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ABSTRACT

The purpose of this article is to study and investigate e.-filters on
X and ec-ideals in C;(X) in which they are in fact the counterparts
of z.-filters on X and z.-ideals in C.(X) respectively. We show that
the maximal ideals of C;(X) are in one-to-one correspondence with
the e.-ultrafilters on X. In addition, the sets of e.-ultrafilters and z.-
ultrafilters are in one-to-one correspondence. It is also shown that the
sets of maximal ideals of C.(X) and C;(X) have the same cardinality.
As another application of the new concepts, we characterized maximal
ideals of C%(X). Finally, we show that whether the space X Is compact,
a proper ideal I of C.(X) is an ec-ideal if and only if it is a closed ideal
in C.(X) if and only if it is an intersection of maximal ideals of C.(X).
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1. INTRODUCTION

All topological spaces are completely regular Hausdorff spaces and we shall
assume that the reader is familiar with the terminology and basic results of
[6]. Given a topological space X, we let C'(X) denote the ring of all real-valued
continuous functions defined on X. C.(X) is the subalgebra of C(X) consisting
of functions with countable image and C¥(X) is its subalgebra consisting of
bounded functions. In fact, C¥(X) = C.(X)NC*(X), where elements of C*(X)
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are bounded functions of C'(X). Recall that for f € C(X),Z(f) denotes its
zero-set:
Z(f)={x € X : f(x) =0}.

The set-theoretic complement of a zero-set is known as a cozero-set and we
denote this set by coz(f). Let us put Z.(X) = {Z(f) : f € C.(X)} and
ZX(X)={Z(g) : g € C}(X)}. These two latter sets are in fact equal, since
Z(f) = Z(%m), where f € C.(X). A nonempty subfamily F of Z.(X) is
called a z.-filter if it is a filter on X. If I is an ideal in C.(X) and F is a z.-filter
on X then, we denote Z.[I] = {Z(f) : f € I}, NZJI| =n{Z(f): f € I} and
Z7YF) ={f: Z(f) € F}. We see that Z.[I] is a z-filter and Z_[Z.[I]] D I.
If the equality holds, then I is called a z.-ideal. Moreover, Z_ }[F] is a z.-ideal
and we always have Z.[Z1[F]] = F. So maximal ideals in C,.(X) are z.-ideals.
In [5], a Huasdorff space X is called countably completely regular (briefly, c-
completely regular) if whenever F' is a closed subset of X and = ¢ F, there
exists f € Cq(X) such that f(x) = 0 and f(F) = 1. In addition, two closed
sets A and B of X are also called countably separated (in brief, c-separated) if
there exists f € C.(X) with f(A) =0 and f(B) = 1. c-completely regular and
zero-dimensional spaces are the same, see Theorem 1.1.

If we let My = {f € Ce(X) : f(p) =0} (p € X), then the ring isomorphism
% = R gives that My is a maximal ideal, in fact, M} is a fixed maximal
ideal. Moreover, NZ.[My] = {p}.

Our concentration is on the zero-dimensional spaces since in [5] the authors
proved that for any space X there is a zero-dimensional Hausdorff space Y such
that C.(X) and C.(Y) are isomorphic as rings, see Theorem 1.2.

In section 2, we study and investigate the e.-filters on X and e.-ideals in
C*(X) which they are in fact the counterpart of [6, 2L]. We show that the max-
imal ideals of C*(X) are in one-to-one correspondence with the e.-ultrafilters
on X. Moreover, the sets of e.-ultrafilters and z.-ultrafilters are in one-to-one
correspondence. By using the latter facts, it is shown that the sets of maximal
ideals of C.(X) and C*(X) have the same cardinality. Finally, maximal ideals
of C¥(X) are characterized based on these concepts. In Section 3, our concen-
tration is on the uniform norm topology on C¥(X) which is the restriction of
the uniform norm topology on C*(X). It is shown that whenever the space X
is compact, a proper ideal I of C.(X) is an e.-ideal if and only if it is a closed
ideal in C.(X) if and only if it is an intersection of maximal ideals of C.(X).

We recite the following results from [5].

Theorem 1.1 ([5, Proposition 4.4]). Let X be a topological space. Then, X is
a zero-dimensional space (i.e., a Ti-space with a base consisting of clopen sets)
if and only if X is c-completely regular space.

Theorem 1.2 ([5, Theorem 4.6]). Let X be any topological space (not neces-
sarily completely reqular). Then, there is a zero-dimensional space Y which is
a continuous image of X with Co(X) =2 C.(Y) and CF(X) 2 CF(Y).
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Remark 1.3 ([5, Remark 7.5]). There is a topological space X, such that there
is no space Y with C.(X) =2 C(Y).

The following results are the known facts about C.(X) and we are seeking
to get similar results for C%(X).

Proposition 1.4. Let I be a proper ideal in C.(X) and F a z.-filter on X.
Then:
(i) Z.[I] is a z.-filter and Z;[F] is a z.-ideal of Co(X).
(ii) If I is mazimal then Z.[I] is a z.-ultrafilter, and the converse holds if
I is a z.-ideal.
(iii) F is a ze-ultrafilter if and only if Z71[F] is a mazimal ideal.
(iv) If F is a zc-ultrafilter and Z € Z.(X) meets each element of F, then
Z e F.

Corollary 1.5. There is a one-to-one correspondence 1 between the sets of
ze-tdeals of Co(X) and z.-filters on X, defined by (1) = Z[I]. In particular,
the restriction of i to the set of maximal ideals is a one-to-one correspondence
between the sets of mazimal ideals of C.(X) and z.-ultrafilters on X.

2. €.~-FILTERS ON X AND e -IDEALS IN CX(X)

For f € C}(X) and € > 0, we define
E(f) = T (-ed) = {z € X : [f(x)] < ¢}

Each such set is a zero set, since it is equal to Z((|f| —€) V0). Conversely, every
zero set is also of this form, since for g € C¥(X) we have Z(g) = EZ(|g| + ¢).
For a nonempty subset I of C¥(X) we denote E¢[I| = {ES(f) : f € I}, and
E.(I) = U, E¢[I]. Moreover, if F is a nonempty subfamily of Z}(X), then we
define ECT[F] = {f € C*(X) : ES(f) € F} and E; Y(F) =, B¢ '[F). So we
have E.(I) = {ES(f): f € [ and € > 0}, and E_ (F) = {f € C*(X) : E¢(f) €
F, for all €}. Moreover, E;-Y(E.(I)) = {g € C2(X) : E{(g) € E.(I),for all § >
0} and E.(E;Y(F)) = {E<(f) : E§(f) € F,for all § > 0}.

The next result is now immediate.

Corollary 2.1. The following statements hold.
(i) I € E;Y(Ee(I)) and E(E;'(F)) C F.

(ii) The mappings E. and E;' preserve the inclusion.

(i) If f € I then for each positive integer n, ES(f) = ES (f™).

(iv) If I is an ideal, then E.(I) is a z.-filter.

Proof. The proofs of (i), (ii) and (iii) are clear. (iv). This is presented in the
proof of Proposition 2.5. (|

Examples 2.2 and 2.3 below show that the inclusions in (i) of the above
corollary may be strict even when [ is an ideal and F is a z.-filter.
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Example 2.2. Let X be the discrete space NxN, f(m,n) = ﬁ and I the ideal

in C*(X)(= C*(X)) generated by f2. Obviously f ¢ I. Since {z € X : f(x) <
e} ={r e X : f*(x) < €}, we have ES(f) € Ec(I). So I S EZ(E.(I)).

Example 2.3. Let X be the zero-dimensional space Q x QQ, where Q is the set

of rational numbers, and F = {Z € Z.(X) : (0,0) € Z}. Then F is a z.-filter
on X. Now, if we define f(x,y) = ll:]‘;"fl‘y‘ then f € C¥(X)(= C*(X)) and
Z(f) ={(0,0)}. Given € > 0 and g = f +¢, so we have ES(g) = {(0,0)}. If we
take 0 < § < € then E§(g) = @. Hence E¢(g) is not contained in E.(E,(F)).

Therefore the latter set is contained in F properly, which gives the result.

Definition 2.4. A z.filter F is called an e.filter if F = E.(E;!(F)), or
equivalently, whenever Z € F then there exist f € C¥(X) and € > 0 such that
Z = E¢(f) and E§(f) € F, for each § > 0.

Proposition 2.5. If I is a proper ideal in C}(X), then E.(I) is an e.-filter.

Proof. First, we show that E.(I) is a z.-filter, i.e., it satisfies the following
conditions.

(i) @ & Ec(]).

(i) E(f), E5 ( ) € Ec(I), then EZ(f) N E§(g) € Ec(I).

(i) E¢(f) € E.(I), Z € Z.(X) with Z D E¢(f), then Z € E.(I).
(i). Suppose that for some ¢ > 0 and f € I, ES(f) = @. So € < |f]|, which
yields f is a bounded away from zero. Hence I contains the unit f, which
is impossible. (ii). This is equivalent to say that if ES(f), E§(g) € E.(I),
then ES(f) N E§(g) contains a member of E.(I). Suppose that f',¢' € I
and €,6" > 0 such that ES(f) = ES(f') and E§(g) = E§ (¢'). Without loss
of generality, we may suppose that 6’ < ¢ < 1. Hence f'? 4+ ¢’> € I and

ESo(f? + ¢%) C ES(f) N E§(g), which gives the result. (iii). Assume that

ES(f) C Z(f'), where f € I and f' € C}(X). Since ES(f) = E%(f?) and
Z(f") = Z(]f'|), we can suppose that f >0 and f’ > 0. Now, define

(x)_ 1, ifl‘EEec(f)
TV @+ g e X S intE().

So g is continuous, since it is continuous on two closed sets whose union is X,
in fact, g € C*(X). Note that fg € I and

f(=), it x € ES(f)
(f9)(x) = {(ff)(m)—’—g, if v € X N intES(f).

It is easily seen that Z(f') = E¢(fg). So Z(f') € E.(I). This shows that
E.(I) is a z.filter. Now, apply (i) and (ii) of Corollary 2.1 for the ideal I
and the z.filter E.(I), to get the inclusions E.(I) C E.(E;*(E.(I))) and
E.(E;Y(E.(I))) C E.(I), which yields E.(I) is an e.-filter. O

c

Definition 2.6. An ideal I in C(X) is called e.-ideal if I = E_1(E.(I)), or

C

equivalently, if f € C¥(X) and ES(f) € E.(I) for all €, then f € I.
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Proposition 2.7. If F is a z.-filter, then E;1(F) is an e.-ideal in C*(X).

Proof. Let f,g € EZY(F), h € C*(X) and let u be an upper bound for h and
e > 0. Then E%(f), B (9) and hence E%(f) nEs (g9) belong to F. Hence
E%(f)ﬂE; (9) € E¢(f +g) implies that EZ(f +g) € F, or equivalently, f+g €
E1(F). Moreover, ES (f) € ES(fh) implies fh € EZ'(F). Therefore E_!(F)
is ideal. In view of Corollary 2.1, we have E-L(F) C E-N(E.(E;Y(F))) C
E71(F) and so the equality holds, i.e., E;7}(F) is an e.-ideal. O

c

Corollary 2.8. Mazimal ideals of C¥(X) and an arbitrary intersection of them
are e.-ideals.

Proof. Let M be a maximal ideal of C*(X). If E;'(E.(M)) is not a proper
ec-ideal, then it contains the constant function 1 and E¢(1) = @ € E.(M)
(0 < € < 1) which is impossible, see Propositions 2.5 and 2.7. Hence M =
E;Y(E.(M)), i.e., M is an e.-ideal. The second part is obtained by this fact,

the fact that the intersection of a family of maximal ideals is an ideal contained
in each of them and (ii) of Corollary 2.1. O

The next corollary is an immediate result of Propositions 2.5 and 2.7.

Corollary 2.9. The correspondence I — E.(I) is one-one from the set of
ec-ideals in C¥(X) onto the set of e.-filters on X.

Lemma 2.10. (i) Let I and J be ideals in C}(X) and J an e.-ideal. Then
I C Jif and only if E.(I) C E.(J).
(ii) Let Fy and Fy be z.-filters on X and Fy an e.-filter. Then Fy C Fy if
and only if E;Y(F1) C E7Y(F).

Proof. 1t is straightforward. O

Proposition 2.11. Let I be an ideal in C*(X) and F a z.-filter on X. Then:
(i) EZ-Y(E.(D)) is the smallest e.-ideal containing I.

C

(ii) E.(E;Y(F)) is the largest e.-filter contained in F.

c

Proof. (i). Propositions 2.5 and 2.7 respectively show that F.(I) is an e.-filter
and E_1(E.(I)) is an e.-ideal. Now, suppose that K is an e.-ideal containing
I. So E;Y(E.(I)) C E;Y(E.(K)) = K. Hence we are done. (ii). This is proved
similarly. (I

The next theorem plays an important role in many of the following results.

Theorem 2.12. Let A be a z.-ultrafilter. Then a zero set Z meels every
element of E.(E-1(A)) if and only if Z € A.

Proof. Since A is a filter and E.(E.'(A)) C A, the sufficient condition is
evident. For the necessary condition, it is recalled at first that if Z meets every
element of A then Z € A, see (iv) of Proposition 1.4. Now, we claim that if Z
meets every element of E.(E.(A)) as a particular subfamily of A, then also
Z € A. Otherwise, for some Z' € A, ZN Z' = @. Since the closed sets Z and
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7' are c-completely separated, there is f € C¥(X) (in fact 0 < f < 1) such
that f(Z) =1 and f(Z’) = 0. Notice that Z' C Z(f) C ES(f), for all €, and;
ES(f) € A, since Z' € A. So ES(f) € E.(E-1(A)). Now, if € is taken less than
1, then Z N ES(f) = & which contradicts with our assumption of Z. So Z € A
and the proof is complete. O

The following proposition shows that, as Z_!(A) is a maximal ideal in
C.(X), E;1(A) is also a maximal ideal in C}(X), where A is a z.-ultrafilter
on X.

Proposition 2.13. Let A be a z.-ultrafilter on X. Then:
(i) E;Y(A) is a mazimal ideal.
(ii) E-1(A) is an e.-ideal.
(iii) E5'(A) = ESH(Eo(EZH(A))).

c c

Proof. (i). Let M be a maximal ideal of C*(X) containing E'(A). Hence
E.(E-Y(A)) C E.(M). Since every element of E.(M) meets every element
of E.(E-1(A)), Theorem 2.12 gives E.(M) C A. So M = E-Y(E.(M)) C
E;1(A) and hence M = E_1(A). (ii). It follows by (i). (iii). Since the
maximal ideal E!(A) is contained in the proper ideal E; *(E.(E;1(A))), the
result now holds. g

An e.-ultrafilter on X is meant a maximal e.-filter, i.e., one not contained in
any other e.-filter. As usual, every e.-filter F is contained in an e.-ultrafilter.
This is obtained by considering the collection of all e.-filters containing F
and the use of the Zorn’s lemma, where the partially ordered relation on F is
inclusion.

Proposition 2.14. Let M be an ideal in C}(X) and F a z.-filter on X. Then:

(i) If M is a mazimal ideal then E.(M) is an e.-ultrafilter.
(ii) If F is an ec-ultrafilter then E1(F) is a mazimal ideal.
(iii) If M is an e.-ideal, then M is mazimal if and only if E.(M) is an
ec-ultrafilter.
(iv) If F is an e.-filter, then F is e.-ultrafilter if and only if EZ1(F) is a
mazimal ideal.

Proof. (i). Note that M = E_1(E.(M)). Let F’ be an e.-ultrafilter containing
E.(M), then M C E;-Y(F’) and hence M = E_!(F’). Therefore E.(M) =
E.(E;1(F")) = F', which yields the result. (ii). Let M be a maximal ideal
of C#(X) containing E*(F). Then F C E.(M). Hence F = E.(M) and so
E_1(F) = M. The proofs of (iii) and (iv) are similarly done and further details
are omitted. O

Corollary 2.15. There is a one-to-one correspondence 1 between the sets of
mazimal ideals of C(X) and e.-ultrafilters on X, defined by (M) = E.(M).

Proposition 2.16. Let A be a z.-ultrafilter. Then it is the unique z.-ultrafilter
containing E.(E;Y(A)), and also E.(E;'(A)) is the unique e.-ultrafilter con-
tained in A. Hence every e.-ultrafilter is contained in unique z.-ultrafilter.
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Proof. Let B be a z.-ultrafilter containing E.(E.'(A)) and Z € B. Since Z
meets every element of E.(E.1(A)), Theorem 2.12 gives B C A and hence
B = A. So the first part of the proposition holds. Now, let K be an e.-
ultrafilter contained in A. Then K = E.(E.;1(K)) C E.(E;'(A)). Since the
latter set is an e-filter, the inclusion cannot be proper, i.e., K = E.(E;(A)).
Hence the result is obtained. O

Corollary 2.17. The z.-ultrafilters are in one-to-one correspondence with the
ec-ultrafilters.

Proof. Consider the mapping 1 from the set of z.-ultrafilters into the set of
ec~ultrafilters defined by 1(A) = E.(E;1(A)). If ¢(A) = ¢(B), then we have
that E.(E;1(A)) = E.(E-'(B)) and it is contained in both A and B. So
each element of B meets each element of E.(E.!(A)). Now, Theorem 2.12
gives B C A. Similarly, A C B. Therefore v is one-one. Let K be an e,.-
ultrafilter and A the unique z.-ultrafilter containing it (Proposition 2.16). Then

K = E.(E;'(A)) and hence 1(A) = K. Therefore 1 is onto. O

Our next two theorems are applications that are based on the concepts of
ec-filters and e.-ideals. In the first result (Theorem 2.18) we show that the
maximal ideals of C.(X) are in one-to-one correspondence with those ones
of C*(X) and the second result (Theorem 2.20) involves characterization of
maximal ideals of C(X).

Theorem 2.18. Let M (resp. M*) be the set of mazimal ideals of C.(X)
(resp. C*(X)). Then M and M* have the same cardinality.

Proof. If M € M then Z.[M] is a z.-ultrafilter and hence E_*(Z.[M]) € M*,
see Propositions 1.4 and 2.13. Define

¢ : M — M* which M — E;Y(Z.[M]).

If (M) = p(M') then E.(E;Y(Z.[M])) = E.(E;*(Z.[M'])) and it is con-
tained in both Z.[M] and Z.[M’]. Since each element of Z.[M'] meets each
element of E.(E;(Z.[M])), Theorem 2.12 yields Z.[M'] C Z.[M]. Similarly,
Z.[M] C Z.M']. Therefore M = M’. This verifies ¢ is one-one. To show
that ¢ is onto, suppose that M* € M*. Hence E.(M*) is an e.-ultrafilter
(Proposition 2.14). Now, let A be the unique z.-ultrafilter containing E.(M™*)
(Proposition 2.16), then Z_!'[A] is a maximal ideal in C.(X) (Proposition
1.4) and M* = E_;'(A). Recall that if F is a z.-filter, then we always have
ZJ|Z7YF]] = F and E.(E;Y(F)) C F, but the equality occurs if F is an e.-

c

filter. Now, if we let M = Z'[A] then o(M) = E; 1 (Z.[M]) = E;1(A) = M*.

c (&
Hence ¢ is onto, which it completes the proof. (I

Remark 2.19. Combining Corollaries 1.5, 2.15 and 2.17 gives another proof of
the above theorem.

Theorem 2.20. Let M be an ideal in C(X). Then M is maximal if and only
if whenever f € C¥(X) and each ES(f) meets every element of E.(M), then
feM.
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Proof. Necessity: Suppose that f ¢ M. So (M, f) = C*(X). Hence h+ fg =1,
for some h € M and g € C¥(X). Let u be an upper bound for g and 0 < e < 1.
Then

& = EX(1) = ES(h + fg) 2 ES (h) N ES (fg) 2 S (h) N E% (f),

which contradicts with our assumption, since E¢ (h)N B (f) # @. So we are
done.

Sufficiency: Let M’ be a maximal ideal of C*(X) containing M and f € M.
Then E.(M) C E.(M’) and E¢(f) € E.(M'), for all e. Since E.(M') is an e.-
filter, ES(f) meets every element of E.(M’). Hence it also meets each element
of E.(M). Now, by hypothesis f € M. Therefore M = M’, which gives the
result. ]

3. UNIFORM NORM TOPOLOGY ON C¥*(X) AND RELATED CLOSED IDEALS

Consider the supremum-norm on C*(X), i.e., ||f|| = sup,ex |f(x)], where
f € C*(X). So its restriction on C¥(X) is also the supremum-norm. This
defines a metric d as usual, d(f,g) = ||f — g||- The resulting metric topology is
called the uniform norm topology on C7(X). Convergence in this topology is
uniform convergence of the functions. A base for the neighborhood system at
g consists of all sets of the form

{f:llf—gll<et  (e>0).

Equivalently, a base at g is given by all sets

{f /(@) = g(x)] < u(z) for every x € X},

where u is a positive unit of C¥(X).
If T is an ideal in C¥(X) then its closure in C¥(X) is denoted by clI.

Proposition 3.1. Let I be an ideal in C}(X). Then:

(i) I is ideal.
(ii) If I is a proper ideal then clI is also a proper ideal.
(iii) If I is an e.-ideal then it is a closed ideal.

Proof. (i). Let f,g € clI, h € C*(X) and let u be an upper bound for h and
¢ > 0 is fixed. Then for some f' € Ne(f) NI and ¢' € Ne(g) N1 we have
f"+9g € N(f +g) NI Moreover, there exists fi € N<(f) NI and hence
fih € N(fh)N1I. So cll contains f + g and fh. Hence cll is ideal. (ii). If clI
is not a proper ideal then 1 € clI and hence Ne(1) NI contains a unit element
of C*(X) such as f, since 1 —e < f < 1+ € gives f is bounded away from zero
(of course, when 0 < € < 1). But this is impossible since f € I. Thus clf is a
proper ideal.
(iii). Let g € cll and € > 0 arbitrary. Then for some f € N¢(g) N[ and all
x € E;(f), we have

lg(2)] = lg(z) — f(z) + f(2)] < |g(z) — f(2)| + [f(2)] < 5 +

= €.

N
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Hence E'¢ (f) € E¢(g). Since the z -filter E.(I) contains B (f), it also contains

E<(g), for all e. So g € E_1(E.(I)) = I and therefore clI C I. This proves
that I is closed and hence the proof is complete. (Il

Immediately, we find there is no proper dense ideal in C*(X), and further
maximal ideals of C(X) and hence every intersection of them are closed, see
Corollary 2.8 and (iii) of the above proposition.

We recall that [6, 1D(1)] plays a useful role in the context of C'(X). The
following is the counterpart for C.(X).

Proposition 3.2. If f,g € C.(X) and Z(f) is a neighborhood of Z(g), then
f = gh for some h € C.(X).

In the remainder of this section, the zero-dimensional topological space X
will be assumed to be compact. Hence it is ¢-pseudo-compact, i.e, C.(X) =
CHX).

Lemma 3.3. Let X be a compact space, I an ideal in C.(X), f € Co(X) and
Z(f) a neighborhood of NZ.[I]. Then f € I.

Proof. First, we recall that X is compact if and only if the intersection of
members of any collection consisting of nonempty closed subsets of X with
the finite intersection property (i.e., the intersection of each of a finite number
of them is nonempty) is nonempty. The lemma is obvious when I = C.(X).
Now, if I is a proper ideal in C.(X) then Z_.[I] satisfies the finite intersection
property and hence NZ.[I] # &. By assumption NZ.[I] C intZ(f). Hence
X~intZ(f) € U,epcoz(g) and so X = |,y coz(g)UintZ(f). By compactness
of X, there are a finite number of elements of I, say g1, g2, - - ., gn, such that

X = U coz(g;) UintZ(f).
i=1
Now, if we let g =1 g7 then g € I and @ # Z(g9) =i, Z(9:) C intZ(f).
In view of Proposition 3.2, f is a multiple of g and hence it is contained in I.
So the proof is complete. O

Proposition 3.4. If g € C.(X) and € > 0 is fized, then there exists f € Co(X)
such that ||g — f|| < e and Z(f) is a neighborhood of Z(g).

Proof. The trivial solution is f = g, of course when Z(g) is open. In general,
it suffices to define

g(z) — ¢, ifz € g t([e,+0))
f(z)=2<0, if x € E¢(g)
g(x)+e€ ifzegt((—o0,—€).
We note that X is the union of three closed sets g !([¢, +00)), ES(g) and

g 1((—00, —€]) and further f is continuous on each of them. Therefore f is
continuous on X, i.e., f € C(X). Notice that the definition of f makes the
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cardinality of the range of f the same cardinality of the range of g. Hence this
leads us f € C.(X). Moreover, ||g — f|| < e. Evidently, Z(g) C g7 ((—¢,€)) C
intZ(f) which yields Z(f) is a neighborhood of Z(g). O

Theorem 3.5. Let I be a proper ideal in Ce(X), T = N{Mg : Mg 2 I} and
J={9€C.(X):Z(g) DNZ[I]}. Then:

(i) I=J.

(i) NZ[I] = NZ[I].

Proof. (i). Let g € J and My be a fixed maximal ideal of C.(X) containing
I. Then Z(g) 2 NZ[I] 2 NZ.[M;] = {p}. So g(p) = 0 and hence g € M.
Therefore g € 1. For the reverse inclusion, we show that if g ¢ J then g ¢ I.
If g ¢ J then there exists x € NZ[I| \ Z(g). So I C M¢ but g ¢ MS. This
means that g ¢ I. The proof of (i) is now complete.

(ii). By (i), we have NZ.[I] = NZ.[J] 2 NZ.[I]. On the other hand, I C T

implies Z.[I] C Z.[I] and therefore NZ.[I] D NZ.[I]. So it gives the result. O

Corollary 3.6. Let I be a proper ideal in C.(X) and I as defined in Theorem
3.5. Then I = cll.

Proof. Since maximal ideals are closed, (;-,, M is also closed, where M is
a maximal ideal in C.(X). Therefore clI C (;c,; M C I. Let g € I and
N.(g) is a neighborhood of g. By Proposition 3.4, there is f such that Z(f)
is a neighborhood of Z(g) and ||g — f|| < e. Hence, by Theorem 3.5, NZ.[I] C
Z(g) C intZ(f) and therefore Lemma 3.3 implies f € I. Now, since f €
N(g) N1, it gives g € cll. So I C cll and we are done. a

We conclude the article with the following results for the proper ideals of
C.(X). Corollary 3.7 is a consequence of Corollary 2.8, Proposition 3.1 (iii)
and Corollary 3.6; by the same results, plus Corollary 3.7 we obtain Corollary
3.8; finally Corollary 3.9 is the combination of Corollaries 3.7 and 3.8.

Corollary 3.7. An ideal I of C.(X) is closed in Co(X) if and only if it is an
intersection of mazimal ideals of C.(X).

Corollary 3.8. An ideal I of Co(X) is an eq-ideal if and only if it is closed in
C.(X).

Corollary 3.9. An ideal I of C.(X) is an ec-ideal if and only if it is an
intersection of mazximal ideals of C.(X).
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