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Abstract

The purpose of this article is to study and investigate ec-filters on
X and ec-ideals in C∗

c (X) in which they are in fact the counterparts
of zc-filters on X and zc-ideals in Cc(X) respectively. We show that
the maximal ideals of C∗

c (X) are in one-to-one correspondence with
the ec-ultrafilters on X. In addition, the sets of ec-ultrafilters and zc-
ultrafilters are in one-to-one correspondence. It is also shown that the
sets of maximal ideals of Cc(X) and C∗

c (X) have the same cardinality.
As another application of the new concepts, we characterized maximal
ideals of C∗

c (X). Finally, we show that whether the space X is compact,
a proper ideal I of Cc(X) is an ec-ideal if and only if it is a closed ideal
in Cc(X) if and only if it is an intersection of maximal ideals of Cc(X).
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1. Introduction

All topological spaces are completely regular Hausdorff spaces and we shall
assume that the reader is familiar with the terminology and basic results of
[6]. Given a topological space X, we let C(X) denote the ring of all real-valued
continuous functions defined on X. Cc(X) is the subalgebra of C(X) consisting
of functions with countable image and C∗c (X) is its subalgebra consisting of
bounded functions. In fact, C∗c (X) = Cc(X)∩C∗(X), where elements of C∗(X)

Received 19 March 2019 – Accepted 30 July 2019

http://dx.doi.org/10.4995/agt.2019.11524


A. Veisi

are bounded functions of C(X). Recall that for f ∈ C(X), Z(f) denotes its
zero-set:

Z(f) = {x ∈ X : f(x) = 0}.
The set-theoretic complement of a zero-set is known as a cozero-set and we
denote this set by coz(f). Let us put Zc(X) = {Z(f) : f ∈ Cc(X)} and
Z∗c (X) = {Z(g) : g ∈ C∗c (X)}. These two latter sets are in fact equal, since

Z(f) = Z( f
1+|f | ), where f ∈ Cc(X). A nonempty subfamily F of Zc(X) is

called a zc-filter if it is a filter on X. If I is an ideal in Cc(X) and F is a zc-filter
on X then, we denote Zc[I] = {Z(f) : f ∈ I}, ∩Zc[I] = ∩{Z(f) : f ∈ I} and
Z−1c [F ] = {f : Z(f) ∈ F}. We see that Zc[I] is a zc-filter and Z−1c [Zc[I]] ⊇ I.
If the equality holds, then I is called a zc-ideal. Moreover, Z−1c [F ] is a zc-ideal
and we always have Zc[Z

−1
c [F ]] = F . So maximal ideals in Cc(X) are zc-ideals.

In [5], a Huasdorff space X is called countably completely regular (briefly, c-
completely regular) if whenever F is a closed subset of X and x /∈ F , there
exists f ∈ Cc(X) such that f(x) = 0 and f(F ) = 1. In addition, two closed
sets A and B of X are also called countably separated (in brief, c-separated) if
there exists f ∈ Cc(X) with f(A) = 0 and f(B) = 1. c-completely regular and
zero-dimensional spaces are the same, see Theorem 1.1.

If we let M c
p = {f ∈ Cc(X) : f(p) = 0} (p ∈ X), then the ring isomorphism

Cc(X)
Mc
p

∼= R gives that M c
p is a maximal ideal, in fact, M c

p is a fixed maximal

ideal. Moreover, ∩Zc[M c
p ] = {p}.

Our concentration is on the zero-dimensional spaces since in [5] the authors
proved that for any space X there is a zero-dimensional Hausdorff space Y such
that Cc(X) and Cc(Y ) are isomorphic as rings, see Theorem 1.2.

In section 2, we study and investigate the ec-filters on X and ec-ideals in
C∗c (X) which they are in fact the counterpart of [6, 2L]. We show that the max-
imal ideals of C∗c (X) are in one-to-one correspondence with the ec-ultrafilters
on X. Moreover, the sets of ec-ultrafilters and zc-ultrafilters are in one-to-one
correspondence. By using the latter facts, it is shown that the sets of maximal
ideals of Cc(X) and C∗c (X) have the same cardinality. Finally, maximal ideals
of C∗c (X) are characterized based on these concepts. In Section 3, our concen-
tration is on the uniform norm topology on C∗c (X) which is the restriction of
the uniform norm topology on C∗(X). It is shown that whenever the space X
is compact, a proper ideal I of Cc(X) is an ec-ideal if and only if it is a closed
ideal in Cc(X) if and only if it is an intersection of maximal ideals of Cc(X).

We recite the following results from [5].

Theorem 1.1 ([5, Proposition 4.4]). Let X be a topological space. Then, X is
a zero-dimensional space (i.e., a T1-space with a base consisting of clopen sets)
if and only if X is c-completely regular space.

Theorem 1.2 ([5, Theorem 4.6]). Let X be any topological space (not neces-
sarily completely regular). Then, there is a zero-dimensional space Y which is
a continuous image of X with Cc(X) ∼= Cc(Y ) and CF (X) ∼= CF (Y ).
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Remark 1.3 ([5, Remark 7.5]). There is a topological space X, such that there
is no space Y with Cc(X) ∼= C(Y ).

The following results are the known facts about Cc(X) and we are seeking
to get similar results for C∗c (X).

Proposition 1.4. Let I be a proper ideal in Cc(X) and F a zc-filter on X.
Then:

(i) Zc[I] is a zc-filter and Z−1c [F ] is a zc-ideal of Cc(X).
(ii) If I is maximal then Zc[I] is a zc-ultrafilter, and the converse holds if

I is a zc-ideal.
(iii) F is a zc-ultrafilter if and only if Z−1c [F ] is a maximal ideal.
(iv) If F is a zc-ultrafilter and Z ∈ Zc(X) meets each element of F , then

Z ∈ F .

Corollary 1.5. There is a one-to-one correspondence ψ between the sets of
zc-ideals of Cc(X) and zc-filters on X, defined by ψ(I) = Zc[I]. In particular,
the restriction of ψ to the set of maximal ideals is a one-to-one correspondence
between the sets of maximal ideals of Cc(X) and zc-ultrafilters on X.

2. ec-filters on X and ec-ideals in C∗c (X)

For f ∈ C∗c (X) and ε > 0, we define

Ecε (f) = f−1([−ε, ε]) = {x ∈ X : |f(x)| ≤ ε}.

Each such set is a zero set, since it is equal to Z((|f |−ε)∨0). Conversely, every
zero set is also of this form, since for g ∈ C∗c (X) we have Z(g) = Ecε (|g| + ε).
For a nonempty subset I of C∗c (X) we denote Ecε [I] = {Ecε (f) : f ∈ I}, and
Ec(I) =

⋃
εE

c
ε [I]. Moreover, if F is a nonempty subfamily of Z∗c (X), then we

define Ecε
−1[F ] = {f ∈ C∗c (X) : Ecε (f) ∈ F} and E−1c (F) =

⋂
εE

c
ε
−1[F ]. So we

have Ec(I) = {Ecε (f) : f ∈ I and ε > 0}, and E−1c (F) = {f ∈ C∗c (X) : Ecε (f) ∈
F , for all ε}. Moreover, E−1c (Ec(I)) = {g ∈ C∗c (X) : Ecδ(g) ∈ Ec(I), for all δ >
0} and Ec(E

−1
c (F)) = {Ecε (f) : Ecδ(f) ∈ F , for all δ > 0}.

The next result is now immediate.

Corollary 2.1. The following statements hold.

(i) I ⊆ E−1c (Ec(I)) and Ec(E
−1
c (F)) ⊆ F .

(ii) The mappings Ec and E−1c preserve the inclusion.
(iii) If f ∈ I then for each positive integer n, Ecε (f) = Ecεn(fn).
(iv) If I is an ideal, then Ec(I) is a zc-filter.

Proof. The proofs of (i), (ii) and (iii) are clear. (iv). This is presented in the
proof of Proposition 2.5. �

Examples 2.2 and 2.3 below show that the inclusions in (i) of the above
corollary may be strict even when I is an ideal and F is a zc-filter.
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Example 2.2. Let X be the discrete space N×N, f(m,n) = 1
mn and I the ideal

in C∗c (X)(= C∗(X)) generated by f2. Obviously f /∈ I. Since {x ∈ X : f(x) ≤
ε} = {x ∈ X : f2(x) ≤ ε2}, we have Ecε (f) ∈ Ec(I). So I $ E−1c (Ec(I)).

Example 2.3. Let X be the zero-dimensional space Q×Q, where Q is the set
of rational numbers, and F = {Z ∈ Zc(X) : (0, 0) ∈ Z}. Then F is a zc-filter

on X. Now, if we define f(x, y) = |x|+|y|
1+|x|+|y| then f ∈ C∗c (X)(= C∗(X)) and

Z(f) = {(0, 0)}. Given ε > 0 and g = f + ε, so we have Ecε (g) = {(0, 0)}. If we
take 0 < δ < ε then Ecδ(g) = ∅. Hence Ecε (g) is not contained in Ec(E

−1
c (F)).

Therefore the latter set is contained in F properly, which gives the result.

Definition 2.4. A zc-filter F is called an ec-filter if F = Ec(E
−1
c (F)), or

equivalently, whenever Z ∈ F then there exist f ∈ C∗c (X) and ε > 0 such that
Z = Ecε (f) and Ecδ(f) ∈ F , for each δ > 0.

Proposition 2.5. If I is a proper ideal in C∗c (X), then Ec(I) is an ec-filter.

Proof. First, we show that Ec(I) is a zc-filter, i.e., it satisfies the following
conditions.

(i) ∅ /∈ Ec(I).
(ii) Ecε (f), Ecδ(g) ∈ Ec(I), then Ecε (f) ∩ Ecδ(g) ∈ Ec(I).
(iii) Ecε (f) ∈ Ec(I), Z ∈ Zc(X) with Z ⊇ Ecε (f), then Z ∈ Ec(I).

(i). Suppose that for some ε > 0 and f ∈ I, Ecε (f) = ∅. So ε < |f |, which
yields f is a bounded away from zero. Hence I contains the unit f , which
is impossible. (ii). This is equivalent to say that if Ecε (f), Ecδ(g) ∈ Ec(I),
then Ecε (f) ∩ Ecδ(g) contains a member of Ec(I). Suppose that f ′, g′ ∈ I
and ε′, δ′ > 0 such that Ecε (f) = Ecε′(f

′) and Ecδ(g) = Ecδ′(g
′). Without loss

of generality, we may suppose that δ′ < ε′ < 1. Hence f ′2 + g′2 ∈ I and
Ec
δ′2

(f ′2 + g′2) ⊆ Ecε (f) ∩ Ecδ(g), which gives the result. (iii). Assume that

Ecε (f) ⊆ Z(f ′), where f ∈ I and f ′ ∈ C∗c (X). Since Ecε (f) = Ecε2(f2) and
Z(f ′) = Z(|f ′|), we can suppose that f ≥ 0 and f ′ ≥ 0. Now, define

g(x) =

{
1, if x ∈ Ecε (f)

f ′(x) + ε
f(x) , if x ∈ X r intEcε (f).

So g is continuous, since it is continuous on two closed sets whose union is X,
in fact, g ∈ C∗c (X). Note that fg ∈ I and

(fg)(x) =

{
f(x), if x ∈ Ecε (f)

(ff ′)(x) + ε, if x ∈ X r intEcε (f).

It is easily seen that Z(f ′) = Ecε (fg). So Z(f ′) ∈ Ec(I). This shows that
Ec(I) is a zc-filter. Now, apply (i) and (ii) of Corollary 2.1 for the ideal I
and the zc-filter Ec(I), to get the inclusions Ec(I) ⊆ Ec(E

−1
c (Ec(I))) and

Ec(E
−1
c (Ec(I))) ⊆ Ec(I), which yields Ec(I) is an ec-filter. �

Definition 2.6. An ideal I in C∗c (X) is called ec-ideal if I = E−1c (Ec(I)), or
equivalently, if f ∈ C∗c (X) and Ecε (f) ∈ Ec(I) for all ε, then f ∈ I.
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Proposition 2.7. If F is a zc-filter, then E−1c (F) is an ec-ideal in C∗c (X).

Proof. Let f, g ∈ E−1c (F), h ∈ C∗c (X) and let u be an upper bound for h and
ε > 0. Then Ecε

2
(f), Ecε

2
(g) and hence Ecε

2
(f) ∩ Ecε

2
(g) belong to F . Hence

Ecε
2
(f)∩Ecε

2
(g) ⊆ Ecε (f+g) implies that Ecε (f+g) ∈ F , or equivalently, f+g ∈

E−1c (F). Moreover, Ecε
u

(f) ⊆ Ecε (fh) implies fh ∈ E−1c (F). Therefore E−1c (F)

is ideal. In view of Corollary 2.1, we have E−1c (F) ⊆ E−1c (Ec(E
−1
c (F))) ⊆

E−1c (F) and so the equality holds, i.e., E−1c (F) is an ec-ideal. �

Corollary 2.8. Maximal ideals of C∗c (X) and an arbitrary intersection of them
are ec-ideals.

Proof. Let M be a maximal ideal of C∗c (X). If E−1c (Ec(M)) is not a proper
ec-ideal, then it contains the constant function 1 and Ecε (1) = ∅ ∈ Ec(M)
(0 < ε < 1) which is impossible, see Propositions 2.5 and 2.7. Hence M =
E−1c (Ec(M)), i.e., M is an ec-ideal. The second part is obtained by this fact,
the fact that the intersection of a family of maximal ideals is an ideal contained
in each of them and (ii) of Corollary 2.1. �

The next corollary is an immediate result of Propositions 2.5 and 2.7.

Corollary 2.9. The correspondence I 7→ Ec(I) is one-one from the set of
ec-ideals in C∗c (X) onto the set of ec-filters on X.

Lemma 2.10. (i) Let I and J be ideals in C∗c (X) and J an ec-ideal. Then
I ⊆ J if and only if Ec(I) ⊆ Ec(J).

(ii) Let F1 and F2 be zc-filters on X and F1 an ec-filter. Then F1 ⊆ F2 if
and only if E−1c (F1) ⊆ E−1c (F2).

Proof. It is straightforward. �

Proposition 2.11. Let I be an ideal in C∗c (X) and F a zc-filter on X. Then:

(i) E−1c (Ec(I)) is the smallest ec-ideal containing I.
(ii) Ec(E

−1
c (F)) is the largest ec-filter contained in F .

Proof. (i). Propositions 2.5 and 2.7 respectively show that Ec(I) is an ec-filter
and E−1c (Ec(I)) is an ec-ideal. Now, suppose that K is an ec-ideal containing
I. So E−1c (Ec(I)) ⊆ E−1c (Ec(K)) = K. Hence we are done. (ii). This is proved
similarly. �

The next theorem plays an important role in many of the following results.

Theorem 2.12. Let A be a zc-ultrafilter. Then a zero set Z meets every
element of Ec(E

−1
c (A)) if and only if Z ∈ A.

Proof. Since A is a filter and Ec(E
−1
c (A)) ⊆ A, the sufficient condition is

evident. For the necessary condition, it is recalled at first that if Z meets every
element of A then Z ∈ A, see (iv) of Proposition 1.4. Now, we claim that if Z
meets every element of Ec(E

−1
c (A)) as a particular subfamily of A, then also

Z ∈ A. Otherwise, for some Z ′ ∈ A, Z ∩ Z ′ = ∅. Since the closed sets Z and
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Z ′ are c-completely separated, there is f ∈ C∗c (X) (in fact 0 ≤ f ≤ 1) such
that f(Z) = 1 and f(Z ′) = 0. Notice that Z ′ ⊆ Z(f) ⊆ Ecε (f), for all ε, and;
Ecε (f) ∈ A, since Z ′ ∈ A. So Ecε (f) ∈ Ec(E−1c (A)). Now, if ε is taken less than
1, then Z ∩Ecε (f) = ∅ which contradicts with our assumption of Z. So Z ∈ A
and the proof is complete. �

The following proposition shows that, as Z−1c (A) is a maximal ideal in
Cc(X), E−1c (A) is also a maximal ideal in C∗c (X), where A is a zc-ultrafilter
on X.

Proposition 2.13. Let A be a zc-ultrafilter on X. Then:

(i) E−1c (A) is a maximal ideal.
(ii) E−1c (A) is an ec-ideal.

(iii) E−1c (A) = E−1c (Ec(E
−1
c (A))).

Proof. (i). Let M be a maximal ideal of C∗c (X) containing E−1c (A). Hence
Ec(E

−1
c (A)) ⊆ Ec(M). Since every element of Ec(M) meets every element

of Ec(E
−1
c (A)), Theorem 2.12 gives Ec(M) ⊆ A. So M = E−1c (Ec(M)) ⊆

E−1c (A) and hence M = E−1c (A). (ii). It follows by (i). (iii). Since the
maximal ideal E−1c (A) is contained in the proper ideal E−1c (Ec(E

−1
c (A))), the

result now holds. �

An ec-ultrafilter on X is meant a maximal ec-filter, i.e., one not contained in
any other ec-filter. As usual, every ec-filter F is contained in an ec-ultrafilter.
This is obtained by considering the collection of all ec-filters containing F
and the use of the Zorn’s lemma, where the partially ordered relation on F is
inclusion.

Proposition 2.14. Let M be an ideal in C∗c (X) and F a zc-filter on X. Then:

(i) If M is a maximal ideal then Ec(M) is an ec-ultrafilter.
(ii) If F is an ec-ultrafilter then E−1c (F) is a maximal ideal.
(iii) If M is an ec-ideal, then M is maximal if and only if Ec(M) is an

ec-ultrafilter.
(iv) If F is an ec-filter, then F is ec-ultrafilter if and only if E−1c (F) is a

maximal ideal.

Proof. (i). Note that M = E−1c (Ec(M)). Let F ′ be an ec-ultrafilter containing
Ec(M), then M ⊆ E−1c (F ′) and hence M = E−1c (F ′). Therefore Ec(M) =
Ec(E

−1
c (F ′)) = F ′, which yields the result. (ii). Let M be a maximal ideal

of C∗c (X) containing E−1c (F). Then F ⊆ Ec(M). Hence F = Ec(M) and so
E−1c (F) = M . The proofs of (iii) and (iv) are similarly done and further details
are omitted. �

Corollary 2.15. There is a one-to-one correspondence ψ between the sets of
maximal ideals of C∗c (X) and ec-ultrafilters on X, defined by ψ(M) = Ec(M).

Proposition 2.16. Let A be a zc-ultrafilter. Then it is the unique zc-ultrafilter
containing Ec(E

−1
c (A)), and also Ec(E

−1
c (A)) is the unique ec-ultrafilter con-

tained in A. Hence every ec-ultrafilter is contained in unique zc-ultrafilter.
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Proof. Let B be a zc-ultrafilter containing Ec(E
−1
c (A)) and Z ∈ B. Since Z

meets every element of Ec(E
−1
c (A)), Theorem 2.12 gives B ⊆ A and hence

B = A. So the first part of the proposition holds. Now, let K be an ec-
ultrafilter contained in A. Then K = Ec(E

−1
c (K)) ⊆ Ec(E

−1
c (A)). Since the

latter set is an ec-filter, the inclusion cannot be proper, i.e., K = Ec(E
−1
c (A)).

Hence the result is obtained. �

Corollary 2.17. The zc-ultrafilters are in one-to-one correspondence with the
ec-ultrafilters.

Proof. Consider the mapping ψ from the set of zc-ultrafilters into the set of
ec-ultrafilters defined by ψ(A) = Ec(E

−1
c (A)). If ψ(A) = ψ(B), then we have

that Ec(E
−1
c (A)) = Ec(E

−1
c (B)) and it is contained in both A and B. So

each element of B meets each element of Ec(E
−1
c (A)). Now, Theorem 2.12

gives B ⊆ A. Similarly, A ⊆ B. Therefore ψ is one-one. Let K be an ec-
ultrafilter andA the unique zc-ultrafilter containing it (Proposition 2.16). Then
K = Ec(E

−1
c (A)) and hence ψ(A) = K. Therefore ψ is onto. �

Our next two theorems are applications that are based on the concepts of
ec-filters and ec-ideals. In the first result (Theorem 2.18) we show that the
maximal ideals of Cc(X) are in one-to-one correspondence with those ones
of C∗c (X) and the second result (Theorem 2.20) involves characterization of
maximal ideals of C∗c (X).

Theorem 2.18. Let M (resp. M∗) be the set of maximal ideals of Cc(X)
(resp. C∗c (X)). Then M and M∗ have the same cardinality.

Proof. If M ∈ M then Zc[M ] is a zc-ultrafilter and hence E−1c (Zc[M ]) ∈ M∗,
see Propositions 1.4 and 2.13. Define

ϕ :M→M∗ which M 7→ E−1c (Zc[M ]).

If ϕ(M) = ϕ(M ′) then Ec(E
−1
c (Zc[M ])) = Ec(E

−1
c (Zc[M

′])) and it is con-
tained in both Zc[M ] and Zc[M

′]. Since each element of Zc[M
′] meets each

element of Ec(E
−1
c (Zc[M ])), Theorem 2.12 yields Zc[M

′] ⊆ Zc[M ]. Similarly,
Zc[M ] ⊆ Zc[M

′]. Therefore M = M ′. This verifies ϕ is one-one. To show
that ϕ is onto, suppose that M∗ ∈ M∗. Hence Ec(M

∗) is an ec-ultrafilter
(Proposition 2.14). Now, let A be the unique zc-ultrafilter containing Ec(M

∗)
(Proposition 2.16), then Z−1c [A] is a maximal ideal in Cc(X) (Proposition
1.4) and M∗ = E−1c (A). Recall that if F is a zc-filter, then we always have
Zc[Z

−1
c [F ]] = F and Ec(E

−1
c (F)) ⊆ F , but the equality occurs if F is an ec-

filter. Now, if we let M = Z−1c [A] then ϕ(M) = E−1c (Zc[M ]) = E−1c (A) = M∗.
Hence ϕ is onto, which it completes the proof. �

Remark 2.19. Combining Corollaries 1.5, 2.15 and 2.17 gives another proof of
the above theorem.

Theorem 2.20. Let M be an ideal in C∗c (X). Then M is maximal if and only
if whenever f ∈ C∗c (X) and each Ecε (f) meets every element of Ec(M), then
f ∈M .
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Proof. Necessity: Suppose that f /∈M . So (M,f) = C∗c (X). Hence h+fg = 1,
for some h ∈M and g ∈ C∗c (X). Let u be an upper bound for g and 0 < ε < 1.
Then

∅ = Ecε (1) = Ecε (h+ fg) ⊇ Ecε
2
(h) ∩ Ecε

2
(fg) ⊇ Ecε

2
(h) ∩ Ecε

2u
(f),

which contradicts with our assumption, since Ecε
2
(h) ∩ Ecε

2u
(f) 6= ∅. So we are

done.
Sufficiency: Let M ′ be a maximal ideal of C∗c (X) containing M and f ∈M ′.

Then Ec(M) ⊆ Ec(M ′) and Ecε (f) ∈ Ec(M ′), for all ε. Since Ec(M
′) is an ec-

filter, Ecε (f) meets every element of Ec(M
′). Hence it also meets each element

of Ec(M). Now, by hypothesis f ∈ M . Therefore M = M ′, which gives the
result. �

3. Uniform norm topology on C∗c (X) and related closed ideals

Consider the supremum-norm on C∗(X), i.e., ‖f‖ = supx∈X |f(x)|, where
f ∈ C∗(X). So its restriction on C∗c (X) is also the supremum-norm. This
defines a metric d as usual, d(f, g) = ‖f − g‖. The resulting metric topology is
called the uniform norm topology on C∗c (X). Convergence in this topology is
uniform convergence of the functions. A base for the neighborhood system at
g consists of all sets of the form

{f : ‖f − g‖ ≤ ε} (ε > 0).

Equivalently, a base at g is given by all sets

{f : |f(x)− g(x)| ≤ u(x) for every x ∈ X},

where u is a positive unit of C∗c (X).
If I is an ideal in C∗c (X) then its closure in C∗c (X) is denoted by clI.

Proposition 3.1. Let I be an ideal in C∗c (X). Then:

(i) clI is ideal.
(ii) If I is a proper ideal then clI is also a proper ideal.
(iii) If I is an ec-ideal then it is a closed ideal.

Proof. (i). Let f, g ∈ clI, h ∈ C∗c (X) and let u be an upper bound for h and
ε > 0 is fixed. Then for some f ′ ∈ N ε

2
(f) ∩ I and g′ ∈ N ε

2
(g) ∩ I we have

f ′ + g′ ∈ Nε(f + g) ∩ I. Moreover, there exists f1 ∈ N ε
u

(f) ∩ I and hence
f1h ∈ Nε(fh) ∩ I. So clI contains f + g and fh. Hence clI is ideal. (ii). If clI
is not a proper ideal then 1 ∈ clI and hence Nε(1)∩ I contains a unit element
of C∗c (X) such as f , since 1− ε < f < 1 + ε gives f is bounded away from zero
(of course, when 0 < ε < 1). But this is impossible since f ∈ I. Thus clI is a
proper ideal.
(iii). Let g ∈ clI and ε > 0 arbitrary. Then for some f ∈ N ε

2
(g) ∩ I and all

x ∈ Ecε
2
(f), we have

|g(x)| = |g(x)− f(x) + f(x)| ≤ |g(x)− f(x)|+ |f(x)| ≤ ε

2
+
ε

2
= ε.
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Hence Ecε
2
(f) ⊆ Ecε (g). Since the zc-filter Ec(I) contains Ecε

2
(f), it also contains

Ecε (g), for all ε. So g ∈ E−1c (Ec(I)) = I and therefore clI ⊆ I. This proves
that I is closed and hence the proof is complete. �

Immediately, we find there is no proper dense ideal in C∗c (X), and further
maximal ideals of C∗c (X) and hence every intersection of them are closed, see
Corollary 2.8 and (iii) of the above proposition.

We recall that [6, 1D(1)] plays a useful role in the context of C(X). The
following is the counterpart for Cc(X).

Proposition 3.2. If f, g ∈ Cc(X) and Z(f) is a neighborhood of Z(g), then
f = gh for some h ∈ Cc(X).

In the remainder of this section, the zero-dimensional topological space X
will be assumed to be compact. Hence it is c-pseudo-compact, i.e, Cc(X) =
C∗c (X).

Lemma 3.3. Let X be a compact space, I an ideal in Cc(X), f ∈ Cc(X) and
Z(f) a neighborhood of ∩Zc[I]. Then f ∈ I.

Proof. First, we recall that X is compact if and only if the intersection of
members of any collection consisting of nonempty closed subsets of X with
the finite intersection property (i.e., the intersection of each of a finite number
of them is nonempty) is nonempty. The lemma is obvious when I = Cc(X).
Now, if I is a proper ideal in Cc(X) then Zc[I] satisfies the finite intersection
property and hence ∩Zc[I] 6= ∅. By assumption ∩Zc[I] ⊆ intZ(f). Hence
Xr intZ(f) ⊆

⋃
g∈I coz(g) and so X =

⋃
g∈I coz(g)∪ intZ(f). By compactness

of X, there are a finite number of elements of I, say g1, g2, . . . , gn, such that

X =

n⋃
i=1

coz(gi) ∪ intZ(f).

Now, if we let g =
∑n
i=1 g

2
i then g ∈ I and ∅ 6= Z(g) =

⋂n
i=1 Z(gi) ⊆ intZ(f).

In view of Proposition 3.2, f is a multiple of g and hence it is contained in I.
So the proof is complete. �

Proposition 3.4. If g ∈ Cc(X) and ε > 0 is fixed, then there exists f ∈ Cc(X)
such that ‖g − f‖ ≤ ε and Z(f) is a neighborhood of Z(g).

Proof. The trivial solution is f = g, of course when Z(g) is open. In general,
it suffices to define

f(x) =


g(x)− ε, if x ∈ g−1([ε,+∞))

0, if x ∈ Ecε (g)

g(x) + ε, if x ∈ g−1((−∞,−ε]).
We note that X is the union of three closed sets g−1([ε,+∞)), Ecε (g) and

g−1((−∞,−ε]) and further f is continuous on each of them. Therefore f is
continuous on X, i.e., f ∈ C(X). Notice that the definition of f makes the
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cardinality of the range of f the same cardinality of the range of g. Hence this
leads us f ∈ Cc(X). Moreover, ‖g − f‖ ≤ ε. Evidently, Z(g) ⊆ g−1((−ε, ε)) ⊆
intZ(f) which yields Z(f) is a neighborhood of Z(g). �

Theorem 3.5. Let I be a proper ideal in Cc(X), I = ∩{M c
p : M c

p ⊇ I} and
J = {g ∈ Cc(X) : Z(g) ⊇ ∩Zc[I]}. Then:

(i) I = J .
(ii) ∩Zc[I] = ∩Zc[I].

Proof. (i). Let g ∈ J and M c
p be a fixed maximal ideal of Cc(X) containing

I. Then Z(g) ⊇ ∩Zc[I] ⊇ ∩Zc[M c
p ] = {p}. So g(p) = 0 and hence g ∈ M c

p .

Therefore g ∈ I. For the reverse inclusion, we show that if g /∈ J then g /∈ I.
If g /∈ J then there exists x ∈ ∩Zc[I] r Z(g). So I ⊆ M c

x but g /∈ M c
x. This

means that g /∈ I. The proof of (i) is now complete.
(ii). By (i), we have ∩Zc[I] = ∩Zc[J ] ⊇ ∩Zc[I]. On the other hand, I ⊆ I

implies Zc[I] ⊆ Zc[I] and therefore ∩Zc[I] ⊇ ∩Zc[I]. So it gives the result. �

Corollary 3.6. Let I be a proper ideal in Cc(X) and I as defined in Theorem
3.5. Then I = clI.

Proof. Since maximal ideals are closed,
⋂
I⊆M M is also closed, where M is

a maximal ideal in Cc(X). Therefore clI ⊆
⋂
I⊆M M ⊆ I. Let g ∈ I and

Nε(g) is a neighborhood of g. By Proposition 3.4, there is f such that Z(f)
is a neighborhood of Z(g) and ‖g − f‖ ≤ ε. Hence, by Theorem 3.5, ∩Zc[I] ⊆
Z(g) ⊆ intZ(f) and therefore Lemma 3.3 implies f ∈ I. Now, since f ∈
Nε(g) ∩ I, it gives g ∈ clI. So I ⊆ clI and we are done. �

We conclude the article with the following results for the proper ideals of
Cc(X). Corollary 3.7 is a consequence of Corollary 2.8, Proposition 3.1 (iii)
and Corollary 3.6; by the same results, plus Corollary 3.7 we obtain Corollary
3.8; finally Corollary 3.9 is the combination of Corollaries 3.7 and 3.8.

Corollary 3.7. An ideal I of Cc(X) is closed in Cc(X) if and only if it is an
intersection of maximal ideals of Cc(X).

Corollary 3.8. An ideal I of Cc(X) is an ec-ideal if and only if it is closed in
Cc(X).

Corollary 3.9. An ideal I of Cc(X) is an ec-ideal if and only if it is an
intersection of maximal ideals of Cc(X).
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