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Abstract

In this paper, we study the symmetry group of a type of composite
topological links, such as 221m!221. We have done a complete analysis
on the elements of the symmetric group of this link and show the struc-
ture of the group. The results can be generalized to the study of the
symmetry group of any composite topological link, and therefore it can
be used for the classification of composite topological links, which can
also be potentially used to identify synthetics molecules.
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1. Introduction

In topology, geometry, and physics, various knots, which are mathematically
various embeddings of a circle in the 3-dimensional Euclidean space, have been
interesting objects, which have been studied in recent decades (see for instance,
[12], [3], and [10]). In particular, knots have been used to construct examples for
the study of low-dimensional topology (see for instance, [9]). Two or more knots
can make up of a link, which have appeared to be somewhat more interesting
as a single knot, because of the combinatorial structure involved. The theory of
knots and links has applications in many areas such as physics, biochemistry,

∗This work is partially supported by Shenzhen Municipal Finance for Research.

Received 13 September 2019 – Accepted 22 November 2019

http://dx.doi.org/10.4995/agt.2020.10129


Y. Liu

and biology, in particular, DNA and enzyme action (see for instance, [19], [14],
and [7]).

The structure of the symmetry group has become important information to
understand the geometrical, physical properties of knots and links, as well as
the enumeration of knots and links (see, for instance, [5] and [6]). As shown
in [1], the knots are algebraic, and the symmetry of knots has been one of the
interesting topics presented in [18]. In this article, we show heuristically that
all composite topological links are actually also algebraic, in particular, the
composite link, which is the knot sum of the Hopf link and its mirror image,
denoted as 221m!221, has a symmetry group.

The main contribution of this paper is that we show that the symmetry
group of the composite link 221m!221 is

(1.1) Z2 × Z2 × Z2 = {1,α}× {1,β}× {1, γ} ,
where

(1.2) α = (1, 1,−1,−1, (2, 3)) ,

(1.3) β = (1,−1,−1,−1, e),

and

(1.4) γ = (−1,−1, 1, 1, e).

The results can be generalized in the study of the symmetry group of any com-
posite topological link, and so it can be used for the classification of composite
topological links.

This paper is structured as follows: in Section 2, we show the classification
of symmetries of the link 221m!221; and in Section 3, we analyze the structure
of the symmetry group from the perspective of algebraic group and prove our
main theorem.

2. Classifications

Let us compute the compatible (p, r) permutations first. Since the compati-
ble permutations just determine which component of each link is connected, the
compatible permutations are the same with the case 221!2

2
1. So the compatible

permutations are p = (2, 3), r = (1, 2) and p = e, r = e.
Now, let’s take the next step, by which we can find p̄1 and p̄2, and indeed,

p̄1 = p̄2 = e.
Knowing the fact that 221m and 221 are in different cosets and that 221 has

the symmetry group

(2.1) 〈 (1,−1,−1, e), (−1, 1,−1, e), (1, 1, 1, (1, 2) 〉 ,
we can see that there are 16 cases, as follows, to to considered:

(1) γ = (1, 1, 1, 1, (2, 3)); γ1 = (1, 1, 1, e); γ2 = (1, 1, 1, e).
Since Lγ1

2 is not in the coset of L1, this case is not in the symmetry
group of 221m!221.
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(2) γ = (1, 1, 1,−1, (2, 3)); γ1 = (1, 1, 1, e); γ2 = (1, 1,−1, e).
Since Lγ1

2 is not in the coset of L1, this case is not in the symmetry
group of 221m!221.

(3) γ = (1, 1,−1, 1, (2, 3)); γ1 = (1, 1,−1, e); γ2 = (1, 1, 1, e).
Since Lγ1

2 is in the coset of L1, but L
γ2

1 is not in the coset of L2, this
case is not in the symmetry group of 221m!221.

(4) γ = (1, 1,−1,−1, (2, 3)); γ1 = (1, 1,−1, e); γ2 = (1, 1,−1, e).
Since Lγ1

2 is in the coset of L1, and Lγ2

1 is in the coset of L2, this
case is in the symmetry group of 221m!221.

(5) γ = (1,−1, 1, 1, (2, 3)); γ1 = (1,−1, 1, e); γ2 = (1,−1, 1, e).
Since Lγ1

2 is in the coset of L1, and Lγ2

1 is in the coset of L2, this
case is in the symmetry group of 221m!221.

(6) γ = (1,−1, 1,−1, (2, 3)); γ1 = (1,−1, 1, e); γ2 = (1,−1,−1, e).
Since Lγ2

1 is not in the coset of L2, this case is not in the symmetry
group of 221m!221.

(7) γ = (1,−1,−1, 1, (2, 3)); γ1 = (1,−1,−1, e); γ2 = (1,−1, 1, e).
Since Lγ1

2 is not in the coset of L1, this case is not in the symmetry
group of 221m!221.

(8) γ = (1,−1,−1,−1, (2, 3)); γ1 = (1,−1,−1, e); γ2 = (1,−1,−1, e).
Since Lγ1

2 is not in the coset of L1, this case is not in the symmetry
group of 221m!221.
The next 8 cases of mirror image are the followings:

(9) γ = (−1, 1, 1, 1, (2, 3)); γ1 = (−1, 1, 1, e); γ2 = (−1, 1, 1, e).
Since Lγ1

2 is in the coset of L1, and and Lγ2

1 is in the coset of L2,
this case is in the symmetry group of 221m!221.

(10) γ = (−1, 1, 1,−1, (2, 3)); γ1 = (−1, 1, 1, e); γ2 = (−1, 1,−1, e).
Since Lγ2

1 is not in the coset of L2, this case is not in the symmetry
group of 221m!221.

(11) γ = (−1, 1,−1, 1, (2, 3)); γ1 = (−1, 1,−1, e); γ2 = (−1, 1, 1, e).
Since Lγ1

2 is not in the coset of L1, this case is not in the symmetry
group of 221m!221.

(12) γ = (−1, 1,−1,−1, (2, 3)); γ1 = (−1, 1,−1, e); γ2 = (−1, 1,−1, e).
Since Lγ1

2 is not in the coset of L1, this case is not in the symmetry
group of 221m!221.

(13) γ = (−1,−1, 1, 1, (2, 3)); γ1 = (−1,−1, 1, e); γ2 = (−1,−1, 1, e).
Since Lγ1

2 is not in the coset of L1, this case is not in the symmetry
group of 221m!221.

(14) γ = (−1,−1, 1,−1, (2, 3)); γ1 = (−1,−1, 1, e); γ2 = (−1,−1,−1, e).
Since Lγ1

2 is not in the coset of L1, this case is not in the symmetry
group of 221m!221.

(15) γ = (−1,−1,−1, 1, (2, 3)); γ1 = (−1,−1,−1, e); γ2 = (−1,−1, 1, e).
Since Lγ2

1 is not in the coset of L2, this case is not in the symmetry
group of 221m!221.

c© AGT, UPV, 2020 Appl. Gen. Topol. 21, no. 2 173



Y. Liu

(16) γ = (−1,−1,−1,−1, (2, 3)); γ1 = (−1,−1,−1, e); γ2 = (−1,−1,−1, e).
Since Lγ1

2 is in the coset of L1, and and Lγ2

1 is in the coset of L2,
this case is in the symmetry group of 221m!221.

In summary, the set of elements involving (2, 3) as the permutation in the
symmetry group is
(2.2)
S1 = {(1, 1,−1,−1, (2, 3)), (1,−1, 1, 1, (2, 3)), (−1, 1, 1, 1, (2, 3)), (−1,−1,−1,−1, (2, 3))} .

For the other compatible permutation p = r = e, we can compare Lγ1

1 and
L1, as well as L

γ2

2 and L2 , then we obtain the following set of elements in the
symmetry group,
(2.3)

S2 = {(1, 1, 1, 1, e), (1,−1,−1,−1, e), (−1,−1, 1, 1, e), (−1, 1,−1,−1, e)} .

3. Structure Analysis and Theorem

In this section, we analyze the structure of the symmetry group with the
multiplication operation of the group and have the following theorem.

Theorem 3.1. The symmetry group of the composite link 221m!221 is isomorphic
to Z2 × Z2 × Z2.

Proof. Let α = (1, 1,−1,−1, (2, 3)), β = (1,−1,−1,−1, e), γ = (−1,−1, 1, 1, e),
δ = (−1, 1,−1,−1, e), and the unit element 1 = (1, 1, 1, 1, e), we have

(3.1) (1,−1, 1, 1, (2, 3)) = αβ,

(3.2) (−1, 1, 1, 1, (2, 3)) = αδ,

and

(3.3) (−1,−1,−1,−1, (2, 3)) = αγ.

Noticing that δ = βγ, we now have the symmetry group

(3.4) G = 〈 1,α,β, γ 〉 .

Since any other element in G than the identity is of order 2, then we know that
G is abelian. Therefore, G is an abelian group of order 8. By the fundamental
theorem of finitely generated abelian group (see for instance [8]), the structure
of G is Z8, Z2 × Z4, or Z2 × Z2 × Z2. But since any other element in G than
the identity has an order 2, the structure of G must be Z2 × Z2 × Z2. Hence,

(3.5) G = {1,α}× {1,β}× {1, γ} ∼= Z2 × Z2 × Z2

where α = (1, 1,−1,−1, (2, 3), β = (1,−1,−1,−1, e), and γ = (−1,−1, 1, 1, e).
□

So it turns out that the structure of the symmetry group of the composite
link 221m!221 is the same as the composite link 221!2

2
1, but the symmetry group

of 221m!221has different elements in its symmetry group.
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Remark 3.2. Topological knots and links were studied by using integral ge-
ometry, on which one can refer to [13], but other theoretic work of integral
geometry such as [2], [16], [4], [15], and [17], may also be used to study knots
and links. On the other hand, the fundamental theorem of finitely generated
abelian group, in the case if the group is abelian, the classification of finite
simple groups (see for instance [11]), and other algebraic theories, can be used
to determine the structure of the symmetry group.

Another remark about the applications of the symmetry groups of knots we
would like to make is

Remark 3.3. In some physical movements or processes of DNA, the group
structure of the double helix strands of DNA is invariant, and therefore, it
can be used to track these movements or processes. Furthermore, the chirality
of synthetics molecules (see for instance, [20]), which should be induced by
the symmetry groups, can be used to identify synthetics molecules and can be
potentially applied to the testing on virus infections, which might potentially
help with the control on diseases, in particular, the infectious disease, COVID-
19, in the recent pandemic.

Figure 1. Discovered DNA Knot (c.f. [21])
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