T) # @. Let
{zn} be a sequence generated by (1.6), then lim,_ o ||z, — p|| exists for each
p e F(T).

Proof. Let p € F(T). By Proposition 2.1 part (ii), we have
||T<(1 - Bn)xn + BnTxn) - p||

120 = pll

< (A = Bn)xn + BuTxn — pl|
< (1 =Bullzn —pll + BalTzn — pl|
< (1 =Bullzn —pll + Ballzn —pll
< len —pll,
and
lyn =l = [Tz —pl|
< lzn —pll-
They imply that,
lonsr = pll = IIT((1 = an)Ton + anTya) -l
< ||(1 —an)Txy + an Ty, — pH
< (1= an)llTzy — pll + anl|Tyn — pl|
< (I —an)llzn = pll + anlly. — pl|
< (I —an)llzn —pll + anllzn — pl|
< (1= a)l|zn = pl| + anllzn — pl|
< lwn = pll-
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Thus {||z,—p]||} is bounded and nonincreasing, which implies that lim,, o ||, —
pl|| exists for all p € F(T). O

The following theorem is necessary for the next results.

Theorem 3.2. Let M be a nonempty closed convex subset of a uniformly con-
vex Banach space X and T : M — M a generalized c-nonexpansive mapping.
Let {x,,} be a sequence generated by (1.6). Then, F(T) # @ if and only if {z,}
is bounded and lim, o0 ||[T2y — zn|| = 0.

Proof. Suppose that F(T) # @ and p € F(T'). Then, by Lemma 3.1, lim,, o ||2,—
pl| exists and {z,} is bounded. Put

(3.1) Jim |z, —pl| =t.
In view of the proof of Lemma 3.1 together with (3.1), we have

(3.2) limsup ||z, — p|| < limsup ||z, — p|| = t.
n— oo

n— oo

By Proposition 2.1 part (ii), we have

(3.3) limsup ||Tx, — p|| < limsup ||z, —p|| =t
n—o00 n—o00

Again by the proof of Lemma 3.1, we have
[znt1 = pll < (1= an)llzn —pll + anllzn —pll.
It follows that,

[lzn1 = Pl = llzn — pll
(e77

|znt1 = pll = llzn —pll < <llzn = pll = llzn = pll.

So, we can get ||zp+1 — p|| < ||2n — p|| and from (3.1), we have
< Timi _

(3.4) t < Timinf ||z, — p|].

From (3.2) and (3.4), we obtain

(3.5) t= lim ||z, —pl|

From (3.1) and (3.5), we have

t = lim ||z, — p||

n—oo

= lim [|T((1 = Bn)an + BnTzn) — pl|
n— oo

< lim |1 = Ba)zn + BnTwn — pl]

= nlLH;O‘|(1 = Bn)(@n —p) + Bu(Tzn — p)||

< lim (1= Bn)l|#n — pll 4+ lim B,[|Tz, — pl|
n— 00 n—oo

< lim (1= Bo)l|lzn — pl| + lim By|lz, — pl|
n—oo n—o0

< t
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Hence,
(36) t= lim ||(1_Bn)(l‘n_p)"’_ﬁn(Txn_p)H
n—oo
Now from (3.1), (3.3) and (3.6) together with Lemma 2.2, we obtain
lim ||Tz, — x,|| = 0.
n—oo
Conversely, we assume that {x,,} is bounded and lim, o ||T%, — .|| = 0. Let

p € A(M,{z,}). By proposition 2.1 part (iv), we have

r(Tp,{x,}) = limsup]||x, —Tp||
n—oo
3
< <+a> limsup ||Tx, — x,|| + limsup ||z, — p||
1 — X n— oo n—oo
= limsup||z, — p||
n—roo
= r(pA{za}).
Hence, we conclude that Tp € A(M,{z,}. Since X is uniformly convex,
A(M,{x,}) consist of a unique element. Thus, we have p = T'(p). O

First we prove our weak convergence result.

Theorem 3.3. Let X be a uniformly Banach space with Opial property, M
a nonempty closed convexr subset of X and T : M — M be generalized o-
nonezpansive mapping with F(T) # @. Then, {x,} generated by (1.6) con-
verges weakly to an element of F(T).

Proof. By Theorem 3.2, {z,} is bounded and lim,,_, o ||Tz, — 2,|| = 0. Since
X is uniformly convex, X is reflexive. So, a subsequence {z,,} of {z,} exists
such that {z,,} converges weakly to some v; € M. By Proposition 2.1 part
(v), we have v; € F(T). It is sufficient to show that {z,} converges weakly
to v1. In fact, if {z,,} does not converges weakly to v;. Then, there exists a
subsequence {x,;} of {z,} and vy € M such that {x,,} converges weakly to
vy and vg # v1. Again by Proposition 2.1 part (v), v € F(T'). By Lemma 3.1
together with Opial property, we have

lim ||z, —v1]] = lm ||z, — 01|
n—oo 1—> 00

< lim ||an, — 2|
1—> 00

lim ||a, — vs|
n— o0

lim [z, — vo|

— 00

< lim ||z, — v
Jj—o0

= lim ||z, — v1]]-
n— o0

This is a contradiction, so, v1 = vy. Thus, {z,} converges weakly to v; €
F(T). O
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We now prove our strong convergence result.

Theorem 3.4. Let M be a nonempty closed convex subset of a uniformly con-
vex Banach space X and T : M — M be a generalized a-nonexpansive map-
ping. If F(T) # @ and iminf, o dist(z,, F(T)) =0 (where dist(z, F(T)) =
inf{||lz —p|| :p € F(T)}). Then, {x,} generated by (1.6) converges strongly to
an element of F(T).

Proof. By Lemma 3.1, lim,_, ||z, — p|| exists, for each p € F(T). So,
lim,, oo dist(z,, F(T)) exists, thus
lim dist(z,, F(T)) = 0.

n—oo

Therefore, there exists a subsequence {z,, } of {z,} and {v;} in Fr such that
||, — vk|| < 5% for each k € N. By the proof of Lemma 3.1, {z,} is nonin-
creasing, so

1
Hxnk+1 7vk|| < ||Ink 7”1@” < 27k

Therefore,
[vr+1 = vkl < NJoedr = Tnpy || + [#ne — vkl
1 1
= 9k+1 + ok
1

IN

216771—)07 as k — oc.

Hence, {v} is a Cauchy sequence in F(T") and so it converges to some p. Since,
by Proposition 2.1 part (iii), F(7T') is closed, we have p € F(T'). By Lemma
3.1, limy, 00 || — p|| exists, hence {x,} converges strongly to p € F(T). O

4. EXAMPLE

We compare rate of convergence of our new KF iteration (1.6) with leading
S (1.3), M (1.5) Thakur et al. (1.4) in slightly general setting using Exam-
ple 4.1, in which T is generalized a-nonexpansive but not Suzuki generalized
nonexpansive.

Example 4.1. Let M = [0, 00) with absolute valued norm. Define a mapping
T: M — M by

~ 1
To — 0 l.f X € [O, m)
% if z€ [m,oo .
Choose z = goos and y = =o=. We see that, iz — Tz| < |z — y| but

|Tx — Ty| > |x —y|. Thus, T does not satisfy condition (C) and so T is
not Suzuki generalized nonexpansive. On the other hand, T is a generalized
a-nonexpansive mapping. In fact, for o = %, we have:

3
Case I: When z,y € [0 , then clearly

+ 5000)

1 1 1
3Tz —yl+3le =Tyl + gle —yl 2 0=[Tz - Ty|.
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Case II: When = € [<555,00) and y € [0, =555 ), we have

1 1 1
§|T$*Z/|+§|93*TZ/|+g|$*y| =

N = W= W= Wwl— Wl
N

Case III: When z,y € [Wloo’ o0), we have

1 1 1 1z 1 y| 1
3| r y|+3lw y|+3lfc Yl sl3 7Y t3lr 5 +3lfc Yl

> 3G9+ - Yl

1 1
= §|x—y|+§|x—y|
> Loy
- 2
= |Tz—Ty|.

Hence, T is a generalized a-nonexpansive mapping with F(T) = {0}. Take
a, = 0.70 and B, = 0.65. The iterative values for 1 = 10 are given in Table
1. Figure 1 shows the convergence behaviors of different iterative schemes.
Clearly the new KF iteration process is moving fast to the fixed point of T" as
compared to other iteration processes.
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TABLE 1. Sequences generated by KF (1.6), M (1.5), Thakur
et al. (1.4) and S (1.3) iteration schemes for mapping T of

Example 4.1.
KF (1.6) M (1.5) Thakur et al. (1.4) S (1.3)
xzy 10 10 10 10
xo  1.0453120000 1.62500000000 1.9312500000 3.8625000000
r3  0.1092678222 0.26406250000 0.3729726562 1.4918906250
xs 0.0114219020 0.04291015625 0.0720303442 0.5762427539
x5 0.0011939456 0.00697290039 0.0139108602 0.2225737636
xg 0.0001248046 0.00113309631 0.0026865348 0.0859691162
zr 0 0.00018412815 0.0005188370 0.0332055711
zg O 0 0.0001002004 0.0128256518
r9g O 0 0 0.0049539080
19 O 0 0 0.0019134469
11 O 0 0 0.0007390688
z12 0 0 0 0.0002854653
57\ T T |
al ]
i W KF
s 3 HM A
“g i B Thakur et al.
N m s 1
11 ]
0:\ 2 s & © I T a——
0 6 8 10 12 14

Number of iteration

FIGURE 1. Convergence behaviors of KF, M, Thakur et al.
and S iteration processes to the fixed point of the mapping
defined in Example 4.1 where x; = 10.
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